首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chloroplast protein synthesis elongation factor, EF-Tu, has been implicated in heat tolerance in maize (Zea mays). Chloroplast EF-Tu is highly conserved, and it is possible that this protein may be of importance to heat tolerance in other species including wheat (Triticum aestivum). In this study, we assessed heat tolerance and determined the relative levels of EF-Tu in mature plants (at flowering stage) of 12 cultivars of winter wheat experiencing a 16-d-long heat treatment (36/30 degrees C, day/night temperature). In addition, we also investigated the expression of EF-Tu in young plants experiencing a short-term heat shock (4h at 43 degrees C). Heat tolerance was assessed by examining the stability of thylakoid membranes, measuring chlorophyll content, and assessing plant growth traits (shoot dry mass, plant height, tiller number, and ear number). In mature plants, relative levels of EF-Tu were determined after 7 d of heat stress. High temperature-induced accumulation of EF-Tu in mature plants of all cultivars, and a group of cultivars that showed greater accumulation of EF-Tu displayed better tolerance to heat stress. Young plants of all cultivars but one did not show significant increases in the relative levels of EF-Tu. The results of the study suggest that EF-Tu protein may play a role in heat tolerance in winter wheat.  相似文献   

2.
3.
We have examined the expression of a maize nucleartuf gene(tufA) coding for the chloroplast translation elongation factor EF-Tu. Southern analysis revealed that the maize chloroplast EF-Tu was encoded by at least two distinct genes in the nuclear genome. In order to know the effect of light on the expression of thetufA gene during maize chloroplast biogenesis, we have analyzed the steady-state level of thetufA mRNAs by Northern analysis. The steady-state level of thetufA mRNAs was similar in both continuous light- and dark-grown seedlings. The level of thetufA mRNAs also maintained at relatively same level during light-induced greening of etiolated seedlings and all examined developmental stages. These results indicate that the gene expression of the maize chloroplast EF-Tu is rarely light-regulated at it’s mRNA level during chloroplast biogenesis.  相似文献   

4.
Chloroplast protein synthesis elongation factor, EF-Tu, has been implicated in heat tolerance in maize. The recombinant precursor of this protein, pre-EF-Tu, has been found to exhibit chaperone activity and protect heat-labile proteins, such as citrate synthase and malate dehydrogenase, from thermal aggregation. Chloroplast EF-Tu is highly conserved and it is possible that the chaperone activity of this protein is not species-specific. In this study, we investigated the effect of native wheat pre-EF-Tu on thermal aggregation of rubisco activase. Additionally, we investigated the effect of native and recombinant maize pre-EF-Tu on activase aggregation. Activase was chosen because it displays an exceptional sensitivity to thermal aggregation and constrains photosynthesis at high temperature. The native precursors of both wheat and maize EF-Tu displayed chaperone activity, as shown by the capacity of both proteins to reduce thermal aggregation of rubisco activase in vitro. Similarly, the recombinant maize pre-EF-Tu protected activase from thermal aggregation. This is the first report on chaperone activity of native pre-EF-Tu and the first evidence for thermal protection of a photosynthetic enzyme by this putative chaperone. The results are consistent with the hypothesis that chloroplast EF-Tu plays a functional role in heat tolerance by acting as a molecular chaperone.  相似文献   

5.
The objectives of this research were to determine if genes controlling the reaction to the herbicide acetochlor in maize (Zea mays L.) are active during both the haploid and the diploid phases of the life cycle and if pollen selection can be utilized for improving sporophytic resistance. Pollen of eight inbred lines, previously characterized through sporophytic analysis for the level of tolerance to acetochlor, showed a differential reaction to the herbicide forin vitro tube length; moreover, such pollen reactions proved to be significantly correlated (r =0.786*,df=6) with those of the sporophytes producing the pollen. Pollen analysis of two inbred lines (i.e. Mo17, tolerant, and B79, susceptible) and their single cross showed that thein vitro pollen-tube length reaction of the hybrid was intermediate between those of two parents. An experiment on pollen selection was then performed by growing tassels of Mo17xB79 in the presence of the herbicide. Pollen obtained from treated tassels showed a greater tolerance to acetochlor, assessed asin vitro tube length reaction, than pollen obtained from control tassels. Moreover, the backcross [B79 (Mo17xB79)] sporophytic population obtained using pollen from the treated tassels was more tolerant (as indicated by the fresh weight of plants grown in the presence of the herbicide) than was the control backcross population. The two populations did not differ when grown without the herbicide. These findings indicate that genes controlling the reaction to acetochlor in maize have haplodiploid expression; consequently, pollen selection can be applied for improving plant tolerance.  相似文献   

6.
Summary Chloroplast differentiation in relation to increasing leaf age has been investigated in maize plants exposed to continuous illumination. In the young leaves the proplastids differentiate into chloroplasts containing well organized grana as well as prolamellar bodies. In the older leaves, while plastids differentiate, the prolamellar bodies are no longer detectable. Chloroplast ability to build up prolamellar bodies does not seems so much a light dependent process as it is affected by cell differentiation rate.Supported by a grant of C.N.R.  相似文献   

