首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Quantum dots are semiconductor nanoparticles that are approximately 1-10nm in diameter, similar to small proteins, and their photoluminescence is sensitive to the presence and nature of adsorbates. We have deployed these nanomaterials as luminescent probes of DNA structure. Sequence dependent conformational flexibility of DNA is of great interest due to its implications for drug-DNA and DNA-protein interactions. The counterion atmosphere surrounding DNA plays an important role in its structure, dynamics, and packaging. In this paper, we investigate the effect that various monovalent and divalent cations have on the binding of 4.5 nm CdS quantum dots to oligonucleotides that have sequence-directed intrinsic structure.  相似文献   

2.
Strongly correlated electrostatics of DNA systems has drawn the interest of many groups, especially the condensation and overcharging of DNA by multivalent counterions. By adding counterions of different valencies and shapes, one can enhance or reduce DNA overcharging. In this paper, we focus on the effect of multivalent co-ions, specifically divalent co-ions such as SO\(_{4}^{2-}\). A computational experiment of DNA condensation using Monte Carlo simulation in grand canonical ensemble is carried out where the DNA system is in equilibrium with a bulk solution containing a mixture of salt of different valency of co-ions. Compared to systems with purely monovalent co-ions, the influence of divalent co-ions shows up in multiple aspects. Divalent co-ions lead to an increase of monovalent salt in the DNA condensate. Because monovalent salts mostly participate in linear screening of electrostatic interactions in the system, more monovalent salt molecules enter the condensate leads to screening out of short-range DNA–DNA like charge attraction and weaker DNA condensation free energy. The overcharging of DNA by multivalent counterions is also reduced in the presence of divalent co-ions. Strong repulsions between DNA and divalent co-ions and among divalent co-ions themselves lead to a depletion of negative ions near the DNA surface as compared to the case without divalent co-ions. At large distances, the DNA–DNA repulsive interaction is stronger in the presence of divalent co-ions, suggesting that divalent co-ions’ role is not only that of simple stronger linear screening.  相似文献   

3.
In the past 25 years, DNA molecules have been utilized both as powerful synthetic building blocks to create nanoscale architectures and as versatile programmable templates for assembly of nanomaterials. In parallel, the functions of DNA molecules have been expanded from pure genetic information storage to catalytic functions like those of protein enzymes (DNAzymes) and specific binding functions like antibodies (aptamers). In the past few years, a new interdisciplinary field has emerged that aims to combine functional DNA biology with nanotechnology to generate more dynamic and controllable DNA-based nanostructures or DNA-templated nanomaterials that are responsive to chemical stimuli.  相似文献   

4.
The self-assembly and self-organization of peptoids, peptidomimetic polymers composed of N-substituted glycine monomers, can result in a plethora of well-defined organic nanostructures. Such classes of nanomaterials represent highly interesting functional platforms for many applications, for example, drug delivery, sensing, and catalysis. The main advantages of using self-assembling peptoids to engineer organic nanostructures include their chemical diversity, biocompatibility, enzymatic stability, and ease of synthesis. The goal of this review is to present a comprehensive summary of the most relevant studies regarding the self-assembling process of peptoids into zero-, one-, and two-dimensional nanostructures, with a focus on their mechanism of formation and their potential applications.  相似文献   

5.
Abstract— The effects of monovalent and divalent anions on the choline acetyltransferase reaction have been determined at high (5.0 mM) and low (0.58 mM) choline. At 0.58 mM-choline, both monovalent and divalent anions activate the enzyme ±9 fold; however, at 5.0mM-choline, monovalent anions activate the enzyme ±25 fold, while divalent anions activate ±9 fold. Both monovalent and divalent anions show uncompetitive activation with respect to choline. When either dimethylaminoethanol, N -(2-hydroxyethyl)- N -methyl piperidinium iodide, or N -(2-hydroxyethyl)- N -propyl pyrrolidinium iodide was substituted for choline, activation by monovalent or divalent anions was only 2.5-4 fold. With AcCoA as substrate the ChA reaction can be increased ±20 fold by increased salts; however, with acetyl dephosphoCoA as substrate, the reaction is insensitive to the salt concentration. Similar salt effects on the ChA reaction, as measured in the direction of acetylcholine synthesis, have been demonstrated in the reverse reaction. In addition, inhibition of the forward reaction by acetylcholine has been measured as a function of sodium chloride concentration. Although the K1 for acetylcholine increases with increasing salt, this change in K 1, parallels the increase in the K m for choline. These results support the hypothesis that both monovalent and divalent anions activate choline acetyltransferase by the same singular mechanism; which is to increase the rate of dissociation of coenzyme A from the enzyme.  相似文献   

