首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Rough microsomes, derived from rough endoplasmic reticulum of rat liver, were studied by electron microscopy after negative staining, to seek further information about the orientation of ribosomal small and large subunits in bound polysomes. Rough microsomal vesicles were fixed with 2% formaldehyde, centrifuged onto electron-microscopic grid membranes, and were then negatively-stained with 2% phosphotungstic acid. In these preparations, viewed with the electron microscope, flattened rough microsomal vesicles with bound polysomes were sometimes discernible, and the individual ribosomes in the polysomes occasionally showed small and large subunits. The small subunits were uniformly oriented toward the inside of the polysomal curve. The large and small subunits appeared to be alongside one another on the membrane, consistent with the orientation that has been described by Unwin and his co-workers. The boundary between the small and large subunits occurred at approximately the same level in the ribosome where inter-ribosomal strands have been described previously in surface views of bound polysomes in positively-stained electron-microscopic tissue sections. This further confirms the identity of the strands as messenger RNA.This work has appeared in abstract form: Christensen AK (1990)  相似文献   

2.
In a medium of high ionic strength, rat liver rough microsomes can be nondestructively disassembled into ribosomes and stripped membranes if nascent polypeptides are discharged from the bound ribosomes by reaction with puromycin. At 750 mM KCl, 5 mM MgCl2, 50 mM Tris·HCl, pH 7 5, up to 85% of all bound ribosomes are released from the membranes after incubation at room temperature with 1 mM puromycin. The ribosomes are released as subunits which are active in peptide synthesis if programmed with polyuridylic acid. The ribosome-denuded, or stripped, rough microsomes (RM) can be recovered as intact, essentially unaltered membranous vesicles Judging from the incorporation of [3H]puromycin into hot acid-insoluble material and from the release of [3H]leucine-labeled nascent polypeptide chains from bound ribosomes, puromycin coupling occurs almost as well at low (25–100 mM) as at high (500–1000 mM) KCl concentrations. Since puromycin-dependent ribosome release only occurs at high ionic strength, it appears that ribosomes are bound to membranes via two types of interactions: a direct one between the membrane and the large ribosomal subunit (labile at high KCl concentration) and an indirect one in which the nascent chain anchors the ribosome to the membrane (puromycin labile). The nascent chains of ribosomes specifically released by puromycin remain tightly associated with the stripped membranes. Some membrane-bound ribosomes (up to 40%) can be nondestructively released in high ionic strength media without puromycin; these appear to consist of a mixture of inactive ribosomes and ribosomes containing relatively short nascent chains. A fraction (~15%) of the bound ribosomes can only be released from membranes by exposure of RM to ionic conditions which cause extensive unfolding of ribosomal subunits, the nature and significance of these ribosomes is not clear.  相似文献   

3.
By a method employing centripetal floatation of membranes away from sedimenting particles, the binding capacity of pyrophosphate/citrate-treated rough membranes at 3o for large ribosomal subunits has been found to be greater than for small subunits. Accurate comparison of the membrane affinity for the 2 subunits is apparently precluded however by greater instability of the small subunit, even in the presence of ribonuclease inhibitor.  相似文献   

4.
Protein synthesis in eukaryotes is mediated by both cytoplasmic and membrane-bound ribosomes. During the co-translational translocation of secretory and membrane proteins, eukaryotic ribosomes dock with the protein conducting channel of the endoplasmic reticulum. An understanding of these processes will require the detailed structure of a eukaryotic ribosome. To this end, we have compared the three-dimensional structures of yeast and rabbit ribosomes at 24 A resolution. In general, we find that the active sites for protein synthesis and translocation have been highly conserved. It is interesting that a channel was visualized in the neck of the small subunit whose entrance is formed by a deep groove. By analogy with the prokaryotic small subunit, this channel may provide a conserved portal through which mRNA is threaded into the decoding center. In addition, both the small and large subunits are built around a dense tubular network. Our analysis further suggests that the nascent chain exit tunnel and the docking surface for the endoplasmic reticulum channel are formed by this network. We surmise that many of these features correspond to rRNA, based on biochemical and structural data.Ribosomal function is critically dependent on the specific association of small and large subunits. Our analysis of eukaryotic ribosomes reveals four conserved inter-subunit bridges with a geometry similar to that found in prokaryotes. In particular, a double-bridge connects the small subunit platform with the interface canyon on the large subunit. Moreover, a novel bridge is formed between the platform and the base of the L1 domain. Finally, size differences between mammalian and yeast large subunit rRNAs have been correlated with five expansion segments that form two large spines and three extended fingers. Overall, we find that expansion segments within the large subunit rRNA have been incorporated at positions distinct from the active sites for protein synthesis and translocation.  相似文献   

