首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined the development of self-peptide-specific CD4+ CD25+ regulatory T cells in lineages of transgenic mice that express the influenza virus PR8 hemagglutinin (HA) under the control of several different promoters (HA transgenic mice). By mating these lineages with TS1-transgenic mice expressing a TCR that recognizes the major I-E(d)-restricted determinant from HA (site 1 (S1)), we show that S1-specific T cells undergo selection to become CD4+ CD25+ regulatory T cells in each of the lineages, although in varying numbers. In some lineages, S1-specific CD4+ CD25+ regulatory T cells are highly abundant; indeed, TS1xHA-transgenic mice can contain as many S1-specific CD4+ T cells as are present in TS1 mice, which do not express the neo-self HA. In another lineage, however, S1-specific thymocytes are subjected to more extensive deletion and far fewer S1-specific CD4+ CD25+ regulatory T cells accumulate in the periphery. We show that radioresistant stromal cells can direct both deletion and CD4+ CD25+ regulatory T cell selection of S1-specific thymocytes. Interestingly, even though their numbers can vary, the S1-specific CD4+ CD25+ regulatory T cells in all cases coexist with clonally related CD4+ CD25- T cells that lack regulatory function. These findings show that the formation of the CD4+ CD25+ regulatory T cell repertoire is sensitive to variations in the expression of self-peptides.  相似文献   

2.
Suppression of CD4+ T lymphocyte effector functions by CD4+CD25+ cells in vivo   总被引:10,自引:0,他引:10  
CD4+CD25+ regulatory T cells have been extensively studied during the last decade, but how these cells exert their regulatory function on pathogenic effector T cells remains to be elucidated. Naive CD4+ T cells transferred into T cell-deficient mice strongly expand and rapidly induce inflammatory bowel disease (IBD). Onset of this inflammatory disorder depends on IFN-gamma production by expanding CD4+ T cells. Coinjection of CD4+CD25+ regulatory T cells protects recipient mice from IBD. In this study, we show that CD4+CD25+ regulatory T cells do not affect the initial activation/proliferation of injected naive T cells as well as their differentiation into Th1 effectors. Moreover, naive T cells injected together with CD4+CD25+ regulatory T cells into lymphopenic hosts are still able to respond to stimuli in vitro when regulatory T cells are removed. In these conditions, they produce as much IFN-gamma as before injection or when injected alone. Finally, when purified, they are able to induce IBD upon reinjection into lymphopenic hosts. Thus, prevention of IBD by CD4+CD25+ regulatory T cells is not due to deletion of pathogenic T cells, induction of a non reactive state (anergy) among pathogenic effector T cells, or preferential induction of Th2 effectors rather than Th1 effectors; rather, it results from suppression of T lymphocyte effector functions, leading to regulated responses to self.  相似文献   

3.
Immunization can sometimes lead to antigen-specific immune suppression. In this study, we investigated this phenomenon by testing several combinations of DNA and protein vaccines directed against various viruses. We find that co-inoculation of mice with combined DNA and protein vaccines induces immune suppression if the two vaccines are "matched" by targeting the same antigen. Conversely, vaccine combinations never lead to immune suppression if they are derived from different viruses and, thus, mismatched antigenically. We have further identified CD4+CD25- T cells as the type of regulatory T cells induced by and are responsible for suppressing T cell activities in an antigen-specific manner in immunized animals. These regulatory T cells are phenotypically unique in their expression of Foxp3, IL-10, and IFN-gamma. Our study thus shows for the first time that co-administration of antigen-matched DNA and protein vaccines can generate this type of adaptive regulatory T cells.  相似文献   

