首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biological control of invasive saltcedars (Tamarix spp.) in the western U.S. by exotic tamarisk leaf beetles, Diorhabda spp., first released in 2001 after 15 years of development, has been successful. In Texas, beetles from Crete, Greece were first released in 2004 and are providing control. However, adults alight, feed and oviposit on athel (Tamarix aphylla), an evergreen tree used for shade and as a windbreak in the southwestern U.S. and México, and occasionally feed on native Frankenia spp. plants. The ability of tamarisk beetles to establish on these potential field hosts was investigated in the field. In no-choice tests in bagged branches, beetle species from Crete and Sfax, Tunisia produced 30–45% as many egg masses and 40–60% as many larvae on athel as on saltcedar. In uncaged choice tests in south Texas, adult, egg mass and larval densities were 10-fold higher on saltcedar than on adjacent athel trees after 2 weeks, and damage by the beetles was 2- to 10-fold greater on saltcedar. At a site near Big Spring, in west-central Texas, adults, egg masses and 1st and 2nd instar larvae were 2- to 8-fold more abundant on saltcedar than on athel planted within a mature saltcedar stand being defoliated by Crete beetles, and beetles were 200-fold or less abundant or not found at all on Frankenia. At a site near Lovelock, Nevada, damage by beetles of a species collected from Fukang, China was 12–78% higher on saltcedar than on athel planted among mature saltcedar trees undergoing defoliation. The results demonstrate that 50–90% reduced oviposition on athel and beetle dispersal patterns within resident saltcedar limit the ability of Diorhabda spp. to establish populations and have impact on athel in the field.  相似文献   

2.
We used the mountain pine beetle (Dendroctonus ponderosae Hopkins) and its two fungal associates, Grosmannia clavigera and Ophiostoma montium, to study potential nutritional benefits of fungi to bark beetles. We tested for potential effects of feeding on phloem colonized by fungi on beetle performance in field and laboratory studies. The fungi increased nitrogen levels in the phloem of attacked trees by 40%, indicating that it may be an important source of dietary nitrogen for mountain pine beetles. However, nitrogen levels of phloem inoculated with fungi in the laboratory were similar to uncolonized phloem, indicating that the fungi may redistribute nitrogen from the sapwood to the phloem rather than increase absolute levels of nitrogen. Beetles emerging from attacked trees carrying G. clavigera were larger than beetles carrying O. montium, which in turn were larger than beetles lacking fungi. Results of experimental laboratory studies varied, likely because of differences in the growth and sporulation of fungi under artificial conditions. Results indicate that the two fungi may offer complementary benefits to the mountain pine beetle because larvae preferentially fed on phloem colonized by both fungi together over phloem colonized by one fungus or uncolonized phloem. Teneral adults preemergence fed on spores in pupal chambers when they were produced and consumed little phloem before emerging. Teneral adults mined extensively in the phloem before emerging when spores were not produced in the pupal chamber. Our results provide evidence for a nutritional role of fungi in the diet of bark beetles and show that multiple associates may differentially affect beetle performance, which could have important implications for bark beetle population dynamics.  相似文献   

3.
In the low nutrient environment of conifer bark, subcortical beetles often carry symbiotic fungi that concentrate nutrients in host tissues. Although bark beetles are known to benefit from these symbioses, whether this is because they survive better in nutrient-rich phloem is unknown. After manipulating phloem nutrition by fertilizing lodgepole pine trees (Pinus contorta Douglas var. latifolia), we found bolts from fertilized trees to contain more living individuals, and especially more pupae and teneral adults than bolts from unfertilized trees at our southern site. At our northern site, we found that a larger proportion of mountain pine beetle (Dendroctonus ponderosae Hopkins) larvae built pupal chambers in bolts from fertilized trees than in bolts from unfertilized trees. The symbiotic fungi of the mountain pine beetle also responded to fertilization. Two mutualistic fungi of bark beetles, Grosmannia clavigera (Rob.-Jeffr. & R. W. Davidson) Zipfel, Z. W. de Beer, & M. J. Wingf. and Leptographium longiclavatum Lee, S., J. J. Kim, & C. Breuil, doubled the nitrogen concentrations near the point of infection in the phloem of fertilized trees. These fungi were less capable of concentrating nitrogen in unfertilized trees. Thus, the fungal symbionts of mountain pine beetle enhance phloem nutrition and likely mediate the beneficial effects of fertilization on the survival and development of mountain pine beetle larvae.  相似文献   