5.
Rough microsomes were incubated in an in vitro amino acid-incorporating system for labeling the nascent polypeptide chains on the membrane-bound ribosomes. Sucrose density gradient analysis showed that ribosomes did not detach from the membranes during incorporation in vitro. Trypsin and chymotrypsin treatment of microsomes at 0° led to the detachment of ribosomes from the membranes; furthermore, trypsin produced the dissociation of released, messenger RNA-free ribosomes into subunits. Electron microscopic observations indicated that the membranes remained as closed vesicles. In contrast to the situation with free polysomes, nascent chains contained in rough microsomes were extensively protected from proteolytic attach. By separating the microsomal membranes from the released subunits after proteolysis, it was found that nascent chains are split into two size classes of fragments when the ribosomes are detached. These were shown by column chromatography on Sephadex G-50 to be: (a) small (39 amino acid residues) ribosome-associated fragments and (b) a mixture of larger membrane-associated fragments excluded from the column. The small fragments correspond to the carboxy-terminal segments which are protected by the large subunits of free polysomes. The larger fragments associated with the microsomal membranes depend for their protection on membrane integrity. These fragments are completely digested if the microsomes are subjected to proteolysis in the presence of detergents. These results indicate that when the nascent polypeptides growing in the large subunits of membrane-bound ribosomes emerge from the ribosomes they enter directly into a close association with the microsomal membrane.  相似文献   

6.
Studies on the distribution of isotopieally labeled ribosomal subunits between free and membrane-bound ribosomes from rat liver showed that, upon release of nascent polypeptides in vitro, the small subunits of membrane-bound ribosomes could exchange with small subunits derived from free polysomes. However, under the same conditions, the large subunits of membrane-bound ribosomes did not exchange efficiently with large subunits derived either from free or bound polysomes; instead, the addition of large subunits caused a transfer of microsomal small subunits into a newly formed pool of free monomers.The small subunit exchange required a macromolecular fraction of the cell sap, was stimulated by ATP or GTP, and occurred at low concentrations of magnesium ions.Sodium dodecyl sulfate, polyacrylamide gel electrophoresis revealed close similarities between the protein complement of subunits from free and membrane-bound ribosomes, with the exception of one protein band which was more intense in free large subunits.  相似文献   

7.
The lateral mobility of ribosomes bound to rough endoplasmic reticulum (RER) membranes was demonstrated under experimental conditions. High- salt-washed rough microsomes were treated with pancreatic ribonuclease (RNase) to cleave the mRNA of bound polyribosomes and allow the movement of individual bound ribosomesmfreeze-etch and thin-section electron microscopy demonstrated that, when rough microsomes were treated with RNase at 4 degrees C and then maintained at this temperature until fixation, the bound ribosomes retained their homogeneous distribution on the microsomal surface. However, when RNase- treated rough microsomes were brought to 24 degrees C, a temperature above the thermotropic phase transition of the microsomal phospholipids, bound ribosomes were no longer distributed homogeneously but, instead, formed large, tightly packed aggregates on the microsomal surface. Bound polyribosomes could also be aggregated by treating rough microsomes with antibodies raised against large ribosomal subunit proteins. In these experiments, extensive cross-linking of ribosomes from adjacent microsomes also occurred, and large ribosome-free membrane areas were produced. Sedimentation analysis in sucrose density gradients demonstrated that the RNase treatment did not release bound ribosomes from the membranes; however, the aggregated ribosomes remain capable of peptide bond synthesis and were released by puromycin. It is proposed that the formation of ribosomal aggregates on the microsomal surface results from the lateral displacement of ribosomes along with their attached binding sites, nascent polypeptide chains, and other associated membrane proteins; The inhibition of ribosome mobility after maintaining rough microsomes at 4 degrees C after RNase, or antibody, treatment suggests that the ribosome binding sites are integral membrane proteins and that their mobility is controlled by the fluidity of the RER membrane. Examination of the hydrophobic interior of microsomal membranes by the freeze-fracture technique revealed the presence of homogeneously distributed 105-A intramembrane particles in control rough microsomes. However, aggregation of ribosomes by RNase, or their removal by treatment with puromycin, led to a redistribution of the particles into large aggregates on the cytoplasmic fracture face, leaving large particle-free regions.  相似文献   

