首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Paraquat-resistant biotypes of the closely-related weed species Hordeum leporinum Link and H. glaucum Steud. are highly resistant to paraquat when grown during the normal winter growing season. However, when grown and treated with paraquat in summer, these biotypes are markedly less resistant to paraquat. This reduced resistance to paraquat in summer is primarily a result of increased temperature following herbicide treatment. The mechanism governing this decrease in resistance at high temperature was examined in H. leporinum. No differences were observed between susceptible and resistant biotypes in the interaction of paraquat with isolated thylakoids when assayed at 15, 25, or 35 °C. About 98 and 65% of applied paraquat was absorbed through the leaf cuticle of both biotypes at 15 and 30 °C, respectively. Following application to leaves, more herbicide was translocated in a basipetal direction in the susceptible biotype compared to the resistant biotype at 15 °C. However, at 30 °C more paraquat was translocated in a basipetal direction in the resistant biotype. Photosynthetic activity of young leaf tissue from within the leaf sheath which had not been directly exposed to paraquat was measured 24 h after treatment of plants with para. quat. This activity was inhibited in the susceptible biotype when plants were maintained at either 15 °C or 30 °C after treatment. In contrast, photosynthetic activity of such tissue of the resistant biotype was not inhibited when plants were maintained at 15 °C after treatment, but was inhibited at 30 °C. The mechanism of resistance in this biotype of H. leporinum correlates with decreased translocation of paraquat and decreased penetration to the active site. This mechanism is temperature sensitive and breaks down at higher temperatures.We are grateful to Zeneca Agrochemicals, Jealotts Hill, Berkshire, UK who provided [14C]paraquat. E.P. was supported through a Ph.D. scholarship from the Australian International Development Assistance Bureau and C.P. was the recipient of an Australian Research Council Postdoctoral Fellowship.  相似文献   

3.
Summary The response of leaf gas exchange to environmental variables were measured at different levels of drought stress for Agropyron desertorum, a naturalized perennial bunchgrass of the semiarid shrub steppes of western North America. Leaf conductance (stomatal plus boundary layer) was more sensitive to changes in water vapor gradient than to changes in leaf temperature. Assimilation was sensitive to both temperature and vapor gradient, and also appeared to be affected by conductance and high transpiration rates. The magnitudes of both assimilation and conductance decreased with increased drought conditions. Diurnal patterns of gas exchange were measured during 3 growing seasons. For a typical spring day with moderate leaf temperature and vapor gradient, diurnal patterns were similar for plants at different levels of soil water availability. Assimilation was relatively constant during most of the day, but conductance decreased during the afternoon. Total daily carbon gain was decreased to a lesser extent than daily water loss as soil water was depleted. Consequently, the ratio of daily carbon gain to daily water loss, i.e. daily water use efficiency, increased with decreased soil water content for diurnals under spring conditions. Diurnal patterns of assimilation for a typical summer day with high leaf temperature and vapor gradient differend from those for a spring day. An afternoon decrease in assimilation was typical during a summer day. Daily carbon gain, water use, and water use efficiency for summer diurnals decreased only under severe drought conditions. Almost complete recovery of assimilation and conductance occurred if leaf microclimate was ameliorated during the afternoon of either spring or summer diurnals. Thus, conditions responsible for a midday depression in assimilation during a single day did not have persistent effects on leaf gas exchange. Daily carbon gain of a typical summer day was restricted by leaf microclimate during the afternoon, but daily water use efficiency was not relatively increased by the amelioration of leaf microclimate.  相似文献   

4.

Climate change models predict a strong reduction of average precipitation, especially of the summer rainfall, and an increase in intensity and frequency of drought events in the Mediterranean region. The research aim was to understand how four dominant grass species (Arrhenatherum elatius, Cynosurus cristatus, Elymus repens, and Lolium perenne) in sub-Mediterranean meadows (central Apennines, Italy) modulate their resource acquisition and conservation strategies to short-term variation of the pattern of summer water supply. During summer 2016, using a randomized block design, we tested the effect of three patterns of summer water supply, differing in water amount and watering frequency, on leaf area, leaf dry mass, specific leaf area (SLA), leaf senescence, and plant height. Our results showed that dominant grass species can modulate their strategies to variation of the pattern of summer water supply, but the response of leaf traits and plant height is mediated by the set of functional characteristics of the species. E. repens and A. elatius, with summer green leaves, lower SLA, later flowering period, and deeper roots, were less influenced by changes in water amount. C. cristatus and L. perenne, which display acquisitive strategies (persistent leaves, higher SLA values), earlier flowering, and shallower roots were more influenced by changes in the pattern of summer water supply. Our results suggest that a short-term decrease in water availability might affect primarily species with trait syndromes less adapted to face summer drought.

