首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Converging evidence indicates that white adipose tissue (WAT) is innervated by the sympathetic nervous system (SNS) based on immunohistochemical labeling of a SNS marker (tyrosine hydroxylase [TH]), tract tracing of WAT sympathetic postganglionic innervation, pseudorabies virus (PRV) transneuronal labeling of WAT SNS outflow neurons, and functional evidence from denervation studies. Recently, WAT para-SNS (PSNS) innervation was suggested because local surgical WAT sympathectomy (sparing hypothesized parasympathetic innervation) followed by PRV injection yielded infected cells in the vagal dorsomotor nucleus (DMV), a traditionally-recognized PSNS brain stem site. In addition, local surgical PSNS WAT denervation triggered WAT catabolic responses. We tested histologically whether WAT was parasympathetically innervated by searching for PSNS markers in rat, and normal (C57BL) and obese (ob/ob) mouse WAT. Vesicular acetylcholine transporter, vasoactive intestinal peptide and neuronal nitric oxide synthase immunoreactivities were absent in WAT pads (retroperitoneal, epididymal, inguinal subcutaneous) from all animals. Nearly all nerves innervating WAT vasculature and parenchyma that were labeled with protein gene product 9.5 (PGP9.5; pan-nerve marker) also contained TH, attesting to pervasive SNS innervation. When Siberian hamster inguinal WAT was sympathetically denervated via local injections of catecholaminergic toxin 6-hydroxydopamine (sparing putative parasympathetic nerves), subsequent PRV injection resulted in no central nervous system (CNS) or sympathetic chain infections suggesting no PSNS innervation. By contrast, vehicle-injected WAT subsequently inoculated with PRV had typical CNS/sympathetic chain viral infection patterns. Collectively, these data indicate no parasympathetic nerve markers in WAT of several species, with sparse DMV innervation and question the claim of PSNS WAT innervation as well as its functional significance.  相似文献   

2.
Obesity, defined as an excess of adipose tissue that adversely affects health, is a major cause of morbidity and mortality. However, to date, understanding the structure and function of human adipose tissue has been limited by the inability to visualize cellular components due to the innate structure of adipocytes, which are characterized by large lipid droplets. Combining the iDISCO and the CUBIC protocols for whole tissue staining and optical clearing, we developed a protocol to enable immunostaining and clearing of human subcutaneous white adipose tissue (WAT) obtained from individuals with severe obesity. We were able to perform immunolabelling of sympathetic nerve terminals in whole WAT and subsequent optical clearing by eliminating lipids to render the opaque tissue completely transparent. We then used light sheet confocal microscopy to visualize sympathetic innervation of human WAT from obese individuals in a three-dimensional manner. We demonstrate the visualization of sympathetic nerve terminals in human WAT. This protocol can be modified to visualize other structures such as blood vessels involved in the development, maintenance and function of human adipose tissue in health and disease.  相似文献   

3.
Histochemistry and electron microscopy were used to study the adrenergic innervation of subcutaneous adipose tissue in fetal pigs. Adrenergic innervation was present around arteries, arterioles, and adipocyte-associated capillaries. Nerve fibers were infrequently observed around veins, venules, and adipocytes. Ultrastructural features of nerves included mitochondria, clear synaptic vesicles, and a small number of vesicles with a core of electron-dense material. Innervation of adipose tissue was similar in 70-, 90-, and 110-day-old fetuses. Examination of fetuses decapitated at 45 days of gestation and removed at 110 days showed that adrenergic innervation was absent in adipose tissue of decapitated fetuses. Adrenergic innervation was also absent in adipose tissue from fetuses hypophysectomized at 72-73 days of gestation and examined at 110 days. These data indicate that fetal porcine adipose tissue may be under neural control by day 70 of gestation. Furthermore, an intact pituitary is necessary for the development of adrenergic innervation in fetal adipose tissue.  相似文献   