4.
Tree colonization and feeding activity of the invasive wood‐borer Asian longhorn beetle (Anoplophora glabripennis), an Asian pest introduced into North America and Europe, was studied in a newly invaded area in Italy. The hypothesis being tested was that the reproductive success of the insect depend on habitat type and tree suitability. Adult beetles were caged on branches of host and nonhost species, in both urban and forest habitats. Two months later, number and size of feeding patches on plant tissues, eggs laid, and surviving larvae were assessed. Bark concentration of C and N was also measured from the same trees. Results indicated that the mean area of plant tissues consumed by adult feeding was significantly larger on trees growing in forest than in urban habitat, although within the same habitat there were no differences between susceptible and nonsusceptible trees. ALB tree colonization, in terms of number of eggs laid and young larvae survival, was not affected by habitat while it was higher on susceptible trees. Although trees growing in forests had a lower nitrogen concentration, they allowed colonization rates similar to those of trees growing in the urban habitat. Hence, the amount of carbon and nitrogen did not fully explain tree suitability or habitat selection. We suggest compensatory feeding as a potential mechanism that might explain this peculiar situation, as supported by a more intensive feeding activity recorded on trees in the forest. Suitability of different trees may be due to other factors, such as secondary chemical compounds.  相似文献   

5.
1. Ecological stoichiometry theory was applied to investigate how a consumer contends with an extreme elemental mismatch between its food and its body via symbiotic facilitation. 2. The beetle Dendroctonus brevicomis LeConte develops in bark, a substrate extremely low in nitrogen (N) and phosphorus (P). Its survival there depends on interactions with mutualist and antagonist fungi. 3. This study found that mutualists transfer N and P from sapwood and phloem into bark, where beetles feed, whereas the antagonist moves these elements only to phloem, resulting in starvation of the insect. However, even with mutualists, N and P concentrations remained low in bark, resulting in low N and extremely low P concentrations in the beetle. 4. The N:P ratios found in D. brevicomis larvae were the highest thus far reported for beetles and among the highest for insects and invertebrates. This suggests that the beetle has evolved additional, nutrient‐sparing adaptations.  相似文献   

6.
7.
Leaf and soil nutrient levels interact with and may each influence the other. We hypothesize that to the extent soil fertility influences the nutritional state of trees, soil fertility should correlate with summer leaf nutrient levels, whereas to the extent that trees influence soil nutrient levels, the quality of leaf litterfall should correlate with soil fertility. We examined these correlations for five sympatric oak species (genus Quercus) in central coastal California. Soil fertility, including both nitrogen and especially phosphorus, correlated significantly with summer leaf nutrient levels. In contrast, phosphorus, but not nitrogen, in the leaf litterfall correlated positively with soil nutrients. These results suggest that soil nitrogen and phosphorus influence tree nutrient levels and that leaf phosphorus, but not leaf nitrogen, influence soil fertility under the trees. Feedback between the soil and the tree for phosphorus, but not nitrogen, is apparently significant and caused by species-specific differences in leaf quality and not by litterfall quality differences within a species. We also compared functional differences between the evergreen and deciduous oak species at our study site. There were no differences in soil nitrogen and only small differences for soil phosphorus between the phenological types. Differences in leaf nutrient concentration were much more pronounced, with the evergreen species having substantially lower levels of both nitrogen and phosphorus. Evergreen species conserved more phosphorus, but not more nitrogen, than the deciduous species, but there was no consistent relationship between retranslocation and either soil nitrogen or phosphorus. These results do not support the hypothesis that evergreenness is an adaptation to low soil fertility in this system.  相似文献   

8.
The potential compatibility with biological control of transgenic insecticidal plants expressing the biotin-binding protein avidin was investigated in tri-trophic experiments with the predatory carabid beetle, Ctenognathus novaezelandiae. Beetles were provided with pure and mixed diets of 33%, 67% or 100% of Spodoptera litura larvae, fed either avidin-expressing or isogenic control tobacco, and invertebrates field-collected from the forest floor. Beetles given only tobacco-fed S. litura, whether avidin was present or not, had lower fecundity, egg fertility, body mass and male survival than beetles that received some field food. Fewer of the avidin tobacco-fed prey were consumed than the control tobacco-fed, whatever mixture or proportion offered, probably as a result of the reduced quality of biotin-deprived prey. Beetles consuming 100% avidin tobacco-fed prey had lower fecundity than those given 100% control tobacco-fed prey, although predation on eggs as well as reduced prey quality could have contributed to this result. Despite the nutritionally limiting nature of an exclusive diet of tobacco-fed prey, there was no effect of avidin on fecundity in beetles consuming 67% or 33% avidin prey, or any effect on female or male mass, survival or egg fertility, even in the 100% avidin prey treatment. Fecundity in beetles fed 33% field food with 67% tobacco-fed prey was lower than in those fed 67% or 100% field food. However, there was no added impact of avidin on fecundity, mass or survival, or egg fertility of the 33% field food diet, suggesting that under field conditions, where a mixture of prey is available, negative impacts of avidin-fed prey are unlikely.  相似文献   