  相似文献   

5.
干旱胁迫与复水对块根紫金牛生理特性的影响   总被引:1,自引:0,他引:1  
以岩溶特有药用植物块根紫金牛为试材,研究土壤水分胁迫及复水条件下其叶片光合参数、相对含水量、质膜透性、渗透调节物质含量的变化特性。结果表明:水分胁迫下,块根紫金牛的叶片净光合速率、气孔导度和蒸腾速率均几乎接近零点,但胞间CO2浓度上升,即非气孔因素限制是光合速率下降的主要原因。水分胁迫不影响块根紫金牛单位面积的总叶绿素和类胡萝卜素含量,但干旱处理的Chl a/b和Car/Chl分别显著低于和高于对照。水分胁迫下,块根紫金牛的叶片相对含水量、相对电导率和丙二醛含量显著增大,即膜系统受到一定的伤害;块根紫金牛叶片脯氨酸含量显著降低,可溶性蛋白含量无显著变化,可溶性糖含量显著增大,但增大幅度不大,说明其在干旱胁迫下的渗透调节能力较弱。复水处理后,块根紫金牛全部指标均能恢复到对照水平,说明其对干旱胁迫较为敏感,主要采取避旱策略。  相似文献   

6.

Questions

Knowledge of how extreme drought events induce plant dieback and, eventually, plant mortality, may improve our forecasting of ecosystem change according to future climate projections, especially in Mediterranean drylands. In them, shrublands are the main vegetation communities in transition areas from a subhumid to semi-arid climate. This study analyzed differences in plant dieback after an unusual drought in 2014 and identified their main underlying factors in relation to three groups of explanatory variables: water availability, soil properties and vegetation structure attributes.

Location

Four Mediterranean shrublands along a climatic gradient in SE Spain.

Methods

At each experimental field site, we sampled a pool of vegetation structure characteristics, soil depth and soil surface properties, and we also determined water availability by continuously monitoring soil moisture and the microclimate conditions.

Results

The climatic analysis showed that there was an extreme drought event in 2014, which was below the first percentile of the driest years. Under such conditions, vegetation dieback occurred at all the study sites. However, plant dieback differed between sites and plant biotypes. Subshrubs were the main affected biotype, with diebacks close to 60% at the driest sites, and up to 40% dieback for shrubs depending on their vertical development. Relative extractable water and bare soil surface cover were the best explanatory variables of plant community dieback but changed between plant biotypes. Vegetation structure variables related to plant vertical development (leaf area index [LAI], plant height, phytovolume) were significant explanatory variables of plant dieback in shrubs, subshrubs and grasses. Consecutive dry days fitted the best model to explain subshrub dieback.

Conclusions

We found that rainfall pattern rather than total annual rainfall was the climatic factor that best determined water availability for plants in Mediterranean drylands. These results also pointed out the relevance of plant structure and soil properties for explaining ecosystem responses to extreme drought.  相似文献   

7.
To study survival under prolonged and severe drought in the perennial grass Dactylis glomerata we compared dormant, resistant and sensitive cultivars (cvs.) in both field and glasshouse experiments. Water status, membrane stability and expression of dehydrins were assessed in the immature leaf bases, which are the last surviving organs. Analysis of leaf elongation and senescence of aerial tissues showed that dormancy was exhibited by the potentially dormant cultivar (cv.) only in the field. This cultivar exhibited a high survival rate, similar levels of dehydration and expression of a low-molecular weight (22–24 kDa) dehydrin in both drought and irrigated plants, whether fully dormant or not. At the same level of soil water deficit, there were no differences between the non-dormant drought resistant and drought sensitive cultivars in plant water status and membrane stability. However, the accumulation of dehydrins as drought progressed was markedly different between these cultivars and was associated with their contrasting survival. The possible role of the major low-molecular dehydrins in maintenance of cell integrity under dehydration is discussed with reference to both summer dormancy and survival under severe drought.  相似文献   

