首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
采用扫描电镜、透射电镜和蛋白银染色等方法研究了海蜇胚胎发育和变态过程中细胞超微结构变化。结果显示: (1)海蜇自受精卵至原肠期阶段细胞均等分裂, 细胞间存在大量连接, 细胞形态相近, 未出现显著分化; (2)海蜇自早期浮浪游虫阶段, 其外胚层细胞开始出现空泡化, 至4触手螅状体阶段外胚层细胞空泡体积逐渐增大, 而内胚层细胞仅在4触手螅状体阶段才出现空泡化。伴随着外胚层细胞空泡化比例的增大, 杯状体和4触手螅状体阶段出现疑似凋亡小体结构; (3)刺细胞分化于早期浮浪游虫期的外胚层近中胶层区域, 而后逐渐向外转移, 至4触手螅状体阶段发育成熟并转移至表面; (4)纤毛形成于早期浮浪幼虫, 在杯状体阶段逐渐退化, 并于4触手螅状体阶段完全消失; (5)在海蜇早期发育各个阶段, 其内部均发现大量着色较深的卵黄体, 且在浮浪游虫阶段首次发现了海蜇外层细胞主动吞噬细菌现象, 表明海蜇早期发育营养来自内源性和外源性两部分。研究结果可为阐明刺胞动物早期发育模式提供依据。  相似文献   

2.
Aurelia aurita is a cosmopolite species of scyphomedusae. Its anatomy and life cycle are well investigated. This work provides a detailed study on development and structure of A. aurita planula before and during its metamorphosis. Intravital observations and histology study during the settlement and metamorphosis of the planulae demonstrated that the inner manubrium lining of primary polyp (gastroderm) develops from the ectoderm of the planula posterior end. The spatial and temporal dynamics of serotonergic cells from the early embryonic stages until the formation of the primary polyp were studied for the first time. In addition, the distribution of tyrosinated tubulin and neuropeptide RF-amide at different stages of A. aurita development was traced.  相似文献   

3.
4.
In planula larvae of the invertebrate Hydractinia echinata (Cnidaria, Hydrozoa), peptides of the GLWamide and the RFamide families are expressed in distinct subpopulations of neurons, distributed in a typical spatial pattern through the larval body. However, in the adult polyp GLWamide or RFamide-expressing cells are located at body parts that do not correspond to the prior larval regions. Since we had shown previously that during metamorphosis a large number of cells are removed by programmed cell death (PCD), we aimed to analyze whether cells of the neuropeptide-expressing larval nerve net are among those sacrificed. By immunohistochemical staining and in situ hybridization, we labeled GLWamide- and RFamide-expressing cells. Double staining of neuropeptides and degraded DNA (TUNEL analysis) identified some neurosensory cells as being apoptotic. Derangement of the cytoplasm and rapid destruction of neuropeptide precursor RNA indicated complete death of these particular sensory cells in the course of metamorphosis. Additionally, a small group of RFamide-positive sensory cells in the developing mouth region of the primary polyp could be shown to emerge by proliferation. Our results support the idea that during metamorphosis, specific parts of the larval neuronal network are subject to neurodegeneration and therefore not used for construction of the adult nerve net. Most neuronal cells of the primary polyp arise by de novo differentiation of stem cells commited to neural differentiation in embryogenesis. At least some nerve cells derive from proliferation of progenitor cells. Clarification of how the nerve net of these basal eumetazoans degenerates may add information to the understanding of neurodegeneration by apoptosis as a whole in the animal kingdom.  相似文献   

5.
Electron microscopic study of an 18-day-old planulae and primary polyps of the sea pen, Ptilosarcus gurneyi, reveals 14 cell types: sustentacular cell A, sustentacular cell B, nerve cell, sensory cell, cnidoblast, interstitial cell, five types of gland cell (A, B, C, D and E), amoebocyte, style cell and endodermal cell. Of these, 9 are found in the planula, 12 in polyps and 7 are common to both stages. The fine structure of all cell types is described. Since the planulae and polyps in this study were identical in age of development, the gaining and losing of certain types of cells in the polyp are attributed to changes associated with settlement and metamorphosis. Modifications of the seven common cell types during metamorphosis can also be attributed to the change of life style from pelagic to benthic.  相似文献   

