首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteriophages are common autonomous migrating mobile genetic elements in group A Streptococcus (GAS) and are often associated with the carriage of various virulence genes, including toxins, mitogens and enzymes. Two collections of GAS type M49 strains isolated from invasive (22 strains) and noninvasive (16 strains) clinical cases have been studied for the presence of phage and phage-associated virulence genes. All the GAS strains carried from at least two to six phage genomes as determined by the number of known phage integrase genes found. A sampling of the invasive M49 strains showed that they belonged to the same multilocus sequence typing type, carried two specific integrase genes ( int 5 and int 7), and contained the toxin genes spe A, spe H and spe I. Other invasive strains lacking this gene profile carried the prophage integrating in mutL–mutS region and inducing the 'mutator' phenotype. We suggest that this specific phage-related virulence gene constellation might be an important factor increasing M49 GAS pathogenicity.  相似文献   

2.
Reversible phosphorylation is the key mechanism regulating several cellular events in prokaryotes and eukaryotes. In prokaryotes, signal transduction is perceived to occur primarily via the two-component signaling system involving histidine kinases and cognate response regulators. Although an alternative regulatory pathway controlled by the eukaryote-type serine/threonine kinase (Streptococcus pyogenes serine/threonine kinase; SP-STK) has been shown to modulate bacterial growth, division, adherence, invasion, and virulence in group A Streptococcus (GAS; S. pyogenes), the precise role of the co-transcribing serine/threonine phosphatase (SP-STP) has remained enigmatic. In this context, this is the first report describing the construction and characterization of non-polar SP-STP mutants in two different strains of Type M1 GAS. The STP knock-out mutants displayed increased bacterial chain lengths in conjunction with thickened cell walls, significantly reduced capsule and hemolysin production, and restoration of the phenotypes postcomplementation. The present study also reveals important contribution of cognately regulated-reversible phosphorylation by SP-STK/SP-STP on two major response regulators of two-component systems, WalRK and CovRS. We also demonstrate a distinct role of SP-STP in terms of expression of surface proteins and SpeB in a strain-specific manner. Further, the attenuation of virulence in the absence of STP and its restoration only in the complemented strains that were generated by the use of a low copy plasmid and not by a high copy one emphasize not only the essential role of STP in virulence but also highlight the tightly regulated SP-STP/SP-STK-mediated cognate functions. SP-STP thus is an important regulator of GAS virulence and plays a critical role in GAS pathogenesis.  相似文献   

3.
Streptococcus pyogenes, is an important human pathogen classified within the pyogenic group of streptococci, exclusively adapted to the human host. Our goal was to employ a comparative evolutionary approach to better understand the genomic events concomitant with S. pyogenes human adaptation. As part of ascertaining these events, we sequenced the genome of one of the potential sister species, the agricultural pathogen S. canis, and combined it in a comparative genomics reconciliation analysis with two other closely related species, Streptococcus dysgalactiae and Streptococcus equi, to determine the genes that were gained and lost during S. pyogenes evolution. Genome wide phylogenetic analyses involving 15 Streptococcus species provided convincing support for a clade of S. equi, S. pyogenes, S. dysgalactiae, and S. canis and suggested that the most likely S. pyogenes sister species was S. dysgalactiae. The reconciliation analysis identified 113 genes that were gained on the lineage leading to S. pyogenes. Almost half (46%) of these gained genes were phage associated and 14 showed significant matches to experimentally verified bacteria virulence factors. Subsequent to the origin of S. pyogenes, over half of the phage associated genes were involved in 90 different LGT events, mostly involving different strains of S. pyogenes, but with a high proportion involving the horse specific pathogen S. equi subsp. equi, with the directionality almost exclusively (86%) in the S. pyogenes to S. equi direction. Streptococcus agalactiae appears to have played an important role in the evolution of S. pyogenes with a high proportion of LGTs originating from this species. Overall the analysis suggests that S. pyogenes adaptation to the human host was achieved in part by (i) the integration of new virulence factors (e.g. speB, and the sal locus) and (ii) the construction of new regulation networks (e.g. rgg, and to some extent speB).  相似文献   

4.
Group A streptococcus (GAS), also know as Streptococcus pyogenes, is a human pathogen and can cause several fatal invasive diseases such as necrotising fasciitis, the so-called flesh-eating disease, and toxic shock syndrome. The destruction of connective tissue and the hyaluronic acid (HA) therein, is a key element of GAS pathogenesis. We therefore propagated GAS in HA-enriched growth media in an attempt to create a simple biological system that could reflect some elements of GAS pathogenesis. Our results show that several recognised virulence factors were up-regulated in HA-enriched media, including the M1 protein, a collagen-like surface protein and the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase, which has been shown to play important roles in streptococcal pathogenesis. Interestingly, two hypothetical proteins of unknown function were also up-regulated and detailed bioinformatics analysis showed that at least one of these hypothetical proteins is likely to be involved in pathogenesis. It was therefore concluded that this simple biological system provided a valuable tool for the identification of potential GAS virulence factors.  相似文献   