6.
Maayan G  Liu LK 《Biopolymers》2011,96(5):679-687
The interaction between biopolymers and metal nanoparticles (AgNPs) is a key element in the development of biomimetic nanomaterials with applications in catalysis, delivery, and recognition. Here we report a facile method for the functionalization of AgNPs by N-substituted glycine oligomers, "peptoids." Based on the established affinity between phenanthroline ligand and Ag(0), we synthesized a peptoid bearing 1,10-phenanthroline at the N-terminus (PHP). Treatment of AgNPs that were pre-stabilized by citrate ions, with PHP, leads to the formation of aggregates as suggested by UV-vis spectroscopy. Transmission electron microscopy (TEM) revealed that the replacement of citrate ions by PHP yields spherical assemblies of AgNPs. These peptoids/AgNPs hybrids, as well as the ability of functional biomimetic oligomers to mediate the assembly of metal nanoparticles, hold potential for applications in sensor materials, biology, and catalysis.  相似文献   

7.
The assembly of the primosome, a multienzyme complex responsible for priming of lagging-strand DNA synthesis in Escherichia coli, occurs on defined regions of DNA. These primosome assembly sites are on the order of 70 nucleotides in length, yet they share little DNA sequence homology. In order to understand the interaction of the primosomal proteins with these sites, the isolation of single-base substitution mutants of the wild-type sequences has been undertaken. The response of 32 of these mutated primosome assembly sites to increasing concentrations of monovalent and divalent cations when they were used as DNA effectors for E. coli replication factor Y-catalyzed ATP hydrolysis and their efficiency as primosome-dependent DNA replication templates have revealed the existence of four distinct classes of mutations in primosome assembly sites. Class I mutations have essentially no effect on the activities elicited by the DNA site; thus, it is likely that they define nonessential or spacer nucleotide residues. Class II mutated DNAs require higher Mg2+ concentrations than the wild-type DNA to be fully activated as factor Y ATPase effectors and cannot be stimulated in the ATPase reaction by monovalent salt at suboptimal levels of Mg2+. The implication of this mutant phenotype on the role of secondary and tertiary DNA structure in determining an active site is examined in the accompanying article (Soeller, W., Abarzúa, P., and Marians, K. J. (1984) J. Biol. Chem. 259, 14293-14300). Class III mutations coinactivate both the ATPase effector and DNA replication template activity of the site, indicating that they probably represent essential contact points between factor Y and the DNA. Class IV mutated DNAs behave in a manner similar to class II mutated DNAs in the ATPase reaction, but have a replication template activity intermediate between that of the class III and class II mutant DNAs. It is possible that these mutant DNAs are deficient in their ability to catalyze, during primosome assembly, a step subsequent to that of factor Y binding.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Lee SY  Lee J  Chang JH  Lee JH 《BMB reports》2011,44(2):77-86
Over the years, nanostructures have been developed to enable to support enzyme usability to obtain highly selective and efficient biocatalysts for catalyzing processes under various conditions. This review summarizes recent developments in the nanostructures for enzyme supporters, typically those formed with various inorganic materials. To improve enzyme attachment, the surface of nanomaterials is properly modified to express specific functional groups. Various materials and nanostructures can be applied to improve both enzyme activity and stability. The merits of the incorporation of enzymes in inorganic nanomaterials and unprecedented opportunities for enhanced enzyme properties are discussed. Finally, the limitations encountered with nanomaterial-based enzyme immobilization are discussed together with the future prospects of such systems.  相似文献   