6.
Summary During embryogenesis and planula development of the colonial hydroidHydractinia echinata cell proliferation decreases in a distinct spatio-temporal pattern. Arrest in S-phase activity appears first in cells localized at the posterior and then subsequently at the anterior pole of the elongating embryo. These areas do not resume S-phase activity, even during the metamorphosis of the planula larva into the primary polyp. Tissue containing the quiescent cells gives rise to the terminal structures of the polyp. The posterior area of the larva becomes the hypostome and tentacles, while the anterior part of the larva develops into the basal plate and stolon tips. In mature planulae only a very few cells continue to proliferate. These cells are found in the middle part of the larva. Labelling experiments indicate that the prospective material of the postmetamorphic tentacles and stolon tips originates from cells which have exited from the cell cycle in embryogenesis or early in planula development. Precursor cells of the nematocytes which appear in the tentacles of the polyp following metamorphosis appear to have ceased cycling before the 38th hour of embryonic development. The vast majority of the cells that constitute the stolon tips of the primary polyp leave the cell cycle not later than 58 h after the beginning of development. We also report the identification of a cell type which differentiates in the polyp without passing through a post-metamorphic S-phase. The cell type appears to be neural in origin, based upon the identification of a neuropeptide of the FMRFamide type.  相似文献   

7.
We investigated the development of Aurelia (Cnidaria, Scyphozoa) during embryogenesis and metamorphosis into a polyp, using antibody markers combined with confocal and transmission electron microscopy. Early embryos form actively proliferating coeloblastulae. Invagination is observed during gastrulation. In the planula, (1) the ectoderm is pseudostratified with densely packed nuclei arranged in a superficial and a deep stratum, (2) the aboral pole consists of elongated ectodermal cells with basally located nuclei forming an apical organ, which is previously only known from anthozoan planulae, (3) endodermal cells are large and highly vacuolated, and (4) FMRFamide-immunoreactive nerve cells are found exclusively in the ectoderm of the aboral region. During metamorphosis into a polyp, cells in the planula endoderm, but not in the ectoderm, become strongly caspase 3 immunoreactive, suggesting that the planula endoderm, in part or in its entirety, undergoes apoptosis during metamorphosis. The polyp endoderm seems to be derived from the planula ectoderm in Aurelia, implicating the occurrence of “secondary” gastrulation during early metamorphosis.  相似文献   

8.
Aulacoseira baicalensis (K. Meyer) Simonsen is a freshwater planktonic diatom that undergoes large seasonal changes in cell morphology related to changes in vertical mixing. Short cells (10–20 µm) with thin walls were formed under the ice of Lake Baikal but cell lengths increased up to 150 µm by the time mixing depth reached over 100 m in June. These long cells became resting stages that were packed with reserve products and had siliceous walls up to 4 µm thick. Increase in mixing depth gave access to sufficient silica for completion of resting stages in most years but not in high biomass years, which has long-term implications for the population. Wall thickening reduced the risk of dissolution during dormancy but it also reduced cell volume. Therefore, by increasing length, cells maintained storage space for reserves. Seasonal changes in valve length showed that individual valves did not last more than 6 months, equivalent to 5 to 10 divisions. Separation valves were important in determining the number of cells per filament during spring growth but cell breakage became more important during summer dormancy. Resting stages survived in cool, intermediate depths (50–150 m) during summer stratification and were returned to the surface during autumn overturn.  相似文献   

9.
Hydractinia echinata is a marine colonial hydroid, a relative of the more widely known Hydra. In contrast to Hydra, embryogenesis, metamorphosis and colony growth in Hydractinia are experimentally accessible and therefore, provide an ideal model system for investigating the biochemical basis of pattern formation. In particular, the processes involved in the transformation of the drop-shaped freely swimming larva into a sessile tube-shaped polyp are easily monitored, because this transfomation can be induced by application of various substances. Our results indicate that the internal level of S-adenosylmethionine (SAM), potentially the most important methyl donor in transmethylation processes, plays a key role in the onset of metamorphosis. It is also proposed that the internal level of SAM plays a pivotal role in the proportioning and spacing of polyps within the colony.  相似文献   