9.
Although plant quality can indirectly increase the performance of the third trophic level by bottom-up cascading effects, the mechanisms of this indirect effect are still unclear. In this study the carbon–nitrogen stoichiometry in a tri-trophic system consisting of the willow, a leaf beetle, and a predatory ladybird beetle were examined to determine the mechanisms of the bottom-up cascading effect. The bottom-up cascade is initiated by increasing leaf nitrogen, because of artificial cutting of willow trees. The relative growth rate (RGR) of the leaf beetle increased when fed on cut willow leaves, because of the high leaf nitrogen in the cut willows. Ladybird beetle RGR also increased when fed on leaf beetles fed on cut willow leaves. The increased RGR of the ladybirds cannot be explained by the quality of the prey, however, because leaf beetle nitrogen was not affected by host plant quality. Thus, the carbon–nitrogen stoichiometry could not be a mechanism of the bottom-up cascade through multiple trophic levels.  相似文献   

10.
A fungal root symbiont modifies plant resistance to an insect herbivore   总被引:3,自引:0,他引:3  
Vesicular-arbuscular mycorrhizal (VAM) fungi are common root-colonizing symbionts that affect nutrient uptake by plants and can alter plant susceptibility to herbivores. I conducted a factorial experiment to test the hypotheses that colonization by VAM fungi (1) improves soybean (Glycine max) tolerance to grazing by folivorous Mexican bean beetle (Epilachna varivestis), and (2) indirectly affects herbivores by increasing host resistance. Soybean seedlings were inoculated with the VAM fungus Glomus etunicatum or VAM-free filtrate and fertilized with high-[P] or low-[P] fertilizer. After plants had grown for 7 weeks first-instar beetle larvae were placed on bagged leaves. Growth of soybean was little affected by grazing larvae, and no effects of treatments on tolerance of soybeans to herbivores were evident. Colonization by VAM fungus doubled the size of phosphorus-stressed plants but these plants were still half the size of plants given adequate phosphorus. High-[P] fertilizer increased levels of phosphorus and soluble carbohydrates, and decreased levels of soluble proteins in leaves of grazed plants. Colonization of grazed plants by VAM fungus had no significant effect on plant soluble carbohydrates, but increased concentration of phosphorus and decreased levels of proteins in phosphorus-stressed plants to concentrations similar to those of plants given adequate phosphorus. Mexican bean beetle mass at pupation, pupation rate, and survival to eclosion were greatest for beetles reared on phosphorus-stressed, VAM-colonized plants, refuting the hypothesis that VAM colonization improves host plant resistance. VAM colonization indirectly affected performance of Mexician bean beetle larvae by improving growth and nutrition of the host plant. Received: 28 February 1997 / Accepted: 23 June 1997  相似文献   

11.
We conducted an individual mark‐release‐recapture experiment on the beetle, Anoplophora glabripennis Motchulsky (Coleoptera: Cerambycidae). This invasive beetle has been introduced from Asia to Europe and North America and poses a serious threat to several important species of tree. Eradication efforts may benefit from knowledge of dispersal behaviour. Trees were cut and held to determine emergence rate of A. glabripennis. Unique marks were painted onto 912 beetles released into a group of 165 trees in Gansu, China. Data on subsequent sightings of beetles were used in a truncated diffusion model to calculate flight distances. Characteristics of the trees and climatic information were used in statistical tests for influence on movement. A total of 2245 sightings of beetles were observed and 29% of marked beetles were resighted. The scanning technique using binoculars was 90% effective in finding beetles and provided 81% accuracy for determining the sex of the beetles. Experimental manipulation of density quantified how A. glabripennis congregated on unoccupied trees and were repulsed from crowded hosts. The seasonal emergence rate of adults declined exponentially from July 20 to August 5. The results suggested A. glabripennis fly to nearby host trees at a rate of 34% per day. Median flight distance was estimated at 20 m per day. Statistical analysis with a generalized linear model tested the beetle's propensity to leave a tree and distance of flight. Generally, beetle movement showed a significant response to beetle density, weather conditions, beetle size, and tree size, in that order. The techniques developed here improve on previous recapture techniques to quantify dispersal and can be useful for analysing populations of other organisms.  相似文献   