8.
Different irrigation effects on stem radius variation (DeltaR) and maximum daily shrinkage (MDS) in Populus deltoides 'Dvina' and Populusxcanadensis 'I-214' were studied to assess differences in drought tolerance between clones. One-year-old trees growing in concrete tanks were submitted to two irrigation regimes (natural rainfall and irrigation) from 24 June to 10 August, and DeltaR was monitored by automatic point dendrometers. Independently of the irrigation regime, 'Dvina' showed a higher stem radial increment than 'I-214'. In both clones, the first response to changed soil water content was a significant increase in MDS, whilst DeltaR decreased about 20 d later when pre-dawn leaf water potential (Psipd) dropped below -0.4 MPa. However, they displayed different strategies to overcome drought. 'Dvina' maintained a positive DeltaR for longer than 'I-214', which had lower leaf Psipd and greater leaf abscission at the end of the drought period. After irrigation resumed, 'Dvina' showed a higher capacity to restore stem growth. 'I-214' was probably unable to recover secondary growth because of higher leaf abscission during drought stress and the production of newly expanded leaves during recovery. It is concluded that the larger radial growth of 'Dvina' derived from a better water use (carbon uptake versus water loss) than 'I-214' under limited water availability.  相似文献   

9.
Isonuclear triazine-susceptible and triazine-resistant Senecio vulgaris L. biotypes were developed by making reciprocal crosses between susceptible and resistant biotypes to obtain F1 hybrids and backcrossing the hybrids to the appropriate pollen parent. The electrophoretic isozyme patterns of the enzyme aconitase obtained from leaf extracts of triazine-susceptible parental (S) and backcrossed (S×RBC6) biotypes, and triazine-resistant parental (R) and backcrossed (R×SBC6) biotypes verified that the biotypes had the expected nuclear genomes. Atrazine inhibition of chloroplast whole chain electron transport from water to methyl viologen was measured to verify susceptibility or resistance to triazine herbicides. The photosynthetic rate and biomass accumulation of greenhouse grown susceptible and resistant S. vulgaris biotypes were measured 28, 35, 42, 50, 57, and 64 days after planting to determine the effect of altered chloroplast function. S and S×RBC6 biotypes had CO2 assimilation rates of 16.2 and 16.6 micromoles CO2 per square meter per second, respectively, and I50 values (herbicide concentration producing 50% inhibition) of about 0.49 micromolar atrazine. The corresponding values for the R and R×SBC6 biotypes were 14.7 and 14.6 micromoles CO2 per square meter per second with I50 values of 65.0 micromolar atrazine. The S biotype was larger and more productive than the R biotype at all harvests. At the harvest 57 days after planting, mean shoot dry weight was 33.2 and 8.7 grams for the S and R biotypes, respectively. The growth effect associated with chloroplast differences was shown in comparisons of the S biotype with the R×SBC6 biotype and of the S×RBC6 biotype with the R biotype. The R×SBC6 biotype had 72% of the shoot dry weight of the S biotype while the R biotype had 55% of the shoot dry weight of the S×RBC6 biotype. The R×SBC6 and R biotypes produced about 73 and 62% of the leaf area of the S and S×RBC6 biotypes, respectively. Relative growth rate was similar in biotypes with the same nuclear genome; however, instantaneous unit leaf rate was higher in the S compared to the R×SBC6 biotype and in the S×RBC6 compared to the R biotype. At 57 days after planting, the cumulative leaf area duration (i.e. photosynthetic opportunity) of the R×SBC6 and R biotypes was 86 and 66% of that of the S and S×RBC6 biotypes, respectively. Our data indicate that impaired chloroplast function in triazine resistant S. vulgaris biotypes limits growth and productivity at the whole plant level.  相似文献   