4.
Regulatory T cells and tumor immunity   总被引:9,自引:0,他引:9  
Central deletion of self-reactive T cells has been the textbook paradigm for inducing self-tolerance in the periphery and the concept of a role of T cell-mediated suppression in this process has long been controversial. A decisive shift in the opinion on suppressor T cells has lately occurred with the observations of Sakaguchis group that linked a class of CD4+CD25+ T cells to the prevention of autoimmunity from neonatal thymectomy in mice. These CD4+CD25+ T cells have been named T regulatory (Treg) cells. They are believed to be selected in the thymus as an anti-self repertoire. Hence they were referred to as natural T regulatory (nTreg) cells. Presently, in addition to their role in autoimmunity, they are believed to exert regulatory function in infection, in transplantation immunity as well as in tumor immunity. In contrast to these nTreg cells, another class of CD4+ Treg cells also exercises regulatory function in the periphery. These Treg cells are also CD4+ T cells and after activation they also become phenotypically CD4+CD25+. They are, however induced in the periphery as Treg cells. Hence, they are termed as induced Treg (iTreg) cells. There are major differences in the biology of these two types of Treg cells. They differ in their requirements for activation and in their mode of action. Nonetheless, evidence indicates that both nTreg cells and iTreg cells are involved in the control of tumor immunity. The question of how to circumvent their regulatory constraints, therefore, has become a major challenge for tumor immunologists.  相似文献   

5.
An elusive goal in transplanting organs across histocompatibility barriers has been the induction of specific tolerance to avoid graft rejection. A considerable body of evidence exists that the thymus produces regulatory T cells that suppress the response of other T cells to antigenic stimulation. We report that TGF-beta can induce certain CD4+ T cells in the naive (CD45RA+RO-) fraction in human peripheral blood to develop powerful, contact-dependent suppressive activity that is not antagonized by anti-TGF-beta or anti-IL-10 mAbs. The costimulatory effects of TGF-beta on naive CD4+ T cells up-regulated CD25 and CTLA-4 expression, increased their transition to the activated phenotype, but decreased activation-induced apoptosis. Suppressive activity was concentrated in the CD25+ fraction. These CD4+CD25+ regulatory cells prevented CD8+ T cells from proliferating in response to alloantigens and from becoming cytotoxic effector cells. Moreover, these regulatory cells exerted their suppressive activities in remarkably low numbers and maintained these effects even after they are expanded. Once activated, their suppressive properties were Ag nonspecific. Although <1% of naive CD4+ T cells expressed CD25, depletion of this subset before priming with TGF-beta markedly decreased the generation of suppressive activity. This finding suggests that CD4+CD25+ regulatory T cells induced ex vivo are the progeny of thymus-derived regulatory T cells bearing a similar phenotype. The adoptive transfer of these regulatory T cells generated and expanded ex vivo has the potential to prevent rejection of allogeneic organ grafts.  相似文献   

6.
We have been investigating whether alloantigen-specific CD4(+)25+ regulatory T cells can be identified for use in treating graft-versus-host disease. CD150, which is upregulated on the surface of all activated T lymphocytes, was identified as a candidate marker for alloantigen-activated CD4(+)25+ regulatory T cells by gene chip analysis. Freshly isolated CD4(+)25+ cells had only low cell-surface expression of CD150, comparable to that of CD4(+)25- T cells. Increased CD150 expression was observed on all T cells after coculture with allogeneic stimulator cells. When purified CD4(+)25+ cells were precultured with allogeneic stimulator cells, then sorted into CD150+ and CD150- subsets, allosuppressive activity was contained primarily in the CD150+ fraction. These cells also suppressed the proliferation of alloantigen-activated autologous T cells, and they could be expanded in vitro without loss of their suppressive capacity. These results suggest that CD150 can be used as a marker for the identification of purified alloantigen-activated CD4(+)25+ regulatory T cells.  相似文献   

7.
Teng QY  Zhou JY  Wu JJ  Guo JQ  Shen HG 《FEBS letters》2006,580(17):4274-4281
To identify chicken IL-2R alpha chain (chCD25), the cDNA of chCD25 was cloned and mapped onto chicken chromosome 1. The polyclonal and monoclonal antibodies raised from the recombinant chCD25 specifically bound to the cell surface of splenic mononuclear cells (SMC) and inhibited chicken IL-2-dependent proliferation of T cells. Flow cytometry analysis revealed that chCD25 molecules could be expressed on the surface of monocytes/macrophages, thrombocytes, CD4+ and CD8+ cells as well as tissue cells. Importantly, the CD4+CD25+ and CD8+CD25+ cells were upregulated dramatically in chickens infected with H9N2 avian influenza virus. These results confirm that the cloned cDNA is the nucleotide sequence of chicken IL-2R, and suggest that chicken CD4+CD25+ and CD8+CD25+ cells may play an important role in immune responses induced by H9N2 virus, and the monoclonal antibodies to chCD25 may be useful for investigating biological functions of chicken regulatory T cells.  相似文献   

