首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A desire to replicate the structural and functional complexity of proteins with structured, sequence-specific oligomers motivates study of the structural features of water-soluble peptoids (N-substituted glycine oligomers). Understanding the molecular-level details of peptoid self-assembly in water is essential to advance peptoids' application as novel materials. Peptoid 1 , an amphiphilic, putatively helical peptoid previously studied in our laboratory, shows evidence of self-association in aqueous solution. In this work, we evaluate how changes to aqueous solution conditions influence the self-association of 1 . We report that changes to pH influence the fluorescence and CD spectroscopic features as well as the peptoid's interaction with a solvatochromic fluorophore and its apparent size as estimated by size exclusion chromatography. Addition of guanidine hydrochloride and ammonium sulfate also modulate spectroscopic features of the peptoid, its interaction with a solvatochromic fluorophore, and its elution in size exclusion chromatography. These data suggest that the ordering of the self-assembly changes in response to pH and with solvent additives and is more ordered at higher pH and in the presence of guanidine hydrochloride. The deeper understanding of the self-association of 1 afforded by these studies informs the design of new stimuli-responsive peptoids with stable tertiary or quaternary structures.  相似文献   

2.
The hydrophobic proteins of lung surfactant (LS), SP-B and SP-C, are critical constituents of an effective surfactant replacement therapy for the treatment of respiratory distress syndrome. Because of concerns and difficulties associated with animal-derived surfactants, recent investigations have focused on the creation of synthetic analogues of the LS proteins. However, creating an accurate mimic of SP-C that retains its biophysical surface activity is extraordinarily challenging given the lipopeptide's extreme hydrophobicity and propensity to misfold and aggregate. One successful approach that overcomes these difficulties is the use of poly-N-substituted glycines, or peptoids, to mimic SP-C. To develop a non-natural, bioactive mimic of SP-C and to investigate the effects of side chain chemistry and length of the helical hydrophobic region, we synthesized, purified, and performed in vitro testing of two classes of peptoid SP-C mimics: those having a rigid alpha-chiral aromatic helix and those having a biomimetic alpha-chiral aliphatic helix. The length of the two classes of mimics was also systematically altered. Circular dichroism spectroscopy gave evidence that all of the peptoid-based mimics studied here emulated SP-C's secondary structure, forming stable helical structures in solution. Langmuir-Wilhelmy surface balance, fluorescence microscopy, and pulsating bubble surfactometry experiments provide evidence that the aromatic-based SP-C peptoid mimics, in conjunction with a synthetic lipid mixture, have superior surface activity and biomimetic film morphology in comparison to the aliphatic-based mimics and that there is an increase in surface activity corresponding to increasing helical length.  相似文献   

3.
Surfactant protein B (SP-B) is one of two helical, amphipathic proteins critical for the biophysical functioning of lung surfactant (LS) and hence is an important therapeutic protein. This small, complex 79mer has three internal disulfide bonds and homodimerizes via another disulfide bridge. A helical, amphipathic 25mer from the amino terminus (SP-B(1-25)) exhibits surface-active properties similar to those of full-length, synthetic SP-B. In previous work, we created helical, non-natural mimics of SP-B(1-25) based on sequence-specific peptoid 17mers and demonstrated their biomimetic surface activity. Like SP-B(1-25), the peptoids were designed to adopt helical structures with cationic and nonpolar faces. Here, we compare the surface activities of six different helical peptoid analogues of SP-B(1-25) to investigate the importance of mimicking its N-terminal insertion domain as well as its two arginine residues, both thought to be important for the peptide's proper function. Although the peptoid analogues of SP-B(1-25) studied here share many similar features and all functionally mimic SP-B(1-25) to some degree, it is notable that small differences in their sequences and side chain chemistries lead to substantial differences in their observed interactions with a lipid film. A peptoid comprising a hydrophobic, helical insertion region with aromatic side chains shows more biomimetic surface activity than simpler peptoids, and even better activity, by comparison to natural LS, than SP-B(1-25). However, the substitution of lysine-like side chains for arginine-like side chains in the peptoid has little effect on biomimetic surface activity, indicating that interactions of the guanidino groups with lipids may not be critical for the function of these SP-B mimics.  相似文献   

