首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
Full-sib family selection for rate (WP) or efficiency (WP/F) of protein gain in rats from 3 to 9 weeks of age was applied for five generations. Three rats per litter were killed to estimate carcass protein. Standardized response/cumulative selection for WP was.19±.10 for WP,.28±.10 for 3- to 9-week gain,.28±.08 for 9-week weight,.16±.08 for litter size,.22±.12 for skinning loss and -.07±.09 for fraction of protein in the live weight. Response from selection for WP/F was.18±.16 for WP/F,.20±.11 for WP,.21±.11 for weight gain,.16±.11 for 3-week weight,.21±.10 for 9-week weight, but negligible for skinning loss or body protein. Response to WP/F selection was extremely variable among generations, associated with generation differences in weight and composition at 9 weeks. Estimates of heritability from offspring-midparent regression were.20±.12 for WP and.24±.08 for WP/F. Estimates of genotype-generation environment interaction were large for growth, feed intake and skinning loss. Maternal effects were large for weaning weight, fraction of body protein and WP. Sire component genetic correlations were 1.08±.13 for WP with total gain,.92±.08 for WP/F with gross efficiency and.29±.25 for WP with WP/F. A partitional calorimeter was used to evaluate heat production of rats. Lines differed in average heat loss but not in heat loss per unit actual or metabolic weight. Response to selection has been steady for WP but probably could be improved by selecting for WP/F at a constant weight rather than a constant age.  相似文献   

2.
Eisen EJ 《Genetics》1978,88(4):781-811
Individual selection based on female performance only was conducted in four lines of mice: L+ for increased litter size, W+ for increased 6-week body weight, L-W+ for a selection index aimed at decreasing litter size and increasing 6-week body weight and L+W- for a selection index aimed at increasing litter size and decreasing 6-week body weight. A fifth line (K) served as an unselected control. All litters were standardized to eight mice at one day of age. Expected heritability was based on twice the regression of offspring on dam (h2d), which contains additive genetic variance due to direct (σ2Ao) and maternal (σ2Am) effects and their covariance (σAoAm). Responses and correlated responses were measured either deviated (method 1) or not deviated (method 2) from the control line. Realized heritabilities (h2R) for litter size were 0.19 ± 0.04 (1) and 0.16 ± 0.03 (2), which were similar to h 2d of 0.17 ± 0.04. The h2 R for 6-week body weight of 0.55 ± 0.07 (1) and 0.44 ± 0.07 (2) agreed with h2d of 0.42 ± 0.02. Realized genetic correlations (r*GR) between litter size and 6-week body weight calculated from the double-selection experiment were 0.52 ± 0.10 (1) and 0.52 ± 0.13 (2), which were not significantly different from the base population estimate of r* Gd = 0.63 ± 0.14. Divergence (L-W + minus L+W-) in the antagonistic index selection lines was 0.21 ± 0.01 index units (I = 0.305 PW - 0.436 PL, where P W and PL are the phenotypic values for 6-week body weight and litter size, respectively.). The h2 R of index units of 0.14 ± 0.02 calculated from divergence agreed with h2d of 0.14 ± 0.04. Divergences in litter size (-0.19 ± 0.07) and 6-week body weight (0.46 ± 0.10) were in the expected direction. Antagonistic index selection yielded about one-half the expected divergence in litter size, while divergence in 6-week body weight was only slightly less than expected. Realized genetic correlations indicated that litter size, 6-week body weight and index units each showed positive pleiotropy with 3-week body weight, postweaning gain and weight at vaginal introitus and negative pleiotropy with age at vaginal introitus. Sex ratio and several components of fitness (days from joining to parturition, percent fertile matings and percent perinatal survival) did not change significantly in the selected lines.  相似文献   

3.
Summary Mass selection for increased body weight gain from 21 to 42 days of age was practiced for 12 generations in four replicate lines of ICR-albino mice. Response to selection averaged 0.56±0.03 g. per generation. This response represented an increase of 7.0 genetic standard deviation units and 3.4 phenotypic standard deviation units in 12 generations. The realized heritability pooled over the four replicates was 0.24±0.02. Sizable positive correlated responses were found for 42 and 56-day weight and gain from 42 to 56 days. Much smaller positive correlated responses were noted for 12-day litter weight and 12-day individual weight. Neither litter size nor weaning weight were significantly altered by selection for increased postweaning gain. Reproductive efficiency measured as percent fertile matings declined significantly in the selected lines.Supported in part by a grant from the Virginia Agricultural Foundation.Published with the approval of the Director of the Research Division, Virginia Polytechnic Institute and State University.  相似文献   

