首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Computational methods in protein structure prediction   总被引:1,自引:0,他引:1  
This review presents the advances in protein structure prediction from the computational methods perspective. The approaches are classified into four major categories: comparative modeling, fold recognition, first principles methods that employ database information, and first principles methods without database information. Important advances along with current limitations and challenges are presented.  相似文献   

2.
蛋白质结构预测的理论方法及阶段   总被引:2,自引:0,他引:2  
孙侠  殷志祥 《生物学杂志》2007,24(1):16-17,15
一直以来,蛋白质结构预测都是人们研究的焦点,综述了蛋白质结构预测的几种理论方法和不同阶段。  相似文献   

3.
Over the past decade there has been a growing acknowledgement that a large proportion of proteins within most proteomes contain disordered regions. Disordered regions are segments of the protein chain which do not adopt a stable structure. Recognition of disordered regions in a protein is of great importance for protein structure prediction, protein structure determination and function annotation as these regions have a close relationship with protein expression and functionality. As a result, a great many protein disorder prediction methods have been developed so far. Here, we present an overview of current protein disorder prediction methods including an analysis of their advantages and shortcomings. In order to help users to select alternative tools under different circumstances, we also evaluate 23 disorder predictors on the benchmark data of the most recent round of the Critical Assessment of protein Structure Prediction (CASP) and assess their accuracy using several complementary measures.  相似文献   

4.
Computational prediction of side‐chain conformation is an important component of protein structure prediction. Accurate side‐chain prediction is crucial for practical applications of protein structure models that need atomic‐detailed resolution such as protein and ligand design. We evaluated the accuracy of eight side‐chain prediction methods in reproducing the side‐chain conformations of experimentally solved structures deposited to the Protein Data Bank. Prediction accuracy was evaluated for a total of four different structural environments (buried, surface, interface, and membrane‐spanning) in three different protein types (monomeric, multimeric, and membrane). Overall, the highest accuracy was observed for buried residues in monomeric and multimeric proteins. Notably, side‐chains at protein interfaces and membrane‐spanning regions were better predicted than surface residues even though the methods did not all use multimeric and membrane proteins for training. Thus, we conclude that the current methods are as practically useful for modeling protein docking interfaces and membrane‐spanning regions as for modeling monomers. Proteins 2014; 82:1971–1984. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
目前评价蛋白质二级结构预测方法主要考虑预测准确率,并没有充分考虑方法自身参数对方法的影响。本文提出一种新型评价方法,将内在评价与外在评价相结合评价预测方法的优劣。以基于混合并行遗传算法的蛋白质二级结构预测方法为例,通过内在评价,合理选取内在参数——切片长度和组内类别数,有效提高预测准确率,同时,通过外在评价,与其他基于随机算法的蛋白质二级结构预测算法比较和与CASP所提供的结论比较,说明了方法的有效性与正确性,以此验证内在评价和外在评价的客观性、公正性和全面性。  相似文献   

6.
Membrane protein prediction methods   总被引:13,自引:0,他引:13  
We survey computational approaches that tackle membrane protein structure and function prediction. While describing the main ideas that have led to the development of the most relevant and novel methods, we also discuss pitfalls, provide practical hints and highlight the challenges that remain. The methods covered include: sequence alignment, motif search, functional residue identification, transmembrane segment and protein topology predictions, homology and ab initio modeling. In general, predictions of functional and structural features of membrane proteins are improving, although progress is hampered by the limited amount of high-resolution experimental information available. While predictions of transmembrane segments and protein topology rank among the most accurate methods in computational biology, more attention and effort will be required in the future to ameliorate database search, homology and ab initio modeling.  相似文献   

7.
Kumar S 《Bioinformation》2011,6(10):366-369
Filamins are dimeric actin-binding proteins participating in the organization of the actin-based cytoskeleton. Their modular domain organization is made up of an N-terminal actin-binding domain composed of two CH domains followed by flexible rod regions that consist of 24 Ig-like domains. Homology modeling was used to model human filamin using Modeller 9v5. The resulting model assessed by Verify 3D and PROCHECK showed that the final model is reliable. The conformational disorder prediction of human filamin residues were also mapped on the validated structure of human filamin. Prediction of protein disorder in filamin structures will help structural biologists to find suitable targets to be analyzed and for understanding protein function.  相似文献   

8.
Protein structure prediction by using bioinformatics can involve sequence similarity searches, multiple sequence alignments, identification and characterization of domains, secondary structure prediction, solvent accessibility prediction, automatic protein fold recognition, constructing three-dimensional models to atomic detail, and model validation. Not all protein structure prediction projects involve the use of all these techniques. A central part of a typical protein structure prediction is the identification of a suitable structural target from which to extrapolate three-dimensional information for a query sequence. The way in which this is done defines three types of projects. The first involves the use of standard and well-understood techniques. If a structural template remains elusive, a second approach using nontrivial methods is required. If a target fold cannot be reliably identified because inconsistent results have been obtained from nontrivial data analyses, the project falls into the third type of project and will be virtually impossible to complete with any degree of reliability. In this article, a set of protocols to predict protein structure from sequence is presented and distinctions among the three types of project are given. These methods, if used appropriately, can provide valuable indicators of protein structure and function.  相似文献   