4.
White adipose tissue (WAT) is innervated by the sympathetic nervous system (SNS), and the central origins of this innervation have been demonstrated for inguinal and epididymal WAT (iWAT and eWAT, respectively) using a viral transneuronal tract tracer, the pseudorabies virus (PRV). Although the more established role of this sympathetic innervation of WAT is as a major stimulator of lipid mobilization, this innervation also inhibits WAT fat cell number (FCN); thus, local denervation of WAT leads to marked increases in WAT mass and FCN. The purpose of this study was to extend our understanding of the SNS regulation of FCN using neuroanatomical and functional analyses. Therefore, we injected PRV into retroperitoneal WAT (rWAT) to compare the SNS outflow to this pad from what already is known for iWAT and eWAT. In addition, we tested the ability of local unilateral denervation of rWAT or iWAT to promote increases in WAT mass and FCN vs. their contralateral neurally intact counterparts. Although the overall pattern of innervation was more similar than different for rWAT vs. iWAT or eWAT, its SNS outflow appeared to involve more neurons in the suprachiasmatic and solitary tract nuclei. Denervation produced significant increases in WAT mass and FCN for both iWAT and rWAT, but FCN was increased significantly more in iWAT than in rWAT. These data suggest differences in origins of the sympathetic outflow to WAT and functional differences in the WAT SNS innervation that could contribute to the differential propensity for fat cell proliferation across WAT depots in vivo.  相似文献   

5.

Background

The higher prevalence of obesity-related metabolic disease in males suggests that female sex hormones provide protective mechanisms against the pathogenesis of metabolic syndrome. Because browning of white adipose tissue (WAT) is protective against obesity-related metabolic disease, we examined sex differences in β3-adrenergic remodeling of WAT in mice.

Methods

Effects of the β3-adrenergic receptor agonist CL316,243 (CL) on browning of white adipose tissue were investigated in male and female C57BL mice. The role of ovarian hormones in female-specific browning was studied in control female C57BL mice and mice with ovarian failure induced by 4-vinylcyclohexene diepoxide treatment for 15 days.

Results

We found that treatment with CL-induced upregulation of brown adipocyte markers and mitochondrial respiratory chain proteins in gonadal WAT (gWAT) of female mice, but was without effect in males. In contrast, CL treatment was equally effective in males and females in inducing brown adipocyte phenotypes in inguinal WAT. The tissue- and sex-specific differences in brown adipocyte recruitment were correlated with differences in sympathetic innervation, as determined by tyrosine hydroxylase immunostaining and western blotting. Levels of the neurotrophins NGF and BDNF were significantly higher in gWAT of female mice. CL treatment significantly increased NGF levels in gWAT of female mice but did not affect BDNF expression. In contrast, estradiol treatment doubled BDNF expression in female adipocytes differentiated in vitro. Ovarian failure induced by 4-vinylcyclohexene diepoxide treatment dramatically reduced BDNF and TH expression in gWAT, eliminated induction of UCP1 by CL, and reduced tissue metabolic rate.

Conclusions

Collectively, these data demonstrate that female mice are more responsive than males to the recruitment of brown adipocytes in gonadal WAT and this difference corresponds to greater levels of estrogen-dependent sympathetic innervation.
  相似文献   

6.
7.
This work examined the noradrenaline content of brown adipose tissue, the metabolic response to endogenous noradrenaline released during tyramine infusion, and the innervation of brown fat at the electron microscopic level in the young rabbit. The noradrenaline content (ng/g) of the interscapular and cervical fat deposits ranged from 256 +/- 51 to 343 +/- 59 and 399 +/- 18 to 694 +/- 92, respectively, in four groups of rabbits (1-2, 7-8, 12-13, and 25-27 days of age). There was considerable variation amongst animals in each age group, but no evidence of a major increase or decrease in noradrenaline content during the first 4 weeks of life. Intravenous infusion of tyramine (100 micrograms X kg-1 X min-1) increased plasma noradrenaline concentration, oxygen consumption, and blood flow to brown fat. Thus noradrenaline released from endogenous sites, as well as injected noradrenaline, will initiate the thermogenic response of brown fat. Ultrastructurally, unmyelinated axons that were not organized in a fascicle were observed adjacent to the adipocytes in the late gestation fetus. By 1 week of age of axons were surrounded by Schwann cell cytoplasm which formed a fascicle. However, no evidence of myelination was found up to 21 days of age. Collectively, the data indicate that the brown adipocyte is fully responsive at 1-2 days of age even though myelination of the nerves is incomplete, and that the incomplete development of the sympathetic nerves at birth is not a factor in the synthesis of noradrenaline in the very young rabbit. In addition, brown fat of the newborn rabbit is not as thermogenically active as the brown fat of the cold-acclimated rat.  相似文献   