5.
Streptococcus pyogenes, one of the major human pathogens, is a unique species since it has acquired diverse strain-specific virulence properties mainly through the acquisition of streptococcal prophages. In addition, S. pyogenes possesses clustered regularly interspaced short palindromic repeats (CRISPR)/Cas systems that can restrict horizontal gene transfer (HGT) including phage insertion. Therefore, it was of interest to examine the relationship between CRISPR and acquisition of prophages in S. pyogenes. Although two distinct CRISPR loci were found in S. pyogenes, some strains lacked CRISPR and these strains possess significantly more prophages than CRISPR harboring strains. We also found that the number of spacers of S. pyogenes CRISPR was less than for other streptococci. The demonstrated spacer contents, however, suggested that the CRISPR appear to limit phage insertions. In addition, we found a significant inverse correlation between the number of spacers and prophages in S. pyogenes. It was therefore suggested that S. pyogenes CRISPR have permitted phage insertion by lacking its own spacers. Interestingly, in two closely related S. pyogenes strains (SSI-1 and MGAS315), CRISPR activity appeared to be impaired following the insertion of phage genomes into the repeat sequences. Detailed analysis of this prophage insertion site suggested that MGAS315 is the ancestral strain of SSI-1. As a result of analysis of 35 additional streptococcal genomes, it was suggested that the influences of the CRISPR on the phage insertion vary among species even within the same genus. Our results suggested that limitations in CRISPR content could explain the characteristic acquisition of prophages and might contribute to strain-specific pathogenesis in S. pyogenes.  相似文献   

6.
The human bacterial pathogen group A Streptococcus (GAS) causes many different diseases including pharyngitis, tonsillitis, impetigo, scarlet fever, streptococcal toxic shock syndrome, necrotizing fasciitis and myositis, and the post-infection sequelae glomerulonephritis and rheumatic fever. The frequency and severity of GAS infections increased in the 1980s and 1990s, but the cause of this increase is unknown. Recently, genome sequencing of serotype M1, M3 and M18 strains revealed many new proven or putative virulence factors that are encoded by phages or phage-like elements. Importantly, these genetic elements account for an unexpectedly large proportion of the difference in gene content between the three strains. These new genome-sequencing studies have provided evidence that temporally and geographically distinct epidemics, and the complex array of GAS clinical presentations, might be related in part to the acquisition or evolution of phage-encoded virulence factors. We anticipate that new phage-encoded virulence factors will be identified by sequencing the genomes of additional GAS strains, including organisms non-randomly associated with particular clinical syndromes.  相似文献   

7.
8.
9.
10.
A novel mass spectral fingerprinting and proteomics approach using MALDI-TOF MS was applied to detect and identify protein biomarkers of group A Streptococcus (GAS) strains. Streptococcus pyogenes ATCC 700294 genome strain was compared with eight GAS clinical isolates to explore the ability of MALDI-TOF MS to differentiate isolates. Reference strains of other bacterial species were also analyzed and compared with the GAS isolates. MALDI preparations were optimized by varying solvents, matrices, plating techniques, and mass ranges for S. pyogenes ATCC 700294. Spectral variability was tested. A subset of common, characteristic, and reproducible biomarkers in the range of 2000-14 000 Da were detected, and they appeared to be independent of the culture media. Statistical analysis confirmed method reproducibility. Random Forest analysis of all selected GAS isolates revealed differences among most of them, and summed spectra were used for hierarchical cluster analysis. Specific biomarkers were found for each strain, and invasive GAS isolates could be differentiated. GAS isolates from cases of necrotizing fasciitis were clustered together and were distinct from isolates associated with noninvasive infections, despite their sharing the same emm type. Almost 30% of the biomarkers detected were tentatively identified as ribosomal proteins.  相似文献   

11.
Group A Streptococcus pyogenes (GAS) is a leading human pathogen that produces a powerful cytolytic bacteriocin known as streptolysin S (SLS). We have developed a bioengineering strategy to successfully reconstitute SLS activity using heterologous expression in laboratory strains of Escherichia coli. Our E. coli-based heterologous expression system will allow more detailed studies into the biosynthesis of other bacteriocin compounds and the production of these natural products in much greater yield.  相似文献   

12.
13.
14.
Streptococcus pyogenes is also known as group A Streptococcus (GAS) and is an important human pathogen that causes considerable morbidity and mortality worldwide. The GAS serotype M1T1 clone is the most frequently isolated serotype from life-threatening invasive (at a sterile site) infections, such as streptococcal toxic shock-like syndrome and necrotizing fasciitis. Here, we describe the virulence factors and newly discovered molecular events that mediate the in vivo changes from non-invasive GAS serotype M1T1 to the invasive phenotype, and review the invasive-disease trigger for non-M1 GAS. Understanding the molecular basis and mechanism of initiation for streptococcal invasive disease may expedite the discovery of novel therapeutic targets for the treatment and control of severe invasive GAS diseases.  相似文献   