4.
Poly-N-substituted glycines or "peptoids" are protease-stable peptide mimics. Although the peptoid backbone is achiral and lacks hydrogen-bond donors, substitution with alpha-chiral side chains can drive the formation of stable helices that give rise to intense CD spectra. To systematically study the solution properties and stability of water-soluble peptoid helices with alpha-chiral side chains, we have synthesized and characterized an amphipathic, 36-residue N-substituted glycine oligomer. CD was used to investigate effects of concentration and solvent environment on this helical peptoid. We saw no significant dependence of helical structure on concentration. Intense, "alpha-helix-like" CD spectra were observed for the 36-mer in aqueous, 2,2,2-trifluorethanol (TFE), and methanol solution, proving a relative insensitivity of peptoid helical structure to solvent environment. While CD spectra taken in these different solvents were fundamentally similar in shape, we did observe some interesting differences in the intensities of particular CD bands in the various solvents. For example, the addition of TFE to an aqueous solvent increases the degree of peptoid helicity, as is observed for polypeptide alpha-helices. Moreover, the helical structure of peptoids appears to be virtually unaffected by heat, even in an aqueous buffer containing 8 M urea. The extraordinary resistance of these peptoid helices to denaturation is consistent with a dominant role of steric forces in their structural stabilization. The structured polypeptoids studied here may have potential as robust mimics of helical polypeptides of therapeutic interest.  相似文献   

5.
Peptoids are a novel class of biomimetic, non-natural, sequence-specific heteropolymers that resist proteolysis, exhibit potent biological activity, and fold into higher order nanostructures. Structurally similar to peptides, peptoids are poly N-substituted glycines, where the side chains are attached to the nitrogen rather than the alpha-carbon. Their ease of synthesis and structural diversity allows testing of basic design principles to drive de novo design and engineering of new biologically-active and nanostructured materials. Here, a simple manual peptoid synthesis protocol is presented that allows the synthesis of long chain polypeptoids (up to 50mers) in excellent yields. Only basic equipment, simple techniques (e.g. liquid transfer, filtration), and commercially available reagents are required, making peptoids an accessible addition to many researchers' toolkits. The peptoid backbone is grown one monomer at a time via the submonomer method which consists of a two-step monomer addition cycle: acylation and displacement. First, bromoacetic acid activated in situ with N,N'-diisopropylcarbodiimide acylates a resin-bound secondary amine. Second, nucleophilic displacement of the bromide by a primary amine follows to introduce the side chain. The two-step cycle is iterated until the desired chain length is reached. The coupling efficiency of this two-step cycle routinely exceeds 98% and enables the synthesis of peptoids as long as 50 residues. Highly tunable, precise and chemically diverse sequences are achievable with the submonomer method as hundreds of readily available primary amines can be directly incorporated. Peptoids are emerging as a versatile biomimetic material for nanobioscience research because of their synthetic flexibility, robustness, and ordering at the atomic level. The folding of a single-chain, amphiphilic, information-rich polypeptoid into a highly-ordered nanosheet was recently demonstrated. This peptoid is a 36-mer that consists of only three different commercially available monomers: hydrophobic, cationic and anionic. The hydrophobic phenylethyl side chains are buried in the nanosheet core whereas the ionic amine and carboxyl side chains align on the hydrophilic faces. The peptoid nanosheets serve as a potential platform for membrane mimetics, protein mimetics, device fabrication, and sensors. Methods for peptoid synthesis, sheet formation, and microscopy imaging are described and provide a simple method to enable future peptoid nanosheet designs.  相似文献   

