首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective: To investigate sexual dimorphism and race differences in fat distribution (android/gynoid) before and during puberty. Research Methods and Procedures: Fat distribution was measured by skinfold thickness and DXA in healthy African‐American, Asian, and white subjects (n = 920), divided into pre‐, early, and late pubertal groups. Results: Gynoid fat masses adjusted for covariates were lower in late pubertal compared with prepubertal boys, but were not consistently greater in late pubertal compared with prepubertal girls. Progression of sex‐specific fat distribution with increasing maturation was present in Asians only. Among African‐American and white subjects, early pubertal boys had greater gynoid fat mass compared with the prepubertal group, whereas early pubertal girls had less gynoid fat mass compared with the prepubertal group. Sexual dimorphism in fat distribution was present in all pubertal groups, except among whites at early puberty. Among girls, Asians had lower gynoid fat than whites and African Americans in all pubertal groups. Among boys, Asians had less gynoid fat by DXA in early puberty and late puberty. Discussion: Comparison among races demonstrated differences in sexual dimorphism and sex‐specific fat distribution with progression in pubertal group. However, in all race groups, the fat distribution of late pubertal boys was more “male” or “android” than prepubertal boys, but late pubertal girls did not differ consistently from prepubertal girls. These findings suggested that the greater sexual dimorphism of fat distribution in late puberty compared with prepuberty may be attributable to larger changes in boys with smaller changes in girls.  相似文献   

2.
Objectives: There has been uncertainty in the adult body composition literature about whether fat mass (FM) or fat free mass is a better predictor of bone mineral content and bone mineral density. This issue has recently also been raised in the pediatric literature. Based on suggested skeletal muscle–bone relationships, this study tested the hypothesis that in children and adolescents lean tissue mass (LTM) is a better predictor of total bone mineral content (TBMC) than is FM. Research Methods and Procedures: Subjects were 133 Italian children and adolescents, 5 to 17 years of age, undergoing a routine medical screen. FM (kilograms), LTM (kilograms), and TBMC (kilograms) were measured by DXA. Multiple regression analyses tested the independent association of FM and LTM with bone mineral content. Results: Regression analyses, adjusting for pubertal status and other covariates, showed that FM and LTM were independently associated with TBMC. These associations were similar for boys and girls. TBMC was more strongly associated with LTM than FM. Discussion: These observations support the hypothesis that in children and adolescents a close association exists between LTM, a measure of skeletal muscle, and skeletal characteristics.  相似文献   

3.
We determined whether activity energy expenditure (AEE, from doubly labeled water and indirect calorimetry) or physical activity [7-day physical activity recall (PAR)] was more related to adiposity and the validity of PAR estimated total energy expenditure (TEE(PAR)) in prepubertal and pubertal boys (n = 14 and 15) and girls (n = 13 and 18). AEE, but not physical activity hours, was inversely related to fat mass (FM) after accounting for the fat-free mass, maturation, and age (partial r = -0.35, P < or = 0.01). From forward stepwise regression, pubertal maturation, AEE, and gender predicted FM (r(2) = 0.36). Abdominal visceral fat and subcutaneous fat were not related to AEE or activity hours after partial correlation with FM, maturation, and