9.
10.
A DNA ligase has been extensively purified from nuclei of rat livers. The ligase seals single strand nicks in DNA with any of the four usual bases on either the 3 or 5 sides. It requires ATP and a divalent cation (Mg-2plus or Mn-2plus) for activity. At low Mg-2plus concentrations the activity is greatly stimulated by a variety of monovalent cations. Relatively small excesses of either monovalent or divalent cation above the amounts which give maximal activity lead to inhibition of activity. Poly(G) and poly(I) inhibit ligase activity; several other polyribonucleotides are not inhibitory. Low concentrations of inorganic pyrophosphate are inhibitory. The molecular weight of the ligase is estimated from gel filtration to be about 10 times 10-4.  相似文献   

11.
Monte Carlo simulations of a mesoscale model of oligonucleosomes are analyzed to examine the role of dynamic-linker histone (LH) binding/unbinding in high monovalent salt with divalent ions, and to further interpret noted chromatin fiber softening by dynamic LH in monovalent salt conditions. We find that divalent ions produce a fiber stiffening effect that competes with, but does not overshadow, the dramatic softening triggered by dynamic-LH behavior. Indeed, we find that in typical in vivo conditions, dynamic-LH binding/unbinding reduces fiber stiffening dramatically (by a factor of almost 5, as measured by the elasticity modulus) compared with rigidly fixed LH, and also the force needed to initiate chromatin unfolding, making it consistent with those of molecular motors. Our data also show that, during unfolding, divalent ions together with LHs induce linker-DNA bending and DNA–DNA repulsion screening, which guarantee formation of heteromorphic superbeads-on-a-string structures that combine regions of loose and compact fiber independently of the characteristics of the LH–core bond. These structures might be important for gene regulation as they expose regions of the DNA selectively. Dynamic control of LH binding/unbinding, either globally or locally, in the presence of divalent ions, might constitute a mechanism for regulation of gene expression.  相似文献   

12.
Due to the branched structure feature and unique properties, a variety of star-shaped polymers have been designed and synthesized. Despite those advances, solid-phase synthesis of star-shaped sequence-defined synthetic polymers that exhibit hierarchical self-assembly remains a significant challenge. Hence, we present an effective strategy for the solid-phase synthesis of three-armed star-shaped peptoids, in which ethylenediamine was used as the centric star pivot. Based on the sequence of monomer addition, a series of AA′A′′-type and ABB′-type peptoids were synthesized and characterized by UPLC-MS (ultrahigh performance liquid chromatography-mass spectrometry). By taking advantage of the easy-synthesis and large side-chain diversity, we synthesized star-shaped peptoids with tunable functions. We further demonstrated the aqueous self-assembly of some representative peptoids into biomimetic nanomaterials with well-defined hierarchical structures, such as nanofibers and nanotubes. These results indicate that star-shaped peptoids offer the potential in self-assembly of biomimetic nanomaterials with tunable chemistries and functions.  相似文献   

13.
《Biophysical journal》2022,121(24):4882-4891
DNA nanotechnology has paved the way for new generations of programmable nanomaterials. Utilizing the DNA origami technique, various DNA constructs can be designed, ranging from single tiles to the self-assembly of large-scale, complex, multi-tile arrays. This technique relies on the binding of hundreds of short DNA staple strands to a long single-stranded DNA scaffold that drives the folding of well-defined nanostructures. Such DNA nanostructures have enabled new applications in biosensing, drug delivery, and other multifunctional materials. In this study, we take advantage of the enhanced sensitivity of a solid-state nanopore that employs a poly-ethylene glycol enriched electrolyte to deliver real-time, non-destructive, and label-free fingerprinting of higher-order assemblies of DNA origami nanostructures with single-entity resolution. This approach enables the quantification of the assembly yields for complex DNA origami nanostructures using the nanostructure-induced equivalent charge surplus as a discriminant. We compare the assembly yield of four supramolecular DNA nanostructures obtained with the nanopore with agarose gel electrophoresis and atomic force microscopy imaging. We demonstrate that the nanopore system can provide analytical quantification of the complex supramolecular nanostructures within minutes, without any need for labeling and with single-molecule resolution. We envision that the nanopore detection platform can be applied to a range of nanomaterial designs and enable the analysis and manipulation of large DNA assemblies in real time.  相似文献   