9.
Availability of computational methods that predict disorder from protein sequences fuels rapid advancements in the protein disorder field. The most accurate predictions are usually obtained with consensus-based approaches. However, their design is performed in an ad hoc manner. We perform first-of-its-kind rational design where we empirically search for an optimal mixture of base methods, selected out of a comprehensive set of 20 modern predictors, and we explore several novel ways to build the consensus. Our method for the prediction of disorder based on Consensus of Predictors (disCoP) combines seven base methods, utilizes custom-designed set of selected 11 features that aggregate base predictions over a sequence window and uses binomial deviance loss-based regression to implement the consensus. Empirical tests performed on an independent benchmark set (with low-sequence similarity compared with proteins used to design disCoP), shows that disCoP provides statistically significant improvements with at least moderate magnitude of differences. disCoP outperforms 28 predictors, including other state-of-the-art consensuses, and achieves Area Under the ROC Curve of .85 and Matthews Correlation Coefficient of .5 compared with .83 and .48 of the best considered approach, respectively. Our consensus provides high rate of correct disorder predictions, especially when low rate of incorrect disorder predictions is desired. We are first to comprehensively assess predictions in the context of several functional types of disorder and we demonstrate that disCoP generates accurate predictions of disorder located at the post-translational modification sites (in particular phosphorylation sites) and in autoregulatory and flexible linker regions. disCoP is available at http://biomine.ece.ualberta.ca/disCoP/.  相似文献   

10.
New directions in computational methods for the prediction of protein function are discussed. THEMATICS, a method for the location and characterization of the active sites of enzymes, is featured. THEMATICS, for Theoretical Microscopic Titration Curves, is based on well-established finite-difference Poisson-Boltzmann methods for computing the electric field function of a protein. THEMATICS requires only the structure of the subject protein and thus may be applied to proteins that bear no similarity in structure or sequence to any previously characterized protein. The unique features of catalytic sites in proteins are discussed. Discussion of the chemical basis for the predictive powers of THEMATICS is featured in this paper. Some results are given for three illustrative examples: HIV-1 protease, human apurinic/apyrimidinic endonuclease, and human adenosine kinase.  相似文献   

11.
神经网络在蛋白质二级结构预测中的应用   总被引:3,自引:0,他引:3  
介绍了蛋白质二级结构预测的研究意义,讨论了用在蛋白质二级结构预测方面的神经网络设计问题,并且较详尽地评述了近些年来用神经网络方法在蛋白质二级结构预测中的主要工作进展情况,展望了蛋白质结构预测的前景。  相似文献   

12.
Protein docking algorithms can be used to study the driving forces and reaction mechanisms of docking processes. They are also able to speed up the lengthy process of experimental structure elucidation of protein complexes by proposing potential structures. In this paper, we are discussing a variant of the protein-protein docking problem, where the input consists of the tertiary structures of proteins A and B plus an unassigned one-dimensional 1H-NMR spectrum of the complex AB. We present a new scoring function for evaluating and ranking potential complex structures produced by a docking algorithm. The scoring function computes a `theoretical' 1H-NMR spectrum for each tentative complex structure and subtracts the calculated spectrum from the experimental one. The absolute areas of the difference spectra are then used to rank the potential complex structures. In contrast to formerly published approaches (e.g. [Morelli et al. (2000) Biochemistry, 39, 2530–2537]) we do not use distance constraints (intermolecular NOE constraints). We have tested the approach with four protein complexes whose three-dimensional structures are stored in the PDB data bank [Bernstein et al. (1977)] and whose 1H-NMR shift assignments are available from the BMRB database. The best result was obtained for an example, where all standard scoring functions failed completely. Here, our new scoring function achieved an almost perfect separation between good approximations of the true complex structure and false positives.  相似文献   