10.
Apoplastic reactive oxygen intermediates, which are formed during the exposure of a higher plant to ozone (O3), have been proposed to be detoxified by apoplastic ascorbate (ASC). An investigation to determine whether the differential sensitivity of two white clover clones (Trifolium repens L. cv Regal) to O3 was related with their levels of ASC, glutathione derivatives or with the total antioxidative capacity. In contrast to what might be expected, the sensitive clone of white clover (NC-S) constitutively showed a 72% higher concentration of apoplastic ASC compared to the O3-tolerant clone (NC-R). Furthermore, NC-S also showed a higher redox status of apoplastic ASC. These results indicate that higher ASC levels in the apoplast of NC-S are not sufficient to induce a higher O3 tolerance. The redox status, but not the absolute concentration of homoglutathione in the symplast was found to be constitutively higher in NC-R than in NC-S. It is not clear, however, whether homoglutathione is a direct cause of the differential O3 detoxification capacity of both clones. Total antioxidative capacity measurements ruled out the contribution of other low-molecular antioxidants to the relative tolerance of NC-R. It was concluded that elevated apoplastic ASC levels can not always be sufficient to render a plant O3 tolerant.  相似文献   

11.
The Mediterranean vegetation is characterized by a high diversity of growth forms, habits and phenology that enable it to endure under harsh environmental conditions. It is however unclear whether these adaptations may allow plant survival under more extreme conditions, as predicted by climatic models under the perspective of climate change. A manipulative experiment aiming at anticipating summer aridity has been run to analyse the effects of the experimental drought on spring-leaf functioning and characteristics of the leaf-dimorphic Mediterranean shrub Cistus monspeliensis L.Assimilation rates were reduced under anticipated summer aridity due to a decrease of stomatal conductance, but only before morphological adaptations to drought (an increase of leaf mass per area) occurred. These adaptations were anticipated under experimental dry conditions, and causes photosynthetic performances to recover compared to previous dates. When natural summer aridity occurred, the leaf mass per area also changed in the control. However, this causes no recovery of the photosynthetic performances, because of the decrease of stomatal conductance due to low soil water content and leaf water potential values. Moreover, under experimental drought, leaf shedding was anticipated to reduce water losses, causing an overall reduction of leaf lifespan.  相似文献   

12.
B型与浙江非B型烟粉虱药剂敏感性的比较   总被引:3,自引:1,他引:2  
比较了新入侵我国的B型烟粉虱Bemisiatabaci(Gennadius)与非B型烟粉虱ZHJ-1种群对5%吡虫啉乳油和5%吡丙醚乳油2种杀虫剂的敏感性。ZHJ-1种群卵、若虫和成虫对这2种药剂的敏感性均比B型的明显或显著要高。吡丙醚具有高杀卵活性,在有效成分为0.25mg/L时,2个烟粉虱种群卵的死亡率高于90%。药剂敏感性的差异可能是B型竞争取代本地非B型烟粉虱的一个重要原因。  相似文献   

13.
不同水分胁迫对绵毛水苏幼苗形态和生理特性的影响   总被引:1,自引:0,他引:1  
以绵毛水苏幼苗为试材,以正常供水为对照,研究不同水分胁迫(淹水、渍水、中度干旱、重度干旱)对绵毛水苏形态和生理指标的影响。结果表明:(1)绵毛水苏植株在淹水处理3d后外围叶片坏死,根系死亡,但茎基部有不定根萌生;渍水处理植株地上部始终无明显变化,但部分根系根尖变褐色;干旱处理7d时叶片萎蔫,且重度干旱处理叶片萎蔫程度大于中度干旱。胁迫解除后,除淹水处理在第13天恢复生长外,其余处理均在第2天恢复正常生长。(2)绵毛水苏叶片含水量和根系活力在淹水处理下显著降低,在渍水处理下无明显变化;在干旱胁迫下,叶片含水量迅速下降,而根系活力升高。(3)在各水分胁迫条件下,绵毛水苏植株叶、根的相对电导率和MDA含量均较对照显著升高,且根部受损程度均重于叶片,其中淹水胁迫受损最严重。(4)淹水处理叶片可溶性蛋白含量下降,可溶性糖、游离脯氨酸持续积累;渍水和干旱处理叶和根的可溶性糖、可溶性蛋白和游离脯氨酸均升高。研究认为,绵毛水苏具有较强的渗透调节能力,在渍水和干旱胁迫解除后迅速缓解膜质过氧化伤害,恢复正常生长;绵毛水苏虽不能在长时间淹水条件下生长,但可在渍水条件下正常生长,且能忍受干旱胁迫,可应用于滨水消落带等水分变化较大的区域。  相似文献   