8.
White adipose tissue (WAT) is innervated by the sympathetic nervous system. A role for WAT sympathetic noradrenergic nerves in lipid mobilization has been suggested. To gain insight into the involvement of nerve activity in the delipidation process, WAT nerves were investigated in rat retroperitoneal and epididymal depots after prolonged fasting. A significant increase in tyrosine hydroxylase (TH) content was found in epididymal and, especially, retroperitoneal WAT by Western blotting. Accordingly, an increased immunoreactivity for TH was detected by immunohistochemistry in epididymal and, especially, retroperitoneal vascular and parenchymal noradrenergic nerves. Neuropeptide Y (NPY)-containing nerves were found around arteries and in the parenchyma. Double-staining experiments and confocal microscopy showed that most perivascular and some parenchymal noradrenergic nerves also contained NPY. Detection of protein gene product (PGP) 9.5, a general marker of peripheral nerves, by Western blotting and PGP 9.5-TH by double-staining experiments showed significantly increased noradrenergic nerve density in fasted retroperitoneal, but not epididymal depots, suggesting that formation of new nerves takes place in retroperitoneal WAT in fasting conditions. On the whole, these data confirm the important role of sympathetic noradrenergic nerves in WAT lipid mobilization during fasting but also raise questions about the physiological role of regional-dependent nerve adjustments and their functional significance in relation to white adipocyte secretory products.  相似文献   

9.
During our study of the reversal of seasonal obesity in Siberian hamsters, we found an interaction between receptors for the pineal hormone melatonin and the sympathetic nervous system (SNS) outflow from brain to white adipose tissue (WAT). This ultimately led us and others to conclude that the SNS innervation of WAT is the primary initiator of lipid mobilization in these as well as other animals, including humans. There is strong neurochemical (norepinephrine turnover), neuroanatomical (viral tract tracing), and functional (sympathetic denervation-induced blockade of lipolysis) evidence for the role of the SNS in lipid mobilization. Recent findings suggest the presence of WAT sensory innervation based on strong neuroanatomical (viral tract tracing, immunohistochemical markers of sensory nerves) and suggestive functional (capsaicin sensory denervation-induced WAT growth) evidence, the latter implying a role in conveying adiposity information to the brain. By contrast, parasympathetic nervous system innervation of WAT is characterized by largely negative neuroanatomical evidence (viral tract tracing, immunohistochemical and biochemical markers of parasympathetic nerves). Functional evidence (intraneural stimulation and in situ microdialysis) for the role of the SNS innervation in lipid mobilization in human WAT is convincing, with some controversy regarding the level of sympathetic nerve activity in human obesity.  相似文献   

10.
11.
12.
Maternal prenatal undernutrition predisposes offspring to higher adiposity in adulthood. Mechanisms involved in these programming effects, apart from those described in central nervous system development, have not been established. Here we aimed to evaluate whether moderate caloric restriction during early pregnancy in rats affects white adipose tissue (WAT) sympathetic innervation in the offspring, and its relationship with adiposity development. For this purpose, inguinal and retroperitoneal WAT (iWAT and rpWAT, respectively) were analyzed in male and female offspring of control and 20% caloric-restricted (from 1-12 d of pregnancy) (CR) dams. Body weight (BW), the weight, DNA-content, morphological features and the immunoreactive tyrosine hydroxylase and Neuropeptide Y area (TH+ and NPY+ respectively, performed by immunohistochemistry) of both fat depots, were studied at 25 d and 6 m of age, the latter after 2 m exposure to high fat diet. At 6 m of life, CR males but not females, exhibited greater BW, and greater weight and total DNA-content in iWAT, without changes in adipocytes size, suggesting the development of hyperplasia in this depot. However, in rpWAT, CR males but not females, showed larger adipocyte diameter, with no changes in DNA-content, suggesting the development of hypertrophy. These parameters were not different between control and CR animals at the age of 25 d. In iWAT, both at 25 d and 6 m, CR males but not females, showed lower TH(+) and NPY(+), suggesting lower sympathetic innervation in CR males compared to control males. In rpWAT, at 6 m but not at 25 d, CR males but not females, showed lower TH(+) and NPY(+). Thus, the effects of caloric restriction during gestation on later adiposity and on the differences in the adult phenotype between internal and subcutaneous fat depots in the male offspring may be associated in part with specific alterations in sympathetic innervation, which may impact on WAT architecture.  相似文献   

13.
Lee LQ Pu 《Organogenesis》2009,5(3):138-142
The main obstacle to achieving favorable outcome of soft-tissue augmentation after autologous fat transplantation is unpredictable long-term results due to the high rate of absorption in the grafted site. At the present time, adipose aspirates can only be used for immediate autologous fat grafting during the same procedure in which liposuction is performed; therefore adipose aspirates obtained from the procedure are usually discarded. it has been a strong desire of both surgeons and patients to be able to preserve the adipose aspirates, if an optimal technique were available, for potential future applications. For the last several years, cryopreservation of adipose tissue has been studied extensively in the author''s laboratory. Several findings from this exciting translational research will lead to develop a reliable method for long-term preservation of adipose tissue in the future. in addition, successful long-term preservation of adipose tissue may open a new era in adipose tissue related tissue regeneration.  相似文献   