4.
Genetic correlations between performance traits with meat quality and carcass traits were estimated on 6,408 commercial crossbred pigs with performance traits recorded in production systems with 2,100 of them having meat quality and carcass measurements. Significant fixed effects (company, sex and batch), covariates (birth weight, cold carcass weight, and age), random effects (additive, litter and maternal) were fitted in the statistical models. A series of pairwise bivariate analyses were implemented in ASREML to estimate heritability, phenotypic, and genetic correlations between performance traits (n = 9) with meat quality (n = 25) and carcass (n = 19) traits. The animals had a pedigree compromised of 9,439 animals over 15 generations. Performance traits had low-to-moderate heritabilities (±SE), ranged from 0.07±0.13 to 0.45±0.07 for weaning weight, and ultrasound backfat depth, respectively. Genetic correlations between performance and carcass traits were moderate to high. The results indicate that: (a) selection for birth weight may increase drip loss, lightness of longissimus dorsi, and gluteus medius muscles but may reduce fat depth; (b) selection for nursery weight can be valuable for increasing both quantity and quality traits; (c) selection for increased daily gain may increase the carcass weight and most of the primal cuts. These findings suggest that deterioration of pork quality may have occurred over many generations through the selection for less backfat thickness, and feed efficiency, but selection for growth had no adverse effects on pork quality. Low-to-moderate heritabilities for performance traits indicate that they could be improved using traditional selection or genomic selection. The estimated genetic parameters for performance, carcass and meat quality traits may be incorporated into the breeding programs that emphasize product quality in these Canadian swine populations.  相似文献   

5.
The genetic trends in fitness (inbreeding, fertility and survival) of a closed nucleus flock of Menz sheep under selection during ten years for increased body weight were investigated to evaluate the consequences of selection for body weight on fitness. A mate selection tool was used to optimize in retrospect the actual selection and matings conducted over the project period to assess if the observed genetic gains in body weight could have been achieved with a reduced level of inbreeding. In the actual selection, the genetic trends for yearling weight, fertility of ewes and survival of lambs were 0.81 kg, –0.00026% and 0.016% per generation. The average inbreeding coefficient remained zero for the first few generations and then tended to increase over generations. The genetic gains achieved with the optimized retrospective selection and matings were highly comparable with the observed values, the correlation between the average breeding values of lambs born from the actual and optimized matings over the years being 0.99. However, the level of inbreeding with the optimized mate selections remained zero until late in the years of selection. Our results suggest that an optimal selection strategy that considers both genetic merits and coancestry of mates should be adopted to sustain the Menz sheep breeding program.  相似文献   

6.
In order to investigate the possibility of using the dwarf gene for egg production, two dwarf brown-egg laying lines were selected for 16 generations on average clutch length; one line (L1) was normally feathered and the other (L2) was homozygous for the naked neck gene NA. A control line from the same base population, dwarf and segregating for the NA gene, was maintained during the selection experiment under random mating. The average clutch length was normalized using a Box-Cox transformation. Genetic variability and selection response were estimated either with the mixed model methodology, or with the classical methods for calculating genetic gain, as the deviation from the control line, and the realized heritability, as the ratio of the selection response on cumulative selection differentials. Heritability of average clutch length was estimated to be 0.42 ± 0.02, with a multiple trait animal model, whereas the estimates of the realized heritability were lower, being 0.28 and 0.22 in lines L1 and L2, respectively. REML estimates of heritability were found to decline with generations of selection, suggesting a departure from the infinitesimal model, either because a limited number of genes was involved, or their frequencies were changed. The yearly genetic gains in average clutch length, after normalization, were estimated to be 0.37 ± 0.02 and 0.33 ± 0.04 with the classical methods, 0.46 ± 0.02 and 0.43 ± 0.01 with animal model methodology, for lines L1 and L2 respectively, which represented about 30% of the genetic standard deviation on the transformed scale. Selection response appeared to be faster in line L2, homozygous for the NA gene, but the final cumulated selection response for clutch length was not different between the L1 and L2 lines at generation 16.  相似文献   