14.
Inorganic nanoparticles have shown promising potentials as novel biomedical imaging agents with high sensitivity, high spatial and temporal resolution. To translate the laboratory innovations into clinical applications, their potential toxicities are highly concerned and have to be evaluated comprehensively both in vitro and in vivo before their clinical applications. In this review, we first summarized the in vivo and in vitro toxicities of the representative inorganic nanoparticles used in biomedical imagings. Then we further discuss the origin of nanotoxicity of inorganic nanomaterials, including ROS generation and oxidative stress, chemical instability, chemical composition, the surface modification, dissolution of nanoparticles to release excess free ions of metals, metal redox state, and left-over chemicals from synthesis, etc. We intend to provide the readers a better understanding of the toxicology aspects of inorganic nanomaterials and knowledge for achieving optimized designs of safer inorganic nanomaterials for clinical applications.  相似文献   

15.
The rheological properties of an invertebrate connective tissue were measured in three different ionic environments. Short-term stress relaxation tests were conducted on sections of holothurian (Echinodermata) body wall immersed in isotonic monovalent and divalent salt solutions and deionized water. Using a reduced modulus format, the viscoelastic behavior over the experimental time scale was described by a two term Maxwell equation with empirically determined spring constants and relaxation times. In addition, equilibrium relaxation moduli (Ge) were estimated from the empirical relationship of Chasset and Thirion (1965, in Physics of Non Crystalline Solids, ed. Prins, North Holland). The experiments indicated that both relaxation times and equilibrium moduli decreased in the presence of monovalent and divalent inorganic ions whereby the effect of the Na+ was greater than that of the Ca++. The present findings are compared with those reported for vertebrate connective tissue.  相似文献   

16.
The configuration of supercoiled DNA (scDNA) was investigated by electron microscopy and scanning force microscopy. Changes in configuration were induced by varying monovalent/divalent salt concentrations and manifested by variation in the number of nodes (crossings of double helical segments). A decrease in the concentration of monovalent cations from 50 mM to approximately 1 mM resulted in a significant change of apparent configuration of negatively supercoiled DNA from a plectonemic form with virtually approximately 15 nodes (the value expected for molecules of approximately 3000 bp) to one or two nodes. This result was in good agreement with values calculated using an elastic rod model of DNA and salt concentration in the range of 5-50 mM. The effect did not depend on the identity of the monovalent cation (Na(+), K(+)) or the nature of the support used for electron microscopy imaging (glow-discharged carbon film, polylysine film). At very low salt concentrations, a single denatured region several hundred base-pairs in length was often detected. Similarly, at low concentrations of divalent cations (Mg(2+), Ca(2+), Zn(2+)), scDNA was apparently relaxed, although the effect was slightly dependent on the nature of the cation. Positively supercoiled DNA behaved in a manner different from that of its negative counterpart when the ion concentration was varied. As expected for these molecules, an increase in salt concentration resulted in an apparent relaxation; however, a decrease in salt concentration also led to an apparent relaxation manifested by a slight decrease in the number of nodes. Scanning force microscopy imaging of negatively scDNA molecules deposited onto a mica surface under various salt conditions also revealed an apparent relaxation of scDNA molecules. However, due to weak interactions with the mica surface in the presence of a mixture of mono/divalent cations, the effect occurred under conditions differing from those used for electron microscopy. We conclude that the observed changes in scDNA configuration are inherent to the DNA structure and do not reflect artifacts arising from the method(s) of sample preparation.  相似文献   