14.
《Organogenesis》2013,9(3):138-142
The main obstacle to achieving favorable outcome of soft-tissue augmentation after autologous fat transplantation is unpredictable long-term results due to the high rate of absorption in the grafted site. At the present time, adipose aspirates can only be used for immediate autologous fat grafting during the same procedure in which liposuction is performed; therefore adipose aspirates obtained from the procedure are usually discarded. It has been a strong desire of both surgeons and patients to be able to preserve the adipose aspirates, if an optimal technique were available, for potential future applications. For the last several years, cryopreservation of adipose tissue has been studied extensively in the author’s laboratory. Several findings from this exciting translational research will lead to develop a reliable method for long-term preservation of adipose tissue in the future. In addition, successful long-term preservation of adipose tissue may open a new era in adipose tissue related tissue regeneration.  相似文献   

15.
The ultrastructural characteristics of the inguinal, interscapular, and perirenal adipose tissue in kittens and cats were studied. There were no qualitative differences among adipocytes in the three anatomical areas. The only recorded difference was in the amount of lipids stored in the adipocytes in younger stages. Immediately after birth lipids occupied 25% of the volume in the inguinal area, 15% in interscapular fat tissue, and 10% in perirenal fat tissue. At this stage the adipose tissue morphologically resembled brown adipose tissue (BAT) of rodents. Two weeks after birth, lipids accumulated and adipocytes in the inguinal area became unilocular and appeared similar to white adipose tissue (WAT). A similar transition occurred approx 25 days after birth in interscapular fat and approx 6 weeks after birth in the perirenal area. No morphological signs of any cell degradation or destruction, nor any increased activity of preadipocytes, were seen during this conversion from BAT-like to WAT-like adipose tissue. The conversion of the adipose tissue was correlated with a decrease in vascularization and innervation, a loss of intercellular connections, and a changed mitochondrial population. Mitochondria in multilocular adipocytes resembled those in typical BAT which contain uncoupling protein (“UC-mitochondria”). After conversion to unilocular adipocytes the amount of mitochondria was halved, their cristae even more reduced, and their appearance was of a WAT-type (UCP-lacking mitochondria, which are coupled under physiological conditions; “C-mitochondria”). Since this category of adipose tissue differs from both typical brown and white adipose tissue, the name “convertible adipose tissue” (CAT) is proposed. Apparently adipose tissue from comparatively large mammals is of this convertible type.  相似文献   

16.
17.
18.
《Cell reports》2023,42(4):112392
  1. Download : Download high-res image (220KB)
  2. Download : Download full-size image
  相似文献   

19.
The developments in the technologies based on the use of autologous adipose tissue attracted attention to minor depots as possible sampling areas. Some of those depots have never been studied in detail. The present study was performed on subcutaneous adipose depots sampled in different areas with the aim of explaining their morphology, particularly as far as regards stem niches. The results demonstrated that three different types of white adipose tissue (WAT) can be differentiated on the basis of structural and ultrastructural features: deposit WAT (dWAT), structural WAT (sWAT) and fibrous WAT (fWAT). dWAT can be found essentially in large fatty depots in the abdominal area (periumbilical). In the dWAT, cells are tightly packed and linked by a weak net of isolated collagen fibers. Collagenic components are very poor, cells are large and few blood vessels are present. The deep portion appears more fibrous then the superficial one. The microcirculation is formed by thin walled capillaries with rare stem niches. Reinforcement pericyte elements are rarely evident. The sWAT is more stromal; it is located in some areas in the limbs and in the hips. The stroma is fairly well represented, with a good vascularity and adequate staminality. Cells are wrapped by a basket of collagen fibers. The fatty depots of the knees and of the trochanteric areas have quite loose meshes. The fWAT has a noteworthy fibrous component and can be found in areas where a severe mechanic stress occurs. Adipocytes have an individual thick fibrous shell. In conclusion, the present study demonstrates evident differences among subcutaneous WAT deposits, thus suggesting that in regenerative procedures based on autologous adipose tissues the sampling area should not be randomly chosen, but it should be oriented by evidence based evaluations. The structural peculiarities of the sWAT, and particularly of its microcirculation, suggest that it could represent a privileged source for regenerative procedures based on autologous adipose tissues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号