7.
Two lines of Large White pigs of common genetic origin were divergently selected over four years for high and low growth rate during a 6 week post-weaning test period in which all pigs were fed the same total amount of food (80% of estimated ad libitum intake). Genetic parameters and direct and correlated responses in performance and carcass traits were estimated on 2884 pigs with pedigrees comprising a total of 5324 animals, with restricted maximum likelihood and best linear unbiased prediction methods applied to a multi-trait animal model. Estimates of heritability (± SE) were 0.19 ± 0.04 for lifetime daily gain (LDG), 0.16 ± 0.03 for test daily gain (TDG), 0.25 ± 0.04 for ultrasound P2 backfat (UBF) and 0.16 ± 0.03 for food conversion ratio during test (TFC), and 0.15 ± 0.04 for daily carcass weight gain (CDG), 0.43 ± 0.06 for carcass backfat (CFT) and 0.40 ± 0.06 for carcass lean percentage (LEAN). Common litter effects for TDG, UBF and TFC were less than 5% and for LDG, 17% of total phenotypic variance. Genetic correlations between performance and carcass traits were moderately to highly favourable. After four years of divergent selection for growth rate, the selection responses in estimated breeding value (EBV) for TDG were 40.14 and -41.11 g (SED 2.95) for the high and low growth lines, respectively. The regressions of EBV on year of birth, indicate that the annual genetic trend for TDG, was 8.73 g/yr in the high and -8.48 g/yr in the low lines (P < 0.001). Correlated genetic responses in the high and low lines respectively were 5.28 g and -12.40 g (SED 2.09) in LDG, -0.35 mm and 0.56 mm (SED 0.009) in UBF, -0.145 units and 0.185 units (SED 0.012) in TFC, 3.17 g and -10.97 g (SED 1.53) in CDG, -1.13 mm and 1.01 mm (SED 0.155) in CFT and 1.24% and -1.27% (SED 0.150) in LEAN. It was concluded that selection for increased post-weaning daily gain on a ration of fixed amount reduces the age at slaughter and the level of backfat and increases the efficiency of food utilisation, weight and leanness of pig carcasses.  相似文献   

8.
Correlated responses to selection for postweaning gain in mice were studied to determine the influence of population size and selection intensity. Correlated traits measured were three-, six- and eight-week body weights, litter size, twelve-day litter weight, proportion infertile matings and two indexes of reproductive performance. In general, the results agreed with observations made on direct response: correlated responses in the body weight traits and litter size increased as (1) selection intensity increased and (2) effective population size increased. Correlated responses in the body weight traits and litter size were positive in the large population size lines (16 pairs), as expected from the positive genetic correlation between these traits and postweaning gain. However, several negative correlated responses were observed at small population sizes (one and two pairs). Within each level of selection intensity, traits generally associated with fitness tended to decline most in the very small populations (one and two pairs) and in the large populations (16 pairs) for apparently different reasons. The fitness decline at the small effective population sizes was attributable to inbreeding depression. In contrast, it was postulated that the fitness decline at the large effective population size was due to selection moving the population mean for body weight and a trait positively correlated genetically with body weight (i.e., percent body fat) away from an optimum.  相似文献   

9.
Emigh TH 《Genetics》1979,92(1):339-351
The dynamics of a gene in a haploid population can be explained approximately by considering the average reproductive value of the gene. The dynamics of the average reproductive value are similar to those of a gene in a population with nonoverlapping generations with the following modifications: The effective population size, Ne, replaces N; the average mutation rates µ* and ν* replace µ and ν; the average overall selection r*+(T-1)s** replaces s; and time is measured in terms of generations, T. The implications of the average selection coefficient to adaptive life histories are discussed.  相似文献   

10.
E. J. Eisen  B. H. Johnson 《Genetics》1981,99(3-4):513-524
Correlated responses in male reproductive traits were determined at 4, 6 and 8 weeks of age in lines of mice selected for large litter size (L+), large 6-week body weight (W+), large litter size and small body weight (L+W-) and small litter size and large body weight (L-W+), and in an unselected control (K). Concentration of serum testosterone and weights of testes, seminal vesicles, epididymides and adrenal glands increased with age. Line differences in testosterone concentration were not detected. L+ and W+ males exhibited positive correlated responses in testes, epididymides and seminal vescile weights. Testis weight adjusted for body weight was significantly larger for L+ than controls and approached significance for W+. Realized genetic correlation betestis weight and litter size was 0.60 ± 0.04, and the realized partial genetic correlation holding body weight constant was 0.42. Therefore, pleiotropic loci, acting via the hypothalamic-pituitary axis, affect testis weight and litter size independently of body weight. Additionally, genes influencing overall growth have a pleiotropic effect on testis weight and litter size in mice; the realized genetic correlations of body weight with testis weight and with litter size were 0.60 ± 0.03 and 0.52 ± 0.10. Testis weight increased in both L+W- and L-W+ males. The positive correlated response in L+W- may have resulted from changes in frequency of genes controlling reproductive processes; whereas, in L-W+ it could have been the result of changes in the frequency of genes associated with body weight.  相似文献   