14.
The genetic structure of six Iberian populations of the whitefly Bemisia tabaci, two of them biotype Q, one biotype B, and the other three a mixture of both, has been studied using random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). A total of 336 individuals was completely discriminated by means of 234 scored bands. Separate analyses of molecular variance of haploid males and diploid females using the pairwise number of differences between haplotypes showed that biotypes contribute significantly more to the observed variability than populations within biotypes. On average, gene flow between two biotypes of the same population is lower than between populations of identical biotypes. On the basis of these results and the nondetection under natural conditions of a single hybrid, we consider that both biotypes are genetically isolated under the ecological conditions prevailing in the south Iberian Peninsula. All populations of biotype Q presented similar values of intrapopulational diversity, which were higher than the values shown by populations of biotype B.  相似文献   

15.

Background

Despite abatement programs of precursors implemented in many industrialized countries, ozone remains the principal air pollutant throughout the northern hemisphere with background concentrations increasing as a consequence of economic development in former or still emerging countries and present climate change. Some of the highest ozone concentrations are measured in regions with a Mediterranean climate but the effect on the natural vegetation is alleviated by low stomatal uptake and frequent leaf xeromorphy in response to summer drought episodes characteristic of this climate. However, there is a lack of understanding of the respective role of the foliage physiology and leaf xeromorphy on the mechanistic effects of ozone in Mediterranean species. Particularly, evidence about morphological and structural changes in evergreens in response to ozone stress is missing.

Results

Our study was started after observing ozone -like injury in foliage of holm oak during the assessment of air pollution mitigation by urban trees throughout the Madrid conurbation. Our objectives were to confirm the diagnosis, investigate the extent of symptoms and analyze the ecological factors contributing to ozone injury, particularly, the site water supply. Symptoms consisted of adaxial and intercostal stippling increasing with leaf age. Underlying stippling, cells in the upper mesophyll showed HR-like reactions typical of ozone stress. The surrounding cells showed further oxidative stress markers. These morphological and micromorphological markers of ozone stress were similar to those recorded in deciduous broadleaved species. However, stippling became obvious already at an AOT40 of 21 ppm•h and was primarily found at irrigated sites. Subsequent analyses showed that irrigated trees had their stomatal conductance increased and leaf life -span reduced whereas the leaf xeromorphy remained unchanged. These findings suggest a central role of water availability versus leaf xeromorphy for ozone symptom expression by cell injury in holm oak.  相似文献   

16.
The mechanism of resistance to diquat and paraquat was investigated in a bipyridyl-herbicide-resistant biotype of Arctotheca calendula (L.) Levyns. No differences were observed in the interactions of these herbicides with Photo-system I, the active site, in thylakoids isolated from resistant and susceptible biotypes. Likewise, absorption of herbicide through the cuticle and gross translocation were identical in plants of the two biotypes. Foliar application of either 25 g ha−1 diquat or 200 g ha−1 paraquat rapidly inhibited CO2-dependent O2 evolution of leaf segments of the susceptible biotype. O2 evolution of leaf segments of the resistant biotype was less affected by these treatments. Fluorescence imaging was used to observe visually, as fluorescence quenching, the penetration of herbicide to the active site. These experiments demonstrated that diquat appears at the active site more slowly in the resistant biotype compared to the susceptible biotype. HCO3-dependent O2 evolution of thin leaf slices was less inhibited by diquat in the resistant biotype than in the susceptible biotype. The mechanism of resistance to the bipyridyl herbicides in this biotype of A. calendula is not a result of changes at the active site, decreased herbicide absorption or decreased translocation, but appears to be due to reduced herbicide penetration to the active site.  相似文献   

17.
Most tributaries of the Río Fuerte in northwestern Mexico contain one or more clones of allotriploid fish of the genus Poeciliopsis. We used multilocus allozyme genotypes and mitochondrial DNA (mtDNA) haplotypes to examine several potential modes of origin of these gynogenetic all-female fish. The allozyme studies corroborated earlier morphological work revealing the hybrid constitution of two triploid biotypes, Poeciliopsis 2 monacha-lucida and Poeciliopsis monacha-2 lucida. Each biotype carries one or two whole genomes from the each of the sexual species P. monacha and P. lucida. Restriction site analysis of mtDNA revealed that P. monacha was the maternal ancestor of five electrophoretically distinguishable triploid clones. Four of five clones were marked by closely related, composite, allozyme/mtDNA genotypes, suggesting they had common origins from an allodiploid clone of the P. monacha-lucida biotype. Genotypic analysis revealed that all five clones arose via the "genome addition" pathway. Fertilization of unreduced ova in P. monacha-lucida females by sperm from P. monacha and P. lucida males, respectively, gave rise to both biotypes.  相似文献   