6.
Surfactant protein C (SP-C) is an important constituent of lung surfactant (LS) and, along with SP-B, is included in exogenous surfactant replacement therapies for treating respiratory distress syndrome (RDS). SP-C's biophysical activity depends upon the presence of a rigid C-terminal helix, of which the secondary structure is more crucial to functionality than precise side-chain chemistry. SP-C is highly sequence-conserved, suggesting that the β-branched, aliphatic side chains of the helix are also important. Nonnatural mimics of SP-C were created using a poly-N-substituted glycine, or “peptoid,” backbone. The mimics included varying amounts of α-chiral, aliphatic side chains and α-chiral, aromatic side chains in the helical region, imparting either biomimicry or structural rigidity. Biophysical studies confirmed that the peptoids mimicked SP-C's secondary structure and replicated many of its surface-active characteristics. Surface activity was optimized by incorporating both structurally rigid and biomimetic side chain chemistries in the helical region indicating that both characteristics are important for activity. By balancing these features in one mimic, a novel analogue was created that emulates SP-C's in vitro surface activity while overcoming many of the challenges related to natural SP-C. Peptoid-based analogues hold great potential for use in a synthetic, biomimetic LS formulation for treating RDS.  相似文献   

7.
8.
Polysaccharide chains are usually considered to be highly hydrophilic, since they contain no obvious apolar moieties. However, it is possible for even these chains to display hydrophobic character, arising out of stereochemical constraints in the chain. We had earlier shown that linear dextrin chains display amphiphilic properties, since all the hydroxyl groups are disposed on one side or face of the chain and the hydrogens disposed on the other. We provide further evidence here for this conclusion that dextrins are amphiphilic chains. In contrast, dextrans and cellulosic chains do not display amphiphilicity. Oligosaccharides that can adopt incipient helical structures might display amphiphilicity. This property might be relevant to intermolecular recognition on cell surfaces, lectin-sugar binding, antigen-antibody interactions and the like, and might be manifested more in a heteromolecular recognition process than as homomolecular self-aggregation.  相似文献   

9.
Sodium dodecyl sulfate (SDS) is used more often than any other detergent as an excellent denaturing or "unfolding" detergent. However, formation of ordered structure (alpha-helix or beta-sheet) in certain peptides is known to be induced by interaction with SDS micelles. The SDS-induced structures formed by these peptides are amphiphilic, having both a hydrophobic and a hydrophilic face. Previous work in this area has revealed that SDS induces helical folding in a wide variety of non-helical proteins. Here, we describe the interaction of several structurally unrelated proteins with SDS micelles and the correlation of these structures to helical amphiphilic regions present in the primary sequence. It is likely that the ability of native nonordered protein structures to form induced amphiphilic ordered structures is rather common.  相似文献   

10.
S J Park  W T Miller  P Schimmel 《Biochemistry》1990,29(39):9212-9218
A 40 amino acid sequence of the unsolved structure of Escherichia coli alanine-tRNA synthetase is essential for tRNA binding and encodes an immunological determinant that cross-reacts with antibodies raised against a eukaryote (insect Bombyx mori) alanine enzyme. The secondary structure of this sequence is predicted to be an amphiphilic alpha-helix that includes one aspartyl and eight glutamyl side chain carboxyl groups. The antibody reactivity and the conformation of a synthetic peptide model of this region (Glu346 to Ser385) were investigated. In addition, double Arg----Gln and Leu----Ala substitutions were separately placed in the enzyme on the hydrophilic and hydrophobic face, respectively, of the predicted helix. These mutations conserve the polar/nonpolar character of each face and retain the potential for helix formation. Circular dichroism spectra of the synthetic peptide model demonstrate the potential for amphiphilic helix formation for the segment from Glu346 to Ser385. The behavior of the mutations in the enzyme, together with earlier data and immunological assays presented here, suggests that one face of the putative helix is an antigenic region of the surface of the enzyme where it contributes to the interaction with alanine tRNA and that the specific sequence of the helix is an important determinant of enzyme stability.  相似文献   

11.
Peptide III is a 20-residue synthetic model peptide based on the fusion peptide of influenza virus A/PR/8/34 strain and takes a secondary structure similar to the original peptide. While conserving the amphiphilic helical nature, 20 peptides to modify the bulkiness of side chains of peptide III were synthesized, and acid-induced membrane destabilization was assessed by aqueous content leakage from large unilamellar vesicles. Substitutions on the hydrophobic side decreased activity but showed less effect on the hydrophilic side, which confirmed the importance of the hydrophobic side for interaction with the membrane. Interestingly, substitution at the 13th Gly residue enhanced the amphiphilic helical nature but severely reduced activity. Correlation between alpha-helical content at acidic pH and the activity was not recognized, suggesting rather that the importance of this site was due to helix termination by glycine which allows N-terminal and C-terminal halves to behave as different secondary structural units.  相似文献   