8.
9.
Isolated leaf cells from soybean (Glycine max) incorporate [35S]methionine into protein at a linear rate for at least 5h. Analysis of the products of incorporation by one-dimensional and two-dimensional polyacrylamide gel electrophoresis shows that major products are the large and small subunits of the chloroplast enzyme, ribulose bisphosphate carboxylase. The large subunit is synthesized by chloroplast ribosomes and the small subunit by cytoplasmic ribosomes. Addition of chloramphenicol to the cells reduces incorporation into the large subunit without affecting incorporation into the products of cytoplasmic ribosomes. Addition of cycloheximide or 2-(4-methyl-2,6-dinitroanilino)-N-methylpropionamide stops incorporation into the small subunit, but large subunit continues to be made for at least 4 h. For accurate estimates of incorporation into the large subunit, it is essential to use two-dimensional gel electrophoresis, because the large subunit region on one-dimensional gels is contaminated with the products of cytoplasmic ribosomes. Newly synthesized large subunits continue to enter complete molecules of ribulose bisphosphate carboxylase in the absence of small subunit synthesis. These results suggest that, in contrast to the situation in algal cells, the synthesis of the two subunits of ribulose bisphosphate carboxylase in the different subcellular compartments of higher plant cells is not tightly coupled over short time periods, and that a pool of small subunits exists in these cells. The results are disucssed in relation to possible mechanisms for the integration of the synthesis of the large and small subunits of ribulose bisphosphate carboxylase.  相似文献   

10.
Well-ordered three-dimensional crystals of 70 S ribosomes and 30 S ribosomal subunits from extremely thermophilic bacteria Thermus thermophilus have been obtained. Positively stained thin sections of the crystals have been analyzed by electron microscopy. Redissolved crystalline ribosomes and small ribosomal subunits reveal sedimentation constants of 70 S and 30 S, respectively, and are functionally active in the poly(U)-system.  相似文献   

11.
The behavior of E. coli ribosomes during sedimentation on sucrose gradients is predicted under a variety of conditions by computer simulations. Since numerous recent kinetic studies indicate equilibration in times short compared to the time of sedimentation, these simulations assume that the system attains local reaction equilibrium at every point in the gradient at all times. For any type of homogeneous equilibrating ribosome population, governed by a single formation constant at one atmosphere pressure for 70S couples, no more than two clearly defined zones will be resolved, although the presence of large dissociating effects due to pressure gradients in high speed experiments will spread the subunit zone. Normally the pattern will consist of a 30S zone and a so-called “70S” zone, which is in reality a mixture of 70S couples and 30S and 50S subunits in local equilibrium. The greater the dissociation into subunits, the more the “70S” zone will be slowed below the nominal rate of 70 Svedberg units. If ribosomes have been collected from the “70S” zone in several successive cycles of purification, the repeated deletion of resolved 30S subunits can result in a preparation with so large a molar excess of 50S subunits that the ensuing sucrose density gradient sedimentation pattern may exhibit a “70S” zone followed by zone of 50S subunits, insteadof a zone of 30S subunits. Our most important conclusion is that whenever a well-resolved 50S zone is present in a sucrose density gradient sedimentation experiment on E. coli ribosomes, in addition to a 30S and a “70S” zone, under conditions where ribosomes and subunits should be in reversible equilibrium, the preparation must be microheterogeneous, containing a mixture of “tight” and “loose” couples. Moreover in such cases the content of large subunits in the 50S zone must be derived entirely from “loose” couples whereas the 30S zone must contain small subunits derived from both “tight” and “loose” couples. Sedimentation patterns predicted for various mixtures of “tight” and “loose” couples display all the major characteristics of published experimental patterns for E. coli ribosomes, including the partial or complete resolution into three zones, depending on rotor velocity and level of Mg2+.  相似文献   