8.
Regulatory T cells (Tr cells) play a critical role in inducing immune tolerance. It remains largely unclear how various types of Tr cells perform their regulatory function. We have studied the underlying regulatory mechanism of a population of autoantigen-specific CD4+ Tr cells. These T cells are specific for the glutamic acid decarboxylase p206-220 peptide and are isolated from the diabetes-resistant nonobese-resistant mice. Although these T cells express T-bet and display a Th1 phenotype, they are able to inhibit diabetes. Their regulatory function is dependent on both IFN-gamma and cell contact with target cells. These Tr cells can mediate their cell contact-dependent regulatory function by secreting IFN-gamma which stimulates APCs to produce NO. NO is necessary for the Tr cells to inhibit the proliferation of pathogenic T cells and the development of diabetes. Therefore, we have identified a novel mechanism by which these Tr cells can exert their regulatory function. These results also provide an explanation as to why IFN-gamma may play both pathogenic and immunomodulatory roles in autoimmune diseases.  相似文献   

9.
Increased numbers of regulatory T (Treg) cells are found in synovial fluid from patients with rheumatoid arthritis (RASF) compared with peripheral blood. However, Treg cells in RASF have been shown to have a decreased capacity to suppress T cells. Here we phenotypically classified CD4+ T cells in RASF into six subsets based on the expression of CD45RA, CCR7, CD27 and CD28, and demonstrated that the CCR7−CD45RA−CD27+CD28+ TEM subset was significantly increased in synovial fluid compared with peripheral blood. In addition, the proportion of Foxp3+ Treg cells in the CCR7−CD45RA−CD27+CD28+ TEM subset was significantly increased in RASF. Furthermore, most of the Foxp3+ Treg cells in RASF were non-suppressive CD45RA−Foxp3low non-Treg cells, and the frequency of the non-Treg cells in the CCR7−CD45RA−CD27+CD28+ TEM subset was significantly increased in RASF. Our findings suggest that the pro-inflammatory environment in RA joints may induce the increase of CD45RA−Foxp3low non-Treg cells in synovial fluid.  相似文献   

10.
Vitamin A metabolites induce gut-homing FoxP3+ regulatory T cells   总被引:3,自引:0,他引:3  
In this study, we report a novel biological function of vitamin A metabolites in conversion of naive FoxP3- CD4+ T cells into a unique FoxP3+ regulatory T cell subset (termed "retinoid-induced FoxP3+ T cells") in both human and mouse T cells. We found that the major vitamin A metabolite all-trans-retinoic acid induces histone acetylation at the FoxP3 gene promoter and expression of the FoxP3 protein in CD4+ T cells. The induction of retinoid-induced FoxP3+ T cells is mediated by the nuclear retinoic acid receptor alpha and involves T cell activation driven by mucosal dendritic cells and costimulation through CD28. Retinoic acid can promote TGF-beta1-dependent generation of FoxP3+ regulatory T cells but decrease the TGF-beta1- and IL-6-dependent generation of inflammatory Th17 cells in mouse T cells. Retinoid-induced FoxP3+ T cells can efficiently suppress target cells and, thus, have a regulatory function typical for FoxP3+ T cells. A unique cellular feature of these regulatory T cells is their high expression of gut-homing receptors that are important for migration to the mucosal tissues particularly the small intestine. Taken together, these results identify retinoids as positive regulatory factors for generation of gut-homing FoxP3+ T cells.  相似文献   

11.
目的:比较黑龙江省HIV/AIDS患者与健康对照者(healthy controls,HCs)外周血CD4+CD25+FoxP3+调节性T细胞数量、免疫抑制功能的变化,探讨CD4+CD25+FoxP3+调节性T细胞在HIV/AIDS感染过程中的作用。方法:采用流式细胞仪检测21例HIV/AIDS患者及20例健康对照组的外周血CD4+CD25+FoxP3+调节性T细胞数量的百分比及绝对数量;采用共同培养方法检测HIV/AIDS患者外周血CD4+CD25+FoxP3+调节性T细胞免疫抑制功能的变化;实时荧光定量聚合酶链反应(RT-FQ-PCR)检测HIV/AIDS患者外周血CD4+CD25+FoxP3+调节性T细胞中FoxP3mRNA的表达。结果:黑龙江省HIV/AIDS患者外周血CD4+CD25+FoxP3+调节性T细胞比率明显高于HCs(P<0.01),而CD4+CD25+FoxP3+调节性T细胞的绝对计数显著下降,且与CD4+T细胞绝对计数成反比;混合淋巴细胞共同培养结果显示,HIV/AIDS患者外周血CD4+CD25+FoxP3+调节性T细胞的抑制功能无明显变化;HIV/AIDS患者外周血CD4+CD25+FoxP3+调节性T细胞的FoxP3 mRNA相对表达量无显著变化。结论:黑龙江省HIV/AIDS患者CD4+CD25+FoxP3+调节性T细胞的数量变化与病情相关。  相似文献   