12.
The peptide backbones in folded native proteins contain distinctive secondary structures, alpha-helices, beta-sheets, and turns, with significant frequency. One question that arises in folding is how the stability of this secondary structure relates to that of the protein as a whole. To address this question, we substituted the alpha-helix-stabilizing alanine side chain at 16 selected sites in the sequence of sperm whale myoglobin, 12 at helical sites on the surface of the protein, and 4 at obviously internal sites. Substitution of alanine for bulky side chains at internal sites destabilizes the protein, as expected if packing interactions are disrupted. Alanine substitutions do not uniformly stabilize the protein, either in capping positions near the ends of helices or at mid-helical sites near the surface of myoglobin. When corrected for the extent of exposure of each side chain replaced by alanine at a mid-helix position, alanine replacement still has no clear effect in stabilizing the native structure. Thus linkage between the stabilization of secondary structure and tertiary structure in myoglobin cannot be demonstrated, probably because of the relatively small free energy differences between side chains in stabilizing isolated helix. By contrast, about 80% of the variance in free energy observed can be accounted for by the loss in buried surface area of the native residue substituted by alanine. The differential free energy of helix stabilization does not account for any additional variation.  相似文献   

13.
Polysaccharide chains are usually considered to be highly hydrophilic, since they have no obvious nonpolar moieties in them. Yet, it is possible to realise conformations in these chains wherein all the hydroxy groups are disposed in one side or face of the chain and the hydrogens disposed in the other. We experimentally demonstrate that such an amphiphilic surface is present in linear oligomeric dextrins, i.e., alpha-1,4-linked D-glucosides, but not in alpha-1,6-D-glucosides (dextrans) or in beta-1,4-D-glucosides (cellulose). This amphiphilicity is generated as a consequence of the stereochemical constraints, which vary with the structure of the sugar and with the type of linkage. Oligosaccharide chains that can adopt incipient helical structures might display amphiphilicity. This property might be relevant to intermolecular recognition on cell surfaces, lectin-sugar binding, antigen-antibody interactions and the like, and might be manifested more in heteromolecular recognition process than as homomolecular self-aggregation.  相似文献   

14.
Lung surfactant protein B (SP-B) is a lipophilic protein critical to lung function at ambient pressure. KL4 is a 21-residue peptide which has successfully replaced SP-B in clinical trials of synthetic lung surfactants. CD and FTIR measurements indicate KL4 is helical in a lipid bilayer environment, but its exact secondary structure and orientation within the bilayer remain controversial. To investigate the partitioning and dynamics of KL4 in phospholipid bilayers, we introduced CD3-enriched leucines at four positions along the peptide to serve as probes of side chain dynamics via 2H solid-state NMR. The chosen labels allow distinction between models of helical secondary structure as well as between a transmembrane orientation or partitioning in the plane of the lipid leaflets. Leucine side chains are also sensitive to helix packing interactions in peptides that oligomerize. The partitioning and orientation of KL4 in DPPC/POPG and POPC/POPG phospholipid bilayers, as inferred from the leucine side chain dynamics, is consistent with monomeric KL4 lying in the plane of the bilayers and adopting an unusual helical structure which confers amphipathicity and allows partitioning into the lipid hydrophobic interior. At physiologic temperatures, the partitioning depth and dynamics of the peptide are dependent on the degree of saturation present in the lipids. The deeper partitioning of KL4 relative to antimicrobial amphipathic α-helices leads to negative membrane curvature strain as evidenced by the formation of hexagonal phase structures in a POPE/POPG phospholipid mixture on addition of KL4. The unusual secondary structure of KL4 and its ability to differentially partition into lipid lamellae containing varying levels of saturation suggest a mechanism for its role in restoring lung compliance.  相似文献   