10.
Summary

At metamorphosis the attachment of the Plumatella larva to the substrate is effected by secretions from glandular cells in the apical plate, the leading pole during swimming. The larval mantle folds back and slides down towards the substrate. By ciliary activity an adhesive secretion is spread over the metamorphosing larva and the attachment area. Two polypides appear through the larval terminal opening. The mantle fold, together with gland cells, nerve cells, sensory cells, and muscle cells from the larva form a nutritive cell mass. Reduction of this nutritive cell mass is accomplished by autolysis and phagocytosis. An invaginated area of the nutritive cell mass is provided with a dense layer of microvilli, which seem to have an absorbtive function. The nutritive cell mass consisting of transitory larval tissues provides a significant source of nutrient for the developing polypide buds.  相似文献   

11.
Abstract. Laser scanning confocal microscopy is used to reveal the changes that occur in the RFamide-positive nerve net as a free-swimming, solid hydrozoan planula larva is transformed into a sessile, hollow, young polyp. Seven stages of development in Pennaria tiarella are described: planula competent to metamorphose, attaching planula, disc, pawn, crown, developing polyp, and developed primary polyp. The RFamide-positive nervous system undergoes dramatic reorganization during metamorphosis: (1) larval neurons degenerate; (2) new neurons differentiate and reform a nerve net; and (3) the overall distribution pattern of the nervous system changes. This study confirms earlier observations on RFamide-positive neurons of Hydractinia which also show the loss of these cells after the onset of metamorphosis.  相似文献   

12.
The morphology and histology of the planula larva ofEudendrium racemosum (Cavolini) and its metamorphosis into the primary polyp are described from light microscopic observations. The planula hatches as a differentiated gastrula. During the lecithotrophic larval period, large ectodermal mucous cells, embedded between epitheliomuscular cells, secrete a sticky slime. Two granulated cell types occur in the ectoderm that are interpreted as secretory and sensorynervous cells, but might also be representatives of only one cell type with a multiple function. The entoderm consists of yolk-storing gastrodermal cells, digestive gland cells, interstitial cells, cnidoblasts, and premature cnidocytes. The larva starts metamorphosis by affixing its blunt aboral pole to a substratum. While the planula flattens down, the mucous cells penetrate the mesolamella and migrate through the entoderm into the gastral cavity where they are lysed. Subsequently, interstitial cells, cnidoblasts, and premature cnidocytes migrate in the opposite direction, i.e. from entoderm to ectoderm. Then, the polypoid body organization, comprising head (hydranth), stem and foot, all covered by peridermal secretion, becomes recognisable. An oral constriction divides the hypostomal portion of the gastral cavity from the stomachic portion. Within the hypostomal entoderm, cells containing secretory granules differentiate. Following growth and the multiplication of tentacles, the head periderm disappears. A ring of gland cells differentiates at the hydranth's base. The positioning of cnidae in the tentacle ectoderm, penetration of the mouth opening and the multiplication of digestive gland cells enable the polyp to change from lecithotrophic to planktotrophic nutrition.  相似文献   

13.
The element phosphorus made up 0.5% of the dry weight of dehulled Avena fatua caryopses 7 days after anthesis (DAA), half of it inorganic (Pi). Caryopses detached and pierced 7 DAA germinated in vitro with a rapid drop in Pi levels. By 15–20 DAA caryopsis dry weight had increased three- to fourfold, but phosphorus made up less than 0.04% of the dry weight of this enlarged caryopsis. Caryopses at this stage germinated readily without piercing if incubated in vitro. A further decrease in Pi accompanied by a marked increase in phytate phosphorus began about 15 DAA and continued during later seed maturation. By 20 DAA, when embryos were relatively mature and endosperm cell division had ceased, a decrease in caryopsis water content (as a percentage of dry weight) began, and seed dormancy became apparent. As starch and phytate reserves accumulated, Pi and water levels of the caryopsis diminished. Higher levels of endogenous Pi coincided with the anabolic events of initial seed formation and, to a lesser extent, with anabolic events of seed germination. Decreasing Pi levels coincided with accumulation of nutrient reserves, lowering of water content, and the initiation of dormancy. The data suggest that (1) enzymes associated with the formation and development of the embryo may be activated by the high Pi levels present during initial seed differentiation; (2) embryo quiescence and dormancy are facilitated by the drop of Pi levels which accompanies the accumulation of starch and phytate reserves; and (3) the increase in Pi which accompanies seed afterripening aids in the termination of dormancy and the resumption of germination. Received August 15, 1996; accepted December 2, 1996  相似文献   