12.
Lu W  Wang Q  Tian MY  Xu J  Qin AZ  He L  Jia B  Cai JJ 《Environmental entomology》2011,40(6):1487-1493
In longhorn beetles and many other internally feeding insects, oviposition choice by females is critical to the survival of their offspring because their larvae are incapable of moving between hosts. Here we report on the complex host selection and colonization strategies of a longhorn beetle, Glenea cantor (F.) (Coleoptera: Cerambycidae), which is an important pest of kapok trees [Bombax ceiba L.=Gossampinus malabaricus (DC.) Merr.] in southern Asia. It attacks weakened trees, eventually killing them. The typical oviposition behavioral sequence in the laboratory includes the following: oviposition site search and recognition using antennae and palpi, oviposition slit preparation with mandibles, turning body direction 180°, egg deposition with the ovipositor, and oviposition wound covering with a jelly-like material from the ovipositor. Bark moisture content significantly increases from the upper to lower sections in kapok trees. In accordance with this variation female adults select the upper section of trees first for oviposition. As infestation continues and the host becomes more weakened, ovipositing females move further down the tree for oviposition. Consequently, the larvae kill the hosts from the top down. We show that the jelly-like material or eggs or both have an olfactory role in attracting females to oviposit nearby. Our findings are important in terms of increasing our understanding of host selection and colonization mechanisms of internally feeding insects, particularly cerambycids, and the development of environmentally friendly pest management measures.  相似文献   

13.
Field studies to assess the impact of Bacillus thuringiensis var. tenebrionis (Btt)-insecticides on Colorado potato beetle populations, egg survivorship and levels of predation on egg masses were conducted in replicated field research plots during two years. Stage-specific abundance of the Colorado potato beetle and predation on egg masses were monitored in Btt-treated and untreated potato plots in both years. The Btt-treatments significantly reduced densities of large (third and fourth instar) Colorado potato beetle larvae. The densities of large larvae remained below 0.5 and 3 per plant in the Btt-treatment while peak densities of 4.5 and 21 large larvae per plant occurred in the untreated control in 1992 and 1993, respectively. Regular sampling of egg masses indicated that predation rates in Btt-treated and untreated plots did not differ significantly although, in 1993, predation rates of up to 100% were recorded, only in Btt-treated plots. In a predator exclusion study carried out in 1992, survivorship of protected eggs was consistently higher than of eggs exposed to predation. Seasonal survivorship of exposed eggs was significantly lower in the Btt-treated than in untreated plots. Btt insecticides for control of Colorado potato beetles provided direct protection of the crop and were compatible with naturally-occurring biological control of Colorado potato beetle eggs due to predation.  相似文献   

14.
Our research used a combination of passive traps, funnel traps with lures, baited trees, and surveys of long-term thinning plots to assess the impacts of different levels of stand basal area (BA) on bark beetle tree attack and on trap captures of Ips spp., Dendroctonus spp., and their predators. The study occurred at two sites in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests, from 2004 to 2007 during low bark beetle populations. Residual stand BA ranged from 9.0 to 37.0 m2/ha. More predators and bark beetles were collected in passive traps in stands of lower BA than in stands of higher BA; however, significance varied by species and site, and total number of beetles collected was low. Height of the clear panel passive traps affected trap catches for some species at some sites and years. When pheromone lures were used with funnel traps [Ips pini (Say) lure: lanierone, +03/-97 ipsdienol], we found no significant difference in trap catches among basal area treatments for bark beetles and their predators. Similarly, when trees were baited (Dendroctonus brevicomis LeConte lure: myrcene, exo-brevicomin and frontalin), we found no significant difference for days to first bark beetle attack. Surveys of long-term thinning treatments found evidence of bark beetle attacks only in unthinned plots (approximately 37 m2/ha basal area). We discuss our results in terms of management implications for bark beetle trapping and control.  相似文献   