12.
(1) The content of DNA, RNA and of proteins of Brachionus plicatilis was estimated and the distribution of RNA and of proteins of different homogenate fractions characterised. (2) Ribosomes were isolated from Brachionus plicatilis homogenates and were characterised by gradient centrifugation. (3) Unlike the RNA content, the yield of ribosomes from different homogenate fractions is strongly dependent on the concentration of Mg2+-ions in the buffers. Likewise resuspension of ribosomes is more effective in Mg2+- (or Ca2+-) free buffers. (4) Dissociation of ribosomes was brought about by centrifugation of ribosomes in gradients containing less than 4 mM Mg2+. In this case, beside the peaks of subunits, a peak in the region of 80 S remained which vanished only under conditions destroying ribosomal material altogether. (5) Proteins were isolated from ribosomal subunits and from undissociated ribosomes and were characterised by two-dimensional gel electrophoresis techniques. Patterns of 51 spots were regularly obtained from large subunits and patterns of 41 spots from small subunits. The undissociated ribosomes showed 83 spots, most of which could be attributed to the large or the small subunit. The ribosomal proteins have molecular masses of between 11000 and 56000 Da, while the molecular mass of the total protein content of Brachionus ribosomes was estimated to be 1.8 ±0.5) ×106 Da.  相似文献   

13.
Mild ribonuclease treatment of the membrane fraction of P3K cells released three types of membrane-bound ribosomal particles: (a) all the newly made native 40S subunits detected after 2 h of [3H]uridine pulse. Since after a 3-min pulse with [35S]methionine these membrane native subunits appear to contain at least sevenfold more Met-tRNA per particle than the free native subunits, they may all be initiation complexes with mRNA molecules which have just become associated with the membranes; (b) about 50% of the ribosomes present in polyribosomes. Evidence is presented that the released ribosomes carry nascent chains about two and a half to three times shorter than those present on the ribosomes remaining bound to the membranes. It is proposed that in the membrane-bound polyribosomes of P3K cells, only the ribosomes closer to the 3' end of the mRNA molecules are directly bound, while the latest ribosomes to enter the polyribosomal structures are indirectly bound through the mRNA molecules; (c) a small number of 40S subunits of polyribosomal origin, presumably initiation complexes attached at the 5' end of mRNA molecules of polyribosomes. When the P3K cells were incubated with inhibitors acting at different steps of protein synthesis, it was found that puromycin and pactamycin decreased by about 40% the proportion of ribosomes in the membrane fraction, while cycloheximide and anisomycin had no such effect. The ribosomes remaining on the membrane fraction of puromycin-treated cells consisted of a few polyribosomes, and of an accumulation of 80S and 60S particles, which were almost entirely released by high salt treatment of the membranes. The membrane-bound ribosomes found after pactamycin treatment consisted of a few polyribosomes, with a striking accumulation of native 60S subunits and an increased number of native 40S subunits. On the basis of the observations made in this and the preceding papers, a model for the binding of ribosomes to membranes and for the ribosomal cycle on the membranes is proposed. It is suggested that ribosomal subunits exchange between free and membrane-bound polyribosomes through the cytoplasmic pool of free native subunits, and that their entry into membrane-bound ribosomes is mediated by mRNA molecules associated with membranes.  相似文献   