12.
Spontaneous experimental autoimmune encephalomyelitis arises in 100% of mice exclusively harboring myelin basic protein-specific T cells, and can be prevented by a single injection of CD4+ T cells obtained from normal donors. Given the powerful regulatory effect of the transferred T cells, we further investigated their properties, and, in particular, their repertoire requirements. Transfer of monoclonal OVA-specific CD4+ T cells did not confer protection from disease even when present at very high proportions (about 80% of total lymphocytes). Lack of protection was also evident after immunization of these animals with OVA, indicating that not just any postthymic CD4+ T cells has the potential to become regulatory. However, protection was conferred by cells bearing limited TCR diversity, including cells expressing a single Valpha4 TCR chain or cells lacking N nucleotides. We also investigated whether coexpression of the myelin basic protein-specific TCR with another TCR in a single cell would alter either pathogenesis or regulation. This was not the case, as myelin basic protein-specific/OVA-specific recombinase activating gene-1-/- double TCR transgenic mice still developed experimental autoimmune encephalomyelitis spontaneously even after immunization with OVA. Based on this evidence, we conclude that CD4+ T regulatory cells do not express canonical TCRs and that the altered signaling properties brought about by coexpression of two TCRs are not sufficient for the generation of regulatory T cells. Instead, our results indicate that regulatory T cells belong to a population displaying wide TCR diversity, but in which TCR specificity is central to their protective function.  相似文献   

13.
The identification and characterization of regulatory T (T(Reg)) cells that can control immune responsiveness to alloantigens have opened up exciting opportunities for new therapies in transplantation. After exposure to alloantigens in vivo, alloantigen-specific immunoregulatory activity is enriched in a population of CD4+ T cells that express high levels of CD25. In vivo, common mechanisms seem to underpin the activity of CD4+CD25+ T(Reg) cells in both naive and manipulated hosts. However, the origin, allorecognition properties and molecular basis for the suppressive activity of CD4+CD25+ T(Reg) cells, as well as their relationship to other populations of regulatory cells that exist after transplantation, remain a matter of debate..  相似文献   

14.
15.
A large body of evidence indicates that T cell-mediated dominant suppression of self-reactive T cells is indispensable for maintaining immunologic unresponsiveness to self-constituents (i.e., self-tolerance) and preventing autoimmune disease. CD25+CD4+ regulatory T cells naturally present in normal animals, in particular, engage in this function, as their reduction or functional abnormality leads to the development of autoimmune disease in otherwise normal animals. They are at least in part produced by the normal thymus as a functionally mature and distinct subpopulation of T cells. Recent studies have demonstrated that CD25+CD4+ regulatory T cells control not only autoimmune reactions but also other immune responses, including tumor immunity, transplantation tolerance and microbial infection. Thus, this unique population of regulatory T cells can be exploited to control pathological as well as physiological immune responses.  相似文献   

16.
Mature donor T cells cause graft-versus-host disease (GVHD), but they are also the main mediators of the beneficial graft-versus-tumor (GVT) activity of allogeneic bone marrow transplantation. Suppression of GVHD with maintenance of GVT activity is a desirable outcome for clinical transplantation. We have previously shown that donor-derived CD4+CD25+ regulatory T cells inhibit lethal GVHD after allogeneic bone marrow transplantation across major histocompatibility complex (MHC) class I and II barriers in mice. Here we demonstrate that in host mice with leukemia and lymphoma, CD4+CD25+ regulatory T cells suppress the early expansion of alloreactive donor T cells, their interleukin-2-receptor (IL-2R) alpha-chain expression and their capacity to induce GVHD without abrogating their GVT effector function, mediated primarily by the perforin lysis pathway. Thus, CD4+CD25+ T cells are potent regulatory cells that can separate GVHD from GVT activity mediated by conventional donor T cells.  相似文献   