15.
16.
The major histocompatibility complex (MHC) class II binding requirements for solvent-exposed peptide residues were systematically studied using amino acid and peptoid substitutions. In a peptoid residue, the side chain is present on the backbone nitrogen atom as opposed to the alpha-carbon atom in an amino acid residue. To investigate the effect of this side chain shifting on MHC binding, three amino acids in the central part of the peptide sticking out of the binding groove were replaced by corresponding peptoid residues. Two peptoid-peptide hybrids showed large affinity decreases in the MHC-peptide binding assay. To investigate this affinity loss, the individual contributions to MHC binding affinity of the side chain (position), the putative hydrogen bond, and the flexibility were dissected. We conclude that the side chain position as well as the backbone nitrogen atom hydrogen bonding features of solvent-exposed residues in the peptide can be important for MHC binding affinity.  相似文献   

17.
Krishna AG  Menon ST  Terry TJ  Sakmar TP 《Biochemistry》2002,41(26):8298-8309
The crystal structure of rhodopsin revealed a cytoplasmic helical segment (H8) extending from transmembrane (TM) helix seven to a pair of vicinal palmitoylated cysteine residues. We studied the structure of model peptides corresponding to H8 under a variety of conditions using steady-state fluorescence, fluorescence anisotropy, and circular dichroism spectroscopy. We find that H8 acts as a membrane-surface recognition domain, which adopts a helical structure only in the presence of membranes or membrane mimetics. The secondary structural properties of H8 further depend on membrane lipid composition with phosphatidylserine inducing helical structure. Fluorescence quenching experiments using brominated acyl chain phospholipids and vesicle leakage assays suggest that H8 lies within the membrane interfacial region where amino acid side chains can interact with phospholipid headgroups. We conclude that H8 in rhodopsin, in addition to its role in binding the G protein transducin, acts as a membrane-dependent conformational switch domain.  相似文献   

18.
The fluorophore rhodamine B is often used in biological assays. It is inexpensive, robust under a variety of reaction conditions, can be covalently linked to bioactive molecules, and has suitable spectral properties in terms of absorption and fluorescence wavelength. Nonetheless, there are some drawbacks: it can readily form a spirolactam compound, which is nonfluorescent, and therefore may not be the dye of choice for all fluorescence microscopy applications. Herein this spirolactam formation was observed by purifying such a labeled peptoid with high performance liquid chromatography (HPLC) and monitored in detail by making a series of analytical HPLC runs over time. Additionally, a small library of eight peptoids with rhodamine B as label was synthesized. Analysis of the absorption properties of these molecules demonstrated that the problem of fluorescence loss can be overcome by coupling secondary amines with rhodamine B.  相似文献   

19.
Peptoids are peptidomimetic oligomers composed of N-substituted glycine units. Their convenient synthesis enables strict control over the sequence of highly diverse monomers and is capable of generating extensive compound libraries. Recent studies are beginning to explore the relationship between peptoid sequence, structure and function. We describe new approaches to direct the conformation of the peptoid backbone, leading to secondary structures such as helices, loops, and turns. These advances are enabling the discovery of bioactive peptoids and will establish modules for the design and assembly of protein mimetics.  相似文献   

20.
N-hydroxy amides can be found in many naturally occurring and synthetic compounds and are known to act as both strong proton donors and chelators of metal cations. We have initiated studies of peptoids, or N-substituted glycines which contain N-hydroxy amide side chains to investigate the potential effects of these functional groups on peptoid backbone amide rotamer equilibria and local conformations. We reasoned that the propensity of these functional groups to participate in hydrogen bonding could be exploited to enforce intramolecular or intermolecular interactions that yield new peptoid structures. Here, we report the design, synthesis, and detailed conformational analysis of a series of model N-hydroxy peptoids. These peptoids were readily synthesized, and their structures were analyzed in solution by 1D and 2D NMR and in the solid-state by X-ray crystallography. The N-hydroxy amides were found to strongly favor trans conformations with respect to the peptoid backbone in chloroform. More notably, unique sheet-like structures held together via intermolecular hydrogen bonds were observed in the X-ray crystal structures of an N-hydroxy amide peptoid dimer, which to our knowledge represent the first structure of this type reported for peptoids. These results suggest that the N-hydroxy amide can be utilized to control both local backbone geometries and longer-range intermolecular interactions in peptoids, and represents a new functional group in the peptoid design toolbox.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号