14.
Unique, three-dimensional structures have been determined for Escherichia coli small subunits, large Subunits and monomeric ribosomes by electron microscopy of ribosomes and subunits and of antibody-labeled ribosomes and subunits.Small subunits orient on the carbon substrate with their long axes parallel to the plane of the carbon. In these projections the subunit is divided into a onethird and a two-thirds portion by a region of accumulated negative stain similar to that observed in eukaryotic small subunits. Four characteristic views, or projections, are readily recognized and correspond to orientations of approximately ?40 °, 0 °, +50 ° and +110 ° about the long axis of the subunit. Three of these have been described (Lake et al., 1974a; Lake & Kahan, 1975). The two most distinctive views are a quasi-symmetric view (0 °) that is characterized by an approximate line of mirror symmetry that coincides with the long axis of the subunit, and an asymmetric view (110 °) that is characterized by a concave and a convex subunit boundary. In the asymmetric projection, a platform or ledge is viewed “face-on”. The platform is attached to the lower two-thirds of the subunit just below the one-third/two-thirds partition. It is separated from the upper one-third of the subunit at the level of the partition and above the partition it forms a cleft approximately 30 to 40 Å wide, which has been suggested as the site of the codon-anticodon interaction (Lake & Kahan, 1975).Four characteristic views are presented for the large subunit. The most prominent of these, the quasi-symmetric view (θ = 90 °, φ = 0 °), is distinguished by a central protuberance located on a line of approximate mirror symmetry. The central protuberance is surrounded by projecting features inclined at about 50 ° on both sides of it. The smaller of these projections is rod-like, about 40 Å wide and approximately 100 Å long. The feature projecting from the other side of the central protuberance is shorter, more blunt and wider than the rod-like appendage. In another view approximately orthogonal to the quasi-symmetric projection, the asymmetric projection (θ = 10 °, φ = 90 °), the subunit profile is distinguished by a convex lower edge and an upper boundary which is indented by a notch. The subunit is separated, in projection, by the notch into two unequal regions. The smaller region comprises about 20% of the total projected density and consists of the central protuberance and the rod-like appendage.The profiles observed in fields of monomeric 70 S ribosomes result from superpositions of the 30 S and 50 S profiles. Two major views are observed, an overlap and a non-overlap view, corresponding to whether or not the profile of the small subunit overlaps that of the large subunit in the 70 S profile. The small subunit is oriented in the monomeric ribosome so that the platform is in contact with the large subunit. The central protuberance of the large subunit overlaps part of the upper one-third of the small subunit in the overlap view of 70 S ribosomes, although in three dimensions they are probably separated by 30 to 50 Å. A region of the small subunit comprising the platform, the cleft and part of the upper one-third, suggested to be the approximate binding site of IF3 and IF2 (Lake & Kalian, 1975), is located at the interface between the large and small subunits, in a region of the small subunit that is close to, but probably not in physical contact with, the large subunit.  相似文献   

15.
The Sec61p complex forms the core element of the protein translocation complex (translocon) in the rough endoplasmic reticulum (rough ER) membrane. Translating or nontranslating ribosomes bind with high affinity to ER membranes that have been stripped of ribosomes or to liposomes containing purified Sec61p. Here we present evidence that the beta subunit of the complex (Sec61beta) makes contact with nontranslating ribosomes. A fusion protein containing the Sec61beta cytoplasmic domain (Sec61beta(c)) prevents the binding of ribosomes to stripped ER-derived membranes and also binds to ribosomes directly with an affinity close to the affinity of ribosomes for stripped ER-derived membranes. The ribosome binding activity of Sec61beta(c), like that of native ER membranes, is sensitive to high salt concentrations and is not based on an unspecific charge-dependent interaction of the relatively basic Sec61beta(c) domain with ribosomal RNA. Like stripped ER membranes, the Sec61beta(c) sequence binds to large ribosomal subunits in preference over small subunits. Previous studies have shown that Sec61beta is inessential for ribosome binding and protein translocation, but translocation is impaired by the absence of Sec61beta, and it has been proposed that Sec61beta assists in the insertion of nascent proteins into the translocation pore. Our results suggest a physical interaction of the ribosome itself with Sec61beta; this may normally occur alongside interactions between the ribosome and other elements of Sec61p, or it may represent one stage in a temporal sequence of binding.  相似文献   

16.
Selective effects of lincomysin and cycloheximide in detached shoots of Pisum sativum on the synthesis of photosystem I and II proteins, and a chloroplast membrane protein of molecular weight 32000, confirm results obtained from studies of protein synthesis by isolated chloroplasts. A model is proposed in which one role of chloroplast ribosomes is to synthesize membrane proteins required for the immobilization of chloroplast components, such as photosystem I protein, which are synthesized by cytoplasmic ribosomes. 2-(4-Methyl-2,6-dinitroanilino)-N-methylpropionamide rapidly inhibits the synthesis of both the large and small subunits of Fraction I protein in greening detached pea shoots. This observation can be reconciled with the site of synthesis of the large subunit being in the chloroplast by a model which proposes that the small subunit is a positive initiation factor for the synthesis or translation of the messenger RNA for the large subunit.  相似文献   