15.
1 Experiments were conducted to determine whether propagule loads on the twig beetles Pityophthorus setosus and Pityophthorus carmeli (Coleoptera: Scolytidae) influence the pathogen infection of the host tree in the Monterey pine- Fusarium circinatum system.
2 On an average, F. circinatum was isolated from 2.6% and 3.3% of trapped P. setosus and P. carmeli , respectively, although the isolation percentages varied over the season, being highest in the spring and lowest in late summer and fall for both species. Mean pathogen load was 13.4 and 22.6 propagules per beetle, on P. setosus and P. carmeli , respectively, and decreased from May to November for both species. The pathogen was also isolated from approximately 55% of both beetle species that emerged from infected branches. Mean propagule load on emerged P. setosus and P. carmeli was 39 and 66.5, respectively.
3 On the basis of these data, beetle species were treated with one of three propagule loads (low, medium, high) and caged onto live branches to determine whether they could transmit the pathogen. At all propagule loads, both species transmitted the pathogen, and transmission percentage and lesion length, a measure of tree susceptibility, were positively correlated with propagule load.
4 To investigate further whether the previous transmission by beetles could affect response of the same trees to subsequent infection with F. circinatum , different branches were inoculated on the same trees used in the transmission study, and lesion lengths were measured. Lesion lengths were lower on trees that had been previously exposed to beetles treated with high or medium propagule loads than on trees that had previously been exposed to beetles treated with low propagule loads. This suggests that the initial infection by beetles carrying high or medium propagule loads induced resistance to subsequent infections of the host, whereas infections caused by beetles with low propagule loads did not.  相似文献   

16.
Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae: Lamiini) is an invasive wood‐boring beetle with an unusually broad host range and a proven ability to increase its host range as it colonizes new areas and encounters new tree species. The beetle is native to eastern Asia and has become an invasive pest in North America and Europe, stimulating interest in delineating host and non‐host tree species more clearly. When offered a choice among four species of living trees in a greenhouse, adult A. glabripennis fed more on golden‐rain tree (Koelreuteria paniculata Laxmann) and river birch (Betula nigra L.) than on London planetree (Platanus × acerifolia (Aiton) Willdenow) or callery pear (Pyrus calleryana Decaisne). Oviposition rate was highest in golden‐rain tree, but larval mortality was also high and larval growth was slowest in this tree species. Oviposition rate was lowest in callery pear, and larvae failed to survive in this tree species, whether they eclosed from eggs laid in the trees or were manually inserted into the trees. Adult beetles feeding on callery pear had a reduced longevity and females feeding only on callery pear failed to develop any eggs. The resistance of golden‐rain tree against the larvae appears to operate primarily through the physical mechanism of abundant sap flow. The resistance of callery pear against both larvae and adults appears to operate through the chemical composition of the tree, which may include compounds that are toxic or which otherwise interfere with normal growth and development of the beetle. Unlike river birch or London planetree, both golden‐rain tree and callery pear are present in the native range of A. glabripennis and may therefore have developed resistance to the beetle by virtue of exposure to attack during their evolutionary history.  相似文献   

17.
The emerald ash borer (EAB), Agrilus planipennis, is an invasive beetle that has killed millions of ash trees (Fraxinus spp.) since it was accidentally introduced to North America in the 1990s. Understanding how predators such as woodpeckers (Picidae) affect the population dynamics of EAB should enable us to more effectively manage the spread of this beetle, and toward this end we combined two experimental approaches to elucidate the relative importance of woodpecker predation on EAB populations. First, we examined wild populations of EAB in ash trees in New York, with each tree having a section screened to exclude woodpeckers. Second, we established experimental cohorts of EAB in ash trees in Maryland, and the cohorts on half of these trees were caged to exclude woodpeckers. The following spring these trees were debarked and the fates of the EAB larvae were determined. We found that trees from which woodpeckers were excluded consistently had significantly lower levels of predation, and that woodpecker predation comprised a greater source of mortality at sites with a more established wild infestation of EAB. Additionally, there was a considerable difference between New York and Maryland in the effect that woodpecker predation had on EAB population growth, suggesting that predation alone may not be a substantial factor in controlling EAB. In our experimental cohorts we also observed that trees from which woodpeckers were excluded had a significantly higher level of parasitism. The lower level of parasitism on EAB larvae found when exposed to woodpeckers has implications for EAB biological control, suggesting that it might be prudent to exclude woodpeckers from trees when attempting to establish parasitoid populations. Future studies may include utilizing EAB larval cohorts with a range of densities to explore the functional response of woodpeckers.  相似文献   