14.
The potency of flagellated cells of Halisarca dujardini (Halisarcida, Demospongiae) larvae from the White Sea (Arctic) was investigated experimentally during metamorphosis. Two types of experiments were conducted. First, larvae were maintained in Ca2+ free seawater (CFSW) until the internal cells were released outside through the opening of the posterior pole. These larvae that only composed of flagellated cells (epithelial larvae) were then returned to sea water (SW) to observe their metamorphosis. The posterior aperture closed before they settled on a substratum and started a metamorphosis similar to intact larvae. Secondly, epithelial larvae were, first, further treated in CFSW and then mechanically dissociated. Separated cells or groups of cells were returned to SW, where they constituted large friable conglomerates. After 12-17 h in SW, flagellated cells showed the first steps of dedifferentiation, and regional differentiation was noticeable within conglomerates after approximately 24-36 h. External cells differentiated into pinacocytes while internal cells kept their flagella and became united in a layer. Within 48-72 h, internal cells of the conglomerates formed spherical or ovoid clusters with an internal cavity bearing flagella. These clusters further fused together in a rhagon containing one or two large choanocyte chambers. The sequence of cellular processes in epithelial larvae and in flagellated cell conglomerates was similar. Previous observations indicating the totipotentiality of larval flagellated cells during normal metamorphosis of H. dujardini are thus confirmed.  相似文献   

15.
The larvae of many marine organisms including hydrozoans are lecithotrophic and will not feed until after metamorphosis. In hydrozoans the aboral region of the planula becomes the holdfast and stolon, while the oral region becomes the stalk and hydranth that grows out of the holdfast following metamorphosis. If metamorphosis is delayed, the portion of the planula allocated to form holdfast and stolon shrinks and the region that forms the hydranth increases in size. Planulae also have the ability to regenerate their polyp prepattern. When the aboral region of the planula that does not normally form a hydranth is isolated and metamorphosis is delayed, it acquires the capacity to form a hydranth from the holdfast. A relatively high proportion of entodermal cells of young planulae engage in DNA synthesis (BrdU labeling index); as planulae age, the labeling index falls close to zero. When the polyp prepattern is modified during planula regeneration, entodermal cells are induced to engage in DNA synthesis. If DNA synthesis is inhibited in planulae, the polyp prepattern changes during regeneration and age-related developmental changes in planula are inhibited, suggesting that DNA synthesis is a necessary part of the pattern respecification process.  相似文献   

16.
The calcareous sponge Leucosolenia laxa releases free-swimming hollow larvae called coeloblastulae that are the characteristic larvae of the subclass Calcinea. Although the coeloblastula is a major type of sponge larva, our knowledge about its development is scanty. Detailed electron microscopic studies on the metamorphosis of the coeloblastula revealed that the larva consists of four types of cells: flagellated cells, bottle cells, vesicular cells, and free cells in a central cavity. The flagellated cells, the principal cell type of the larva, are arranged in a pseudostratified layer around a large central cavity. The larval flagellated cells characteristically have glutinous granules that are used as internal markers during metamorphosis. After a free-swimming period the larva settles on the substratum, and settlement apparently triggers the initiation of metamorphosis. The larval flagellated cells soon lose their flagellum and begin the process of dedifferentiation. Then the larva becomes a mass of dedifferentiated cells in which many autophagosomes are found. Within 18 h after settlement, the cells at the surface of the cell mass differentiate to pinacocytes. The cells beneath the pinacoderm differentiate to scleroblasts that form triradiate spicules. Finally, the cells of the inner cell mass differentiate to choanocytes and are arranged in a choanoderm that surrounds a newly formed large gastral cavity. We found glutinous granules in these three principal cell types of juvenile sponges, thus indicating the multipotency of the flagellated cells of the coeloblastula.  相似文献   