11.
Summary A long-term experiment for increasing the traits first day litter size (LS1) and litter weight (LW1) was conducted with two populations for 33 generations. The selection plateau was reached in population DU-C (selection and estrus synchronization (h2 = 0.02±0.01); in population DU-K (selection) the plateau (h2 = 0.05±0.2) was nearly reached. Selection progress per generation was in LS1 b = 0.11±0.02; b = 0.12±0.04 (1st to 18th generation DU-K, DU-C) and b = 0.10±0.03; b = 0.07±0.05 (19th to 33rd generation, DU-K, DU-C) in LW1 b = 0.16±0.04 g; 0.19±0.07 g (DU-K, DU-C) b = 0.20±0.09 g; 0.001±0.09 g (DU-K, DU-C). Reverse and relaxe selection as well as systematic inbreeding was applied for 10 generations. Reverse selection yielded h2 = 0.28±0.11 (R-DU-K) and h2 = 0.17±0.05 (R-DU-C) and showed that there was still additive genetic variance. Relaxe selection did not cause alterations in the selection parameters, whereas inbreeding lead to inbred depressions (b = LS1 = –0.42±0.15; –0.45±0.12; b = LW1 = –1.13±0.20; –0.82±0.18 I-DU-K, I-DU-C). The plateau was based upon the heterozygote advantage. Several methods for overcoming the plateau were applied. A new selective useful variance could be created by crossing the plateau populations (h2 = 0.14±0.04). A short-term progress in overcoming the plateau (1st to 3rd generation) could be obtained by litter size standardization (LS = 388). Tandem selection (selection for body weight — BW42) as well as crossing of inbred strains were not suitable for overcoming the selection plateau. Altering the environmental conditions as a possibility for overcoming the plateau has been discussed.  相似文献   

12.
Summary A short-term selection experiment for increasing the first-day litter size (LS1) and 28-day litter weight (LW28) was conducted with three populations of mice over 8 generations. Different methods of litter size manipulation were used for the populations — in S the litter size was standardized to 8 (4 , 4 ) on the first day, in LA it was adjusted to the average size of all litters born on the same day and NL had the natural litter size. To eliminate temporary environmental effects, a control population was kept in each case. The selection results per generation were, for LS 1 b=0.30 (S, NL) and 0.20 (LA), and for LW28 b=5.62 g (S), 5.26 g (NL), and 4.32 g (LA). The heritability obtained was between 0.18 and 0.13 for LS 1 and from 0.42 to 0.12 for LW28. The populations differed in the correlated responses for body weight parameters (litter weight gain). The implantation rate increased in populations S and NL (b=0.19, 0.37), but not in population LA. Postnatal mortality went down (b=-0.07) and the dam's milk production rose (b=1.11 g) only in population LA. The estimated partial regression coefficient linking body weight at mating (BWM) for the dam and the daughter's litter size showed an effect on the litter size.  相似文献   

13.
The relative efficiency of a reduced index (IR) relative to a full index (IF) was compared in an experiment with Tribolium. The selection objective included pupal length, adult weight, and egg mass. The reduced index was based on pupal length and adult weight, whereas the full index was based on these traits and also on egg mass. There were five generations of selection with four replicates, and a selected proportion of 20%. For each replicate, an unselected control was produced. Responses were significant in the IF and IR lines. Responses for the selection objective differed significantly between lines (p < 0.01). The efficiency of the IR line relative to the IF line was 0.52, similar to the expected efficiency of 0.51. The IF and IR lines did not differ significantly for pupal length nor adult weight, whereas the response for egg mass in the IF line was significantly different from the response in the IR line. Realized heritability was greater in the IF line (0.63 ± 0.05) than in the IR line (0.37 ± 0.16). The deleted trait (egg mass) has high heritability and genetic and phenotypic correlations nearly equal to zero with the other two traits included in the selection criterion. The results show the importance of including index traits with high genetic value that are independent of other traits, and they could be useful in breeding programs simultaneously considering production and reproduction traits with nearly zero correlations between them.  相似文献   