15.
Salivaricin A (SalA), the first Streptococcus salivarius lantibiotic to be characterized, appears to be inhibitory to most Streptococcus pyogenes strains. A variant of the SalA structural gene (salA1) is present in more than 90% of S. pyogenes strains, but only strains of M serotype 4 and T pattern 4 produce the biologically active peptide. The present study identifies four additional variants (salA2 to salA5) of the SalA structural gene and demonstrates that each of the corresponding inhibitory peptides (SalA2 to SalA5) is produced in vitro. These variants appear to be similar to SalA and SalA1 in their inhibitory activity against Micrococcus luteus and in their ability to act as inducers of SalA production. It had previously been shown that S. pyogenes strain SF370 had a deletion (of approximately 2.5 kb) in the salM and salT genes of the salA1 locus. In the present study, several additional characteristic deletions within the salA1 loci were identified. S. pyogenes strains of the same M serotype all share the same salA1 locus structure. Since S. salivarius is a predominant member of the normal oral flora of healthy humans, strains producing anti-S. pyogenes lantibiotics, such as SalA, may have excellent potential for use as oral probiotics. In the present study, we have used a highly specific SalA induction system to directly detect the presence of SalA in the saliva of humans who either naturally harbor populations of SalA-producing S. salivarius or who have been colonized with the SalA2-producing probiotic S. salivarius K12.  相似文献   

16.
Many strains of the important human pathogen Streptococcus pyogenes form aggregates when grown in vitro in liquid medium. The present studies demonstrate that this property is crucial for the adherence, the resistance to phagocytosis and the virulence of S. pyogenes. A conserved sequence of 19 amino acid residues (designated AHP) was identified in surface proteins of common S. pyogenes serotypes. This sequence was found to promote bacterial aggregation through homophilic protein-protein interactions between AHP-containing surface proteins of neighbouring bacteria. A synthetic AHP peptide inhibited S. pyogenes aggregation, reduced the survival of S. pyogenes in human blood and attenuated its virulence in mice. In contrast, mutant bacteria devoid of surface proteins containing AHP-related sequences did not aggregate or adhere to epithelial cells. These bacteria are also rapidly killed in human blood and show reduced virulence in mice, underlining the pathogenic significance of the AHP sequence and S. pyogenes aggregation.  相似文献   

17.
Surface exposed fibronectin-binding proteins (FBPs) play an important role in the adherence of Streptococcus pyogenes (group A streptococcus, GAS) to host cells. This pathogen expresses numerous FBPs, of which SfbI, SfbII and PrtF2 are major surface exposed FBPs. However, GAS strains differ in the genetic potential to express these proteins. To test whether this difference reflects in differences in fibronectin (Fn) binding, a set of circulating strains previously examined for adherence to host cells was used. The 68 distinct strains were isolated from throat, skin and blood. They were analyzed for (a) the presence of genes for SfbI, SfbII and PrtF2 and (b) the extent of Fn binding. The results suggest that strains possessing two or more of the genes for these FBPs bound Fn significantly more than strains possessing none or one of the genes. No correlation between the extent of Fn binding and the tissue site of isolation was found. Furthermore, together with our previous studies on adherence capacity of these GAS strains, we found no correlation between Fn binding ability and the avidity of the strains to adhere to epithelial cells. We suggest that while Fn binding is important for adhesion, for many GAS strains the extent of Fn binding is not the critical determinant of adherence.  相似文献   

18.
The present study was performed to identify stress-induced putative virulence proteins of Streptococcus suis. For this, protein expression patterns of streptococci grown at 32, 37, and 42 degrees C were compared by one- and two-dimensional gel electrophoresis. Temperature shifts from 32 and 37 to 42 degrees C induced expression of two cell wall-associated proteins with apparent molecular masses of approximately 47 and 53 kDa. Amino-terminal sequence analysis of the two proteins indicated homologies of the 47-kDa protein with an ornithine carbamoyltransferase (OCT) from Streptococcus pyogenes and of the 53-kDa protein with the streptococcal acid glycoprotein (SAGP) from S. pyogenes, an arginine deiminase (AD) recently proposed as a putative virulence factor. Cloning and sequencing the genes encoding the putative OCT and AD of S. suis, octS and adiS, respectively, revealed that they had 81.2 (octS) and 80.2% (adiS) identity with the respective genes of S. pyogenes. Both genes belong to the AD system, also found in other bacteria. Southern hybridization analysis demonstrated the presence of the adiS gene in all 42 serotype 2 and 9 S. suis strains tested. In 9 of these 42 strains, selected randomly, we confirmed expression of the AdiS protein, homologous to SAGP, by immunoblot analysis using a specific antiserum against the SAGP of S. pyogenes. In all strains AD activity was detected. Furthermore, by immunoelectron microscopy using the anti-S. pyogenes SAGP antiserum we were able to demonstrate that the AdiS protein is expressed on the streptococcal surface in association with the capsular polysaccharides but is not coexpressed with them.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号