17.
1. It has been shown by Datema et al. (Datema, R., Agsteribbe, E. and Kroon, A.M. (1974) Biochim. Biophys. Acta 335, 386--395) that Neurospora mitochondria isolated in a Mg2+-containing medium (or after homogenization of the mycelium in this medium and subsequent washing of the mitochondria in EDTA-containing medium) possess 80-S ribosomes; mitochondria homogenized and isolated in EDTA medium yield 73-S ribosomes. The ribosomal proteins of the subunits of 80-S and 73-S ribosomes were compared by two-dimensional electrophoresis. The protein patterns of the large, as well as of the small subunits are very similar but not completely identical; the most conspicuous difference is that the large subunit of 80 S contains about eight more proteins than the large subunit of 73 S. 2. The contamination by Neurospora cytoplasmic 77-S ribosomes in the 80-S preparations, if present, is only minor. 3. Neurospora cytoplasmic ribosomes contain 31 proteins in the large, and 21 proteins in the small subunit. 4. Neurospora 80- mitochondrial ribosomes contain 39 proteins in the large, and 30 proteins in the small subunit 30 proteins. 5. Rat liver mitochondrial ribosomes contain 40 proteins in the large and at least 30 proteins in the small subunit. About 50% of these proteins has an isoelectric point below pH 8.6. 6. The pattern of Paracoccus denitrificans is very similar to that of other bacterial ribosomes, the large subunit contains 29, the small subunit 18 proteins.  相似文献   

18.
Summary The surface topography of the intact 70S ribosome and free 30S and 50S subunits from Bacillus stearothermophilus strain 2184 was investigated by lactoperoxidase-catalyzed iodination. Two-dimensional polyacrylamide gel electrophoresis was employed to separate ribosomal proteins for analysis of their reactivity. Free 50S subunits incorporated about 18% more 125I than did 50S subunits derived from 70S ribosomes, whereas free 30S subunits and 30S subunits derived from 70S ribosomes incorporated similar amounts of 125I. Iodinated 70S ribosomes and subunits retained 62–78% of the protein synthesis activity of untreated particles and sedimentation profiles showed no gross conformational changes due to iodination. The proteins most reactive to enzymatic iodination were S4, S7, S10 and Sa of the small subunit and L2, L4, L5/9, L6 and L36 of the large subunit. Proteins S2, S3, S7, S13, Sa, L5/9, L10, L11 and L24/25 were labeled substantially more in the free subunits than in the 70S ribosome. Other proteins, including S5, S9, S12, S15/16, S18 and L36 were more extensively iodinated in the 70S ribosome than in the free subunits. The locations of tyrosine residues in some homologus ribosomal proteins from B. stearothermophilus and E. coli are compared.  相似文献   

19.
Two-dimensional crystalline sheets of the large ribosomal subunit from Bacillus stearothermophilus have been obtained using a slightly modified procedure to that for growing three-dimensional crystals of the same material. The crystalline subunits are packed within monolayers in a relatively small unit cell, the dimensions of which are closely related to those observed for two forms of the three-dimensional crystals. The packing symmetry is p121, and the optical diffraction patterns of micrographs of negatively stained crystals extend to approximately 3.0 nm.  相似文献   

20.
The catalytic site of the ribosome, the peptidyl transferase centre, is located on the large (50S in bacteria) ribosomal subunit. On the basis of results obtained with small substrate analogues, isolated 50S subunits seem to be less active in peptide bond formation than 70S ribosomes by several orders of magnitude, suggesting that the reaction mechanisms on 50S subunits and 70S ribosomes may be different. Here we show that with full-size fMet-tRNA(fMet) and puromycin or C-puromycin as peptide donor and acceptor substrates, respectively, the reaction proceeds as rapidly on 50S subunits as on 70S ribosomes, indicating that the intrinsic activity of 50S subunits is not different from that of 70S ribosomes. The faster reaction on 50S subunits with fMet-tRNA(fMet), compared with oligonucleotide substrate analogues, suggests that full-size transfer RNA in the P site is important for maintaining the active conformation of the peptidyl transferase centre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号