17.
艾滋病是全球流行的一种严重传染病,严重损害机体免疫系统,病死率高,至今仍无治愈手段。该病以破环细胞免疫功能为主,因此,认识疾病病程的免疫状态对于进一步探索治疗艾滋病的方法意义重大。CD4+CD25+调节性T细胞在感染性疾病、移植耐受、自身免疫等疾病中的免疫作用是近年来研究热点。在艾滋病中,CD4+CD25+调节性T细胞发挥着重要的免疫作用,研究在不同疾病阶段该细胞亚群所起作用将有助于我们揭示疾病免疫机制。本文概述了CD4+CD25+调节性T细胞频率与艾滋病疾病进展的关系。  相似文献   

18.
CD4+CD25+ regulatory T cells are involved in the prevention of autoimmune diseases and in tumor-induced tolerance. We previously demonstrated in tumor-bearing rodents that one injection of cyclophosphamide could significantly decrease both numbers and suppressive functions of regulatory T cells, facilitating vaccine-induced tumor rejection. In humans, iterative low dosing of cyclophosphamide, referred to as "metronomic" therapy, has recently been used in patients with advanced chemotherapy resistant cancers with the aim of reducing tumor angiogenesis. Here we show that oral administration of metronomic cyclophosphamide in advanced cancer patients induces a profound and selective reduction of circulating regulatory T cells, associated with a suppression of their inhibitory functions on conventional T cells and NK cells leading to a restoration of peripheral T cell proliferation and innate killing activities. Therefore, metronomic regimen of cyclophosphamide does not only affect tumor angiogenesis but also strongly curtails immunosuppressive regulatory T cells, favoring a better control of tumor progression. Altogether these data support cyclophosphamide regimen as a valuable treatment for reducing tumor-induced immune tolerance before setting to work anticancer immunotherapy.  相似文献   

19.
Susceptibility and development of Th2 cells in BALB/c mice infected with Leishmania major result from early IL-4 production by Vbeta4Valpha8 CD4+ T cells in response to the Leishmania homolog of mammalian RACK1 Ag. A role for CD4+CD25+ regulatory T cells in the control of this early IL-4 production was investigated by depleting in vivo this regulatory T cell population. Depletion induced an increase in the early burst of IL-4 mRNA in the draining lymph nodes of BALB/c mice, and exacerbated the course of disease with higher levels of IL-4 mRNA and protein in their lymph nodes. We further showed that transfer of 10(7) BALB/c spleen cells that were depleted of CD4+CD25+ regulatory T cells rendered SCID mice susceptible to infection and allowed Th2 differentiation while SCID mice reconstituted with 10(7) control BALB/c spleen cells were resistant to infection with L. major and developed a Th1 response. Treatment with a mAb against IL-4 upon infection with L. major in SCID mice reconstituted with CD25-depleted spleen cells prevented the development of Th2 polarization and rendered them resistant to infection. These results demonstrate that CD4+CD25+ regulatory T cells play a role in regulating the early IL-4 mRNA and the subsequent development of a Th2 response in this model of infection.  相似文献   

20.
CD4+CD25+调节性T细胞是一个具有独特免疫调节功能的T细胞亚群,人体主要通过CD4+CD25+调节性T细胞以免疫负向调节的方式来抑制自身反应性T细胞的作用,减少免疫性疾病的发生,从而维持机体内环境的稳定,维持免疫耐受。CD4+CD25+Treg已被证实其与肿瘤、感染、自身免疫病、移植免疫等多种疾病的发生、发展及转归均相关。随着社会的进步和人民生活水平的提高冠状动脉粥样硬化性病变作为一种慢性病变,其发病率越来越高,已经成为严重危害人类健康的常见病,近年来越来越多的证据表明炎症及免疫反应机制在冠状动脉粥样硬化性心脏病的发生、发展及预后过程中具有重要的作用。而CD4+CD25+调节性T细胞在冠状动脉粥样硬化性病变中所起的作用也受到越来越多的关注。本文就CD4+CD25+调节性T细胞与冠状动脉粥样硬化病变之间的关联做一综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号