18.
The ongoing destruction of tropical rainforests has increased the interest in the potential value of tropical agroforests for the conservation of biodiversity. Traditional, shaded agroforests may support high levels of biodiversity, for some groups even approaching that of undisturbed tropical forests. However, it is unclear to what extent forest fauna is represented in this diversity and how management affects forest fauna in agroforests. We studied lower canopy ant and beetle fauna in cacao agroforests and forests in Central Sulawesi, Indonesia, a region dominated by cacao agroforestry. We compared ant and beetle species richness and composition in forests and cacao agroforests and studied the impact of two aspects of management intensification (the decrease in shade tree diversity and in shade canopy cover) on ant and beetle diversity. The agroforests had three types of shade that represented a decrease in tree diversity (high, intermediate and low diversity). Species richness of ants and beetles in the canopies of the cacao trees was similar to that found in lower canopy forest trees. However, the composition of ant and beetle communities differed greatly between the agroforest and forest sites. Forest beetles suffered profoundly from the conversion to agroforests: only 12.5% of the beetle species recorded in the forest sites were also found in the agroforests and those species made up only 5% of all beetles collected from cacao. In contrast, forest ants were well represented in agroforests, with 75% of all species encountered in the forest sites also occurring on cacao. The reduction of shade tree diversity had no negative effect on ants and beetles on cacao trees. Beetle abundances and non-forest ant species richness even increased with decreasing shade tree diversity. Thinning of the shade canopy was related to a decrease in richness of forest ant species on cacao trees but not of beetles. The contrasting responses of ants and beetles to shade tree management emphasize that conservation plans that focus on one taxonomic group may not work for others. Overall ant and beetle diversity can remain high in shaded agroforests but the conservation of forest ants and beetles in particular depends primarily on the protection of natural forests, which for forest ants can be complemented by the conservation of adjacent shaded cacao agroforests.  相似文献   

19.
Colorado potato beetle, Leptinotarsa decemlineata (Say), feeding, development, and survival to adulthood were examined after continuously exposing large larvae to Bacillus thuringiensis subsp. tenebrionis-treated potato foliage from the field. In laboratory assays, the overall consumption and the length of period to become prepupae were determined for larvae, which began as 3rd and 4th instars, that were offered potato leaf disks with naturally declining levels of B. thuringiensis residue. In small-cage field experiments, survival to adulthood and the period to adult emergence for beetles confined to potato plants treated with B. thuringiensis beginning as 3rd and 4th instars also were examined. Third instars remaining on plants after a B. thuringiensis application were unlikely to feed and 4th instars consumed only approximately 50% as much foliage as those fed untreated foliage. Many late instars subjected to B. thuringiensis-treated foliage failed to survive to adulthood; 58-83% of these beetles died during the larval stage. Reduced feeding and poor survival of late instars suggest that counts of large larvae after application do not provide a complete picture of the efficacy of the B. thuringiensis treatment. Late instar Colorado potato beetles that were exposed continually to naturally declining levels of B. thuringiensis-treated potato foliage took an average of 1.8-4.5 d longer to become prepupae and 4-8 d longer to emerge as adults compared with those provided with untreated foliage. Delayed emergence of adults that fed on B. thuringiensis-treated potatoes as late instars indicated that development was prolonged in these insects because of ingestion of a sublethal dose of B. thuringiensis.  相似文献   

20.
The possible roles of plant quality (vigor) and natural enemies in the development of a localized out-break of the leaf beetle Galerucella lineola (Coleoptera: Chrysomelidae) in a stand of Salix cinerea were investigated. Caged and uncaged larvae on six bushes in the outbreak area were compared with caged and uncaged larvae on six bushes in an adjacent nonoutbreak area in terms of performance. In 1997, when the studies were performed, the natural density of the insect (beetles plus eggs) was six times higher in the outbreak area compared with the nonoutbreak area. Even though the vigor (measured as shoot length) of bushes in the outbreak was 72% higher than that of bushes in the nonoutbreak area, we found no difference between areas in the performance (survival, developmental time, pupal weight) of caged larvae or in the willingness of caged females to lay eggs. Among larvae exposed to natural enemies, the disappearance rate was significantly higher in the nonoutbreak area. The density of generalist predators was significantly higher in the nonoutbreak than in the outbreak area. We conclude that differences in plant quality, despite the observed difference in plant vigor, could not explain the observed difference in beetle density between areas. Lower predation pressure in the outbreak area could, however, not be excluded as a possible reason for the higher density of leaf beetles in this area. Received: October 18, 1999 / Accepted: February 4, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号