13.
Substantial progresses in protein structure prediction have been made by utilizing deep-learning and residue-residue distance prediction since CASP13. Inspired by the advances, we improve our CASP14 MULTICOM protein structure prediction system by incorporating three new components: (a) a new deep learning-based protein inter-residue distance predictor to improve template-free (ab initio) tertiary structure prediction, (b) an enhanced template-based tertiary structure prediction method, and (c) distance-based model quality assessment methods empowered by deep learning. In the 2020 CASP14 experiment, MULTICOM predictor was ranked seventh out of 146 predictors in tertiary structure prediction and ranked third out of 136 predictors in inter-domain structure prediction. The results demonstrate that the template-free modeling based on deep learning and residue-residue distance prediction can predict the correct topology for almost all template-based modeling targets and a majority of hard targets (template-free targets or targets whose templates cannot be recognized), which is a significant improvement over the CASP13 MULTICOM predictor. Moreover, the template-free modeling performs better than the template-based modeling on not only hard targets but also the targets that have homologous templates. The performance of the template-free modeling largely depends on the accuracy of distance prediction closely related to the quality of multiple sequence alignments. The structural model quality assessment works well on targets for which enough good models can be predicted, but it may perform poorly when only a few good models are predicted for a hard target and the distribution of model quality scores is highly skewed. MULTICOM is available at https://github.com/jianlin-cheng/MULTICOM_Human_CASP14/tree/CASP14_DeepRank3 and https://github.com/multicom-toolbox/multicom/tree/multicom_v2.0 .  相似文献   

14.
Genome sequencing projects have ciphered millions of protein sequence, which require knowledge of their structure and function to improve the understanding of their biological role. Although experimental methods can provide detailed information for a small fraction of these proteins, computational modeling is needed for the majority of protein molecules which are experimentally uncharacterized. The I-TASSER server is an on-line workbench for high-resolution modeling of protein structure and function. Given a protein sequence, a typical output from the I-TASSER server includes secondary structure prediction, predicted solvent accessibility of each residue, homologous template proteins detected by threading and structure alignments, up to five full-length tertiary structural models, and structure-based functional annotations for enzyme classification, Gene Ontology terms and protein-ligand binding sites. All the predictions are tagged with a confidence score which tells how accurate the predictions are without knowing the experimental data. To facilitate the special requests of end users, the server provides channels to accept user-specified inter-residue distance and contact maps to interactively change the I-TASSER modeling; it also allows users to specify any proteins as template, or to exclude any template proteins during the structure assembly simulations. The structural information could be collected by the users based on experimental evidences or biological insights with the purpose of improving the quality of I-TASSER predictions. The server was evaluated as the best programs for protein structure and function predictions in the recent community-wide CASP experiments. There are currently >20,000 registered scientists from over 100 countries who are using the on-line I-TASSER server.  相似文献   

15.
16.
17.
18.
We present the assembly category assessment in the 13th edition of the CASP community-wide experiment. For the second time, protein assemblies constitute an independent assessment category. Compared to the last edition we see a clear uptake in participation, more oligomeric targets released, and consistent, albeit modest, improvement of the predictions quality. Looking at the tertiary structure predictions, we observe that ignoring the oligomeric state of the targets hinders modeling success. We also note that some contact prediction groups successfully predicted homomeric interfacial contacts, though it appears that these predictions were not used for assembly modeling. Homology modeling with sizeable human intervention appears to form the basis of the assembly prediction techniques in this round of CASP. Future developments should see more integrated approaches where subunits are modeled in the context of the assemblies they form.  相似文献   

19.
When a protein sequence does not share any significant sequence similarity with a protein of known structure, homology modeling cannot be applied. However, many novel and interesting methods, such as secondary structure prediction, fold recognition, and prediction of long-range interactions, are being developed and have been shown to be reasonably successful in predicting protein structures from sequence data and evolutionary information. The a priori evaluation of the correctness of a prediction obtained by one of these methods is however often problematic. Consequently, it is important to use all available information provided by as many different methods as possible and all the available experimental data about the protein of interest, since the consistency of the results is indicative of the reliability of the prediction. Hence the need has arisen for suitable tools able to compare results provided by different methods and evaluate their consistency. We have therefore constructed GLASS, a general platform to read, visualize, compare, and evaluate prediction results from many different sources and to project these prediction results into three dimensions. In addition, GLASS allows the comparison of selected parameters calculated for a model with the distribution observed in real protein structures, thus providing an easy way to test new methods for evaluating the likelihood of different structural models. GLASS can be considered as a “workbench” for structural predictions useful to both experimentalists and theoreticians. Proteins 30:339–351, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
He H  McAllister G  Smith TF 《Proteins》2002,48(4):654-663
We have constructed, in a completely automated fashion, a new structure template library for threading that represents 358 distinct SCOP folds where each model is mathematically represented as a Hidden Markov model (HMM). Because the large number of models in the library can potentially dilute the prediction measure, a new triage method for fold prediction is employed. In the first step of the triage method, the most probable structural class is predicted using a set of manually constructed, high-level, generalized structural HMMs that represent seven general protein structural classes: all-alpha, all-beta, alpha/beta, alpha+beta, irregular small metal-binding, transmembrane beta-barrel, and transmembrane alpha-helical. In the second step, only those fold models belonging to the determined structural class are selected for the final fold prediction. This triage method gave more predictions as well as more correct predictions compared with a simple prediction method that lacks the initial classification step. Two different schemes of assigning Bayesian model priors are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号