17.
The denaturation of Escherichia coli acyl carrier protein (ACP) in buffers containing both monovalent and divalent cations was followed by variable-temperature NMR and differential scanning calorimetry. Both high concentrations of monovalent salts (Na+) and moderate concentrations of divalent salts (Ca2+) raise the denaturation temperature, but calorimetry indicates that a significant increase in the enthalpy of denaturation is obtained only with the addition of a divalent salt. NMR experiments in both low ionic strength monovalent buffers and low ionic strength monovalent buffers containing calcium ions show exchange between native and denatured forms to be slow on the NMR time scale. However, in high ionic strength monovalent buffers, where the temperature of denaturation is elevated as it is in the presence of Ca2+, the transition is fast on the NMR time scale. These results suggest that monovalent and divalent cations may act to stabilize ACP in different ways. Monovalent ions may nonspecifically balance the intrinsic negative charge of this protein in a way that is similar for native, denatured, and intermediate forms. Divalent cations provide stability by binding to specific sites present only in the native state.  相似文献   

18.
A variety of organic and inorganic nanomaterials with dimensions below several hundred nanometers are recently emerging as promising tools for cancer therapeutic and diagnostic applications due to their unique characteristics of passive tumor targeting. A wide range of nanomedicine platforms such as polymeric micelles, liposomes, dendrimers, and polymeric nanoparticles have been extensively explored for targeted delivery of anti-cancer agents, because they can accumulate in the solid tumor site via leaky tumor vascular structures, thereby selectively delivering therapeutic payloads into the desired tumor tissue. In recent years, nanoscale delivery vehicles for small interfering RNA (siRNA) have been also developed as effective therapeutic approaches to treat cancer. Furthermore, rationally designed multi-functional surface modification of these nanomaterials with cancer targeting moieties, protective polymers, and imaging agents can lead to fabrication versatile theragnostic nanosystems that allow simultaneous cancer therapy and diagnosis. This review highlights the current state and future prospects of diverse biomedical nanomaterials for cancer therapy and imaging.  相似文献   

19.
Nucleic acids containing tracts of contiguous guanines tend to self-associate into four-stranded (quadruplex) structures, based on reciprocal non-Watson-Crick (G*G*G*G) hydrogen bonds. The quadruplex structure is induced/stabilized by monovalent cations, particularly potassium. Using circular dichroism, we have determined that the induction/stabilization of quadruplex structure by K+is specifically counteracted by low concentrations of Mn2+(4-10 mM), Co2+(0.3-2 mM) or Ni2+(0.3-0.8 mM). G-Tract-containing single strands are also capable of sequence-specific non-Watson-Crick interaction with d(G. C)-tract-containing (target) sequences within double-stranded DNA. The assembly of these G*G.C-based triple helical structures is supported by magnesium, but is potently inhibited by potassium due to sequestration of the G-tract single strand into quadruplex structure. We have used DNase I protection assays to demonstrate that competition between quadruplex self-association and triplex assembly is altered in the presence of Mn2+, Co2+or Ni2+. By specifically counteracting the induction/stabilization of quadruplex structure by potassium, these divalent transition metal cations allow triplex formation in the presence of K+and shift the position of equilibrium so that a very high proportion of triplex target sites are bound. Thus, variation of the cation environment can differentially promote the assembly of multistranded nucleic acid structural alternatives.  相似文献   

20.
Primer3 is a widely used program for selection of oligonucleotide primers for PCR. The websites used for implementation of Primer3 have recently been updated. PCR requires Mg(2+)(,) which has a significant dsDNA stabilizing effect that must be taken into account when designing PCR primers. The data sets and formulas used to correct for salt concentrations have been updated in Primer3 to give better prediction of melting temperature (T(m)). The liberal combination of different formulas for monovalent and divalent salt correction can lead to different results, depending on the formula chosen by the user. Using published T(m) for 475 different oligonucleotides, it is shown that the combination of the implemented conversion of divalent to monovalent cation concentration works well with one salt correction formula but not with an alternative one. Use of a more recently described alternative formula would lead to equally good T(m) predictions if divalent cations are present. The proper selection of compatible primer pairs depends on the choice of a good combination of salt correction formulas. Currently the SantaLucia salt correction formula should be used if Mg(2+) is present. The alternative formula should be updated to its recent form for future releases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号