17.
The life cycle ofTripedalia cystophora includes a sessile saclike polyp — the asexual reproducing form — and a pelagic tetraradial medusa — the sexually reproducing generation. Medusan development can be induced by temperature increase. It reveals neither budding nor strobilation, but a real metamorphosis of a polyp to only one medusa. According to morphological and anatomical criteria the metamorphosis can be subdivided into four different stages: (1) four longitudinal furrows segment the polyp, the tentacles of which are apportionated on the four quadrants of the body. (2) The subumbrellar cavity develops by invagination of the peristom; the relicts of the fused tentacles change to four rhopalia buds. (3) Medusan architecture including four new interradial tentacles, four rhopalia and the subumbrellar swimming musculature is completed. (4) A young tetraradial medusa starts swimming. Ultrastructural analysis of those metamorphic stages show the different processes of morphogenesis: (a) Gastrodermal cells — absorptive and spumous cells — undergo transdifferentiation and proliferation to medusan cells of the same structure and function. (b) Epidermal cells, excluding the epithel muscle cells, dissociate and are autolytically withdrawn. Dedifferentiated epithel muscle cells — interstitial cells — regain the ability to develop a complete new set of somatic cells, not originally present in the polyp. They include amongst others cross-striated muscle cells, medusan typic nematocyts and particularly sensory and nervous cells. Those cells establish a nervous system with lens-eyes, simple ocelli, statocysts, diffuse nerve net and an additional nerve ring.  相似文献   

18.
Polyps of Aurelia aurita can transform into several medusae (jellyfish) in a process of sequential subdivision. During this transformation, two processes take place which are well known to play a key role in the formation of various higher metazoa: segmentation and metamorphosis. In order to compare these processes in bilaterians and cnidarians we studied the control and the kinetics of these processes in Aurelia aurita. Segmentation and metamorphosis visibly start at the polyp's head and proceed down the body column but do not reach the basal disc. The small piece of polyp which remains will develop into a new polyp. The commitment to the medusa stage moves down the body column and precedes the visible onset of segmentation by about one day. Segmentation and metamorphosis can start at the cut surface of transversely cut body columns, leading to a mirror-image pattern of sequentially developing medusae.  相似文献   

19.
隐球菌脑膜炎患者治疗后隐球菌超微结构观察   总被引:1,自引:0,他引:1  
目的研究隐球菌脑膜炎治疗后菌体超微结构的变化,探讨电镜检查在隐球菌活力检测中的应用。方法对8例经过两性霉素B和5-氟胞嘧啶联合治疗8周后,脑脊液中仍然可以查见隐球菌的患者,采用透射电镜对其脑脊液中的隐球菌进行超微结构观察。结果隐球菌菌体结构都显示了明显的变异:菌体大小差异显著,菌体形态变化明显;荚膜结构紊乱,菌体内可见空洞状或多个巨大脂滴,部分菌体胞膜破损,胞浆溢出。结论隐球菌脑膜炎治疗后虽然脑脊液中还存在菌体,但是菌体的超微结构已经发生了重大变化,提示菌体活力降低或死亡。电镜检查可以作为隐球菌活力判定的一种有效手段,提高隐球菌脑膜炎疗效判定的准确性。  相似文献   

20.
An analysis of aphakia (ak) gene expression in 16 day ak/ak C/C----+/+ c/c chimaeric embryos has shown, that ak gene, acting in developing lens, blocks lens cell differentiation and disturbs the formation by these cells of the extracellular matrix composing the lens capsule material. The dependence of capsule structure in chimaeras on the genotype of underlying cells indicates that lens cells are responsible for the formation of lens capsule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号