7.
8.
Aluminium tolerance in maize is mainly due to more efficient Al exclusion. Nonetheless, even in tolerant varieties Al can gain access into the cells. Detoxification by binding to strong organic ligands should therefore play a role also in plants with high Al exclusion capacity. To test this hypothesis in this study the concentrations of soluble, free and bound, phenolics were analyzed in roots of two maize varieties differing in Al tolerance. Exposure for 24 h to 50 μM Al in nutrient solution strongly inhibited root elongation in the sensitive variety 16 × 36, but not in the Al-tolerant variety Cateto. Cateto accumulated about half the concentration of Al in roots than 16 × 36 (analysis performed after root desorption with citrate). Roots of Al-tolerant Cateto contained higher concentrations of caffeic acid, catechol and catechin than roots of the sensitive variety. Exposure to Al induced the accumulation of taxifolin in roots of both varieties. However, Al-tolerant Cateto accumulated about twice the concentration than Al-sensitive 16 × 36 of this pentahydroxyfavonol. The molar ratio for phenolics with catecholate groups to Al was about unity in roots of Cateto, while in those of 16 × 36 the ratio was ten times lower. Both the fact that these phenolics are strong ligands for Al and their high antioxidant and antiradical activity suggest that these compounds may provide protection against the Al fraction that is able to surpass the exclusion mechanisms operating in the tolerant maize variety.  相似文献   

9.
10.
11.
In order to assess the efficiency of male gametophytic selection (MGS) for crop improvement, pollen selection for tolerance to herbicide was applied in maize. The experiment was designed to test the parallel reactivity to Alachlor of pollen and plants grown in controlled conditions or in the field, the response to pollen selection in the sporophytic progeny, the response to a second cycle of MGS, and the transmission of the selected trait to the following generations. The results demonstrated that pollen assay can be used to predict Alachlor tolerance under field conditions and to monitor the response to selection. A positive response to selection applied to pollen in the sporophytic progeny was obtained in diverse genetic backgrounds, indicating that the technique can be generally included in standard breeding programs; the analysis of the data produced in a second selection cycle indicated that the selected trait is maintained in the next generation.  相似文献   

12.
13.
14.
We examined the chloroplast DNA (cpDNA) from plastids obtained from wild type maize (Zea mays L.) seedlings grown under different light conditions and from photosynthetic mutants grown under white light. The cpDNA was evaluated by real-time quantitative PCR, quantitative DNA fluorescence, and blot-hybridization following pulsed-field gel electrophoresis. The amount of DNA per plastid in light-grown seedlings declines greatly from stalk to leaf blade during proplastid-to-chloroplast development, and this decline is due to cpDNA degradation. In contrast, during proplastid-to-etioplast development in the dark, the cpDNA levels increase from the stalk to the blade. Our results suggest that DNA replication continues in the etioplasts of the upper regions of the stalk and in the leaves. The cpDNA level decreases rapidly, however, after dark-grown seedlings are transferred to light and the etioplasts develop into photosynthetically active chloroplasts. Light, therefore, triggers the degradation of DNA in maize chloroplasts. The cpDNA is retained in the leaf blade of seedlings grown under red, but not blue light. We suggest that light signaling pathways are involved in mediating cpDNA levels, and that red light promotes replication and inhibits degradation and blue light promotes degradation. For five of nine photosynthetic mutants, cpDNA levels in expanded leaves are higher than in wild type, indicating that nuclear genotype can affect the loss or retention of cpDNA.  相似文献   

15.
16.
17.
Summary The seed storage proteins of maize (Zea mays L.) are synthesized during endosperm development on membrane-bound polyribosomes. These proteins, collectively called zeins, are translocated into the lumen of the rough endoplasmic reticulum, where they assemble into protein bodies. Protein body formation in normal genotypes occurs via an ordered deposition of the various types of zeins, and leads to the formation of spherical structures with a diameter of about 1 m. These structures consist of a central core that contains predominantly -zein; this central region is surrounded by a peripheral layer of - and -zeins, and the entire structure is bounded by rough endoplasmic reticulum.In the endosperm mutant floury-2 the levels of all classes of zeins are reduced; these kernels exhibit an opaque phenotype instead of the vitreous phenotype observed in normal genotypes. In contrast to the discrete, spherical protein bodies which are formed in normal maize endosperm, the protein bodies within floury-2 endosperm are irregular and the zeins are disorganized; patches of - and -zeins occur within irregularly lobed clusters of -zein within the lumen of the rough endoplasmic reticulum. The implications of this aberrant distribution are discussed, both with respect to protein body development and kernel characteristics.Abbreviations BSA bovine serum albumin - DAP days after pollination - IgG immunoglobulin G  相似文献   

18.
19.
Zandomeni K  Schopfer P 《Protoplasma》1994,182(3-4):96-101
Summary Plants respond to mechanical stress by adaptive changes in growth. Although this phenomenon is well established, the mechanism of the perception of mechanical forces by plant cells is not yet known. We provide evidence that the cortical microtubules sub-adjacent to the growth-controlling outer epidermal cell wall of maize coleoptiles respond to mechanical extension and compression by rapidly reorientating perpendicular to the direction of the effective force change. These findings shed new light on many seemingly unrelated observations on microtubule reorientation by growth factors such as light or phytohormones. Moreover, our results suggest that microtubules associated with the plasma membrane are causally involved in sensing vectorial forces and provide vectorial information to the cell that can be utilized in the orientation of plant organ expansion.Abbreviation MT cortical microtubule  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号