18.
短期干旱对水稻叶水势、光合作用及干物质分配的影响   总被引:41,自引:10,他引:41  
采用盆栽水分试验,研究了不同生育期短期干旱处理对水稻叶水势、光合作用和干物质分配的影响.结果表明,干旱胁迫后,水稻叶水势低于对照,午后叶水势回升缓慢。凌晨叶水势随土壤含水量的降低而降低,表现为阈值反应。叶片净光合速率与凌晨叶水势密切相关,低于凌晨叶水势临界值,水稻叶片净光合速率急剧下降在水稻抽穗期和灌浆期叶片净光合速率显著下降的凌晨叶水势临界值为-1.04和-1.13MPa,对应的土壤含水量阈值分别为饱和含水量的61.0%和50.9%,土壤水势分别为-0.133和-0.240MPa干旱胁迫下单叶净光合速率的日变化规律表现为:胁迫较轻时,单叶净光合速率在正午附近出现低谷;胁迫严重时,净光合速率全天低于对照,且不及对照的一半。短期干旱后,水稻叶、根、穗的分配指数均降低,茎鞘的分配指数升高。本研究可为水稻节水灌溉管理和水分限制下水稻的生长模拟提供生理基础和理论依据。  相似文献   

19.
Physiological and chemical responses of 17 birch (Betula pendula Roth) clones to 1.5–1.7 × ambient ozone were studied in an open‐field experiment over two growing seasons. The saplings were studied for growth, foliar visible injuries, net photosynthesis, stomatal conductance, and chlorophyll, carotenoid, Rubisco, total soluble protein, macronutrient and phenolic concentrations in leaves. Elevated ozone resulted in growth enhancement, changes in shoot‐to‐root (s/r) ratio, visible foliar injuries, reduced stomatal conductance, lower late‐season net photosynthesis, foliar nutrient imbalance, changes in phenolic composition, and reductions in pigment, Rubisco and soluble protein contents indicating accelerated leaf senescence. Majority of clones responded to ozone by changing C allocation towards roots, by stomatal closure (reduced ozone uptake), and by investment in low‐cost foliar antioxidants to avoid and tolerate ozone stress. A third of clones, showing increased s/r ratio, relied on inducible efficient high‐cost antioxidants, and enhanced leaf production to compensate ozone‐caused decline in leaf‐level net photosynthesis. However, the best ozone tolerance was found in two s/r ratio‐unaffected clones showing a high constitutive amount of total phenolics, investment in low‐cost antioxidants and N distribution to leaves, and lower stomatal conductance under ozone stress. The results highlight the importance of phenolic compounds in ozone defence mechanisms in the birch population. Depending on the genotype, ozone detoxification was improved by an increase in either efficient high‐cost or less efficient low‐cost antioxidative phenolics, with close connections to whole‐plant physiology.  相似文献   

20.
Candidate traits for drought tolerance were targeted by analyzing water stress responses in two moderately drought-tolerant native Andean potato clones, SA2563 and Sullu (Solanum tuberosum L. subsp, andigena (Juz, Bukasov) Hawkes) under field conditions. SA2563 exhibited increased root growth under drought, while Sullu retained a higher relative leaf water content. Gene expression profiling using the TIGR 10 K microarray revealed 1713 significantly differentially expressed genes, 186 of these genes were up-regulated in both clones. In addition to these commonly up-regulated genes, each clone induced a specific gene set in response to drought. Gene expression and metabolite analysis pinpointed candidate traits for drought tolerance present either in one or both of the clones under investigation. These traits included osmotic adjustment, changes in carbohydrate metabolism, membrane modifications, strengthening of cuticle and cell rescue mechanisms, such as detoxification of oxygen radicals and protein stabilization. Many of the up-regulated genes have been identified previously in laboratory studies on model plants using shock treatments, and the present study confirms the importance of these factors under field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号