14.
The habitat selection choices that individuals make in response to thermal environments influence both survival and reproduction. Importantly, the way that organisms behaviorally respond to thermal environments depends on the availability and juxtaposition of sites affording tolerable or preferred microclimates. Although, ground nesting birds are especially susceptible to heat extremes across many reproductive stages (i.e., breeding, nesting, brood rearing), the mechanistic drivers of nest site selection for these species are not well established from a thermal perspective. Our goal was to assess nest site selection relative to the configuration of the thermal landscape by quantifying thermal environments available to a ground-nesting bird species inhabiting a climatically stressful environment. Using northern bobwhite (Colinus virginanus) as a model species, we measured black bulb temperature (Tbb) and vegetation parameters at 87 nests, 87 paired sites and 205 random landscape sites in Western Oklahoma during spring and summer 2013 and 2014. We found that thermal space within the study area exhibited differences in Tbb of up to 40°C during peak diurnal heating, resulting in a diverse thermal landscape available to ground-nesting birds. Within this thermally heterogeneous landscape, nest sites moderated Tbb by more than 12°C compared to random landscape sites. Furthermore, successful nests remained on average 6°C cooler than unsuccessful nests on days experiencing ambient temperatures ≥ 39°C. Models of future Tbb associated with 2080 climate change projections indicate that nesting bobwhites will face substantially greater Tbb throughout the landscape for longer durations, placing an even greater importance on thermal choices for nest sites in the future. These results highlight the capacity of landscape features to act as moderators of thermal extremes and demonstrate how thermal complexity at organism-specific scales can dictate habitat selection.  相似文献   

15.
Cornell Control White Leghorn chicks were grown in a common environment to five weeks of age and selected for fast and slow gain in body weight from five to nine weeks of age at two temperatures, 21.1° (cold) and 32.2° (hot), during which time a constant 50% relative humidity was maintained. All lines were tested each generation in both temperature environments. Selection continued for four generations, with a second replicate started six weeks after the first replicate in each generation. In the hot environment, a 20% reduction (104 g) in five-to-nine-week weight gain was found. The responses to selection for fast and slow growth were symmetrical except in the first generation, when an outbreak of bronchitis confounded selection for body weight with selection for disease resistance and allowed little gain in the slow lines. No genotype-by-environment interactions were found, indicating that selection in either direction in either selection temperature produced equal responses in either test temperature. This suggests that any interactions observed between the growth of strains in tropical vs. temperate climates must be due to some difference between these environments other than the temperature differences studied.  相似文献   

16.
Bionomic aspects of Stomoxys calcitrans (Linnaeus, 1758) (Diptera: Muscidae) were studied under laboratory conditions. For this reason, laboratory-rearing techniques were optimized at the National Veterinary School of Toulouse. The colony was maintained at 25 ± 2 °C, 50 ± 10% RH under a 12-hour light cycle and observed daily. The size of each adult cage is 30 x 30 x 30 cm and designed to house about 500-1,000 flies. The average cycle from egg to adult was 19.2 ± 1.7 days. The mean longevity of imagos was 9.3 ± 5.8 days and not significantly different between sexes. Stable flies were split into two groups; the first was fed with blood, honey and water, and the second was fed only with honey and water. The mean weight of a blood meal was 11.1 ± 3.8 mg with no significant differences between males and females. The mean longevity of non-blood fed flies was found to be significantly higher (10.4 ± 3.9 days) than those fed with blood. The maximum lifespan was shorter for non-blood fed males (17 days) and females (18 days) than for those fed with blood (females: 24 days, males: 23 days). Under these laboratory conditions, S. calcitrans rearing was successfully established. In the end, the number of expected generations of S. calcitrans and the net reproduction rate were estimated to be 11.8 generations/year and 16.2 living females per female respectively.  相似文献   

17.
Summary Correlated responses were estimated in each of two replicate lines of mice selected within full-sib families for high (HF) or low (LF) 12-week epididymal fat pad weight as a percentage of body weight (epididymal fat pad percentage), or high (HL) or low (LL) 12-week hind carcass weight as a percentage of body weight (hind carcass percentage). Two replicate control lines (RC) were maintained. Correlated traits were measured in each of the 10 generations of selection. Realized (rG R) and offspring-sire genetic correlations generally were in agreement. In HF and LF, 3–6 week postweaning gain (rG R = 0.36±0.04) and feed intake (rG R = 0.50±0.13) had positive correlated responses, but feed efficiency and feed intake/metabolic body size did not change. Positive correlated responses were found for subcutaneous fat pad percentage, body weight-adjusted subcutaneous fat pad weight and fat percentage in the hind carcass (rG R's were 1.04±0.13, 0.93±0.13 and 0.90±0.08). In the hind carcass, fat-free dry (protein + ash) percentage showed a small negative correlated response, and fat-free dry weight did not change. In HL and LL, the correlated responses for the above traits were generally opposite to those observed in HF and LF. Litter size, percentage of infertile matings, and preweaning mortality showed no consistent correlated responses in any of the lines, but an index of fitness combining the three traits showed a decrease in all four selection treatments.Paper no. 11057 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, 27695-7601. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of the products named, nor criticisms of similar ones not mentioned  相似文献   

18.
This study was designed to reveal any differences in effects of fast created versus total inbreeding on reproduction and body weights in mice. A line selected for large litter size for 124 generations (H) and a control line (K) maintained without selection for the same number of generations were crossed (HK) and used as a basis for the experiment. Within the HK cross, full sib, cousin or random mating were practised for two generations in order to create new inbreeding (IBF) at a fast rate. In the first generation of systematic mating, old inbreeding was regenerated in addition to creation of new inbreeding from the mating design giving total inbreeding (IBT). The number of pups born alive (NBA) and body weights of the animals were then analysed by a model including both IBT and IBF. The IBT of the dam was in the present study found to reduce the mean NBA with -0.48 (± 0.22) (p < 0.05) pups per 10% increase in the inbreeding coefficient, while the additional effect of IBF was -0.42 (± 0.27). For the trait NBA per female mated, the effect of IBT was estimated to be -0.45 (± 0.29) per 10% increase in the inbreeding coefficient and the effect of IBF was -0.90 (± 0.37) (p < 0.05) pups. In the present study, only small or non-significant effects of IBF of the dam could be found on sex-ratio and body weights at three and six weeks of age in a population already adjusted for IBT.  相似文献   

19.
Summary The influence of male-induced early puberty on female reproductive rate was determined in three lines of mice differing in litter size and body weight. The lines originated from a single base population and had undergone 20 generations of selection for the following criteria: large litter size at birth (L+), large litter size and small 6-week body weight (L+W), or small litter size and large 6-week body weight (LW+). Females were paired with a mature intact male of the same line at 3, 5 or 7 weeks of age. Mean mating age, averaged over lines, was 26.5 ± .3, 38.3 ± .3 and 52.7 ± .3 days. Exposure to a mature male accelerated female sexual maturation in each line. When contrasted with their sibs mated at a later age, early-pregnant females from each line exhibited a decline in one or more component of reproductive performance, suggesting that the physiological state of the very young female was not optimum for normal pregnancy. In comparisons of early and later mating ages, all three lines showed a decreased littering rate at first mating, number born alive, and individual birth weight of progeny adjusted for litter size; L+ and L+W mice showed an increased perinatal mortality rate; L+ and LW+ had a reduction in litter size at birth. When the L+, L+W and LW+ lines were compared with an unselected strain and a line selected for high postweaning gain in similar experiments, a genotype by environment interaction was apparent since all lines did not respond in a similar manner to early mating. The line ranking for litter size at birth for each age at male-exposure was L+>L+W>LW+, despite the significant line by age interaction. When litter size was adjusted by covariance for body weight at mating, the significant effects of age at male-exposure and line by age interaction were eliminated. All fertile females were remated after they had weaned their first litter to obtain information on litter size in parity two. Line differences in litter size at birth and number born alive were uniform across parities. An age by parity interaction was evident since the decreased fecundity at younger ages of male exposure in the L+ and LW+ litters of parity one was not evident in parity two. Litter feed efficiency during first parity gestation was defined as litter birth weight divided by either cumulative feed intake of the dam from mating to parturition (GEI) or cumulative feed intake from weaning to parturition (GEII). The ranking of lines for GEI and GEH was L+> L+W>LW+, but when feed efficiency was adjusted for littering rate, L+W and LW+ were not significantly different. With regard to age at mating, the ranking for GEI (7 wk > 5 wk > 3 wk) was reversed from GEII (3 wk >5 wk > 7 wk) and these significant differences were maintained after adjustment for littering rate.Paper No. 6302 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of the products named, nor criticism of similar ones not mentionedOn leave at the Institute of Animal Genetics, West Mains Road, Edinburgh EH9 3JN, Scotland. Supported, in part, by an Underwood Fund Fellowship, Agricultural Research Council, and an Edinburgh University Biological Fellowship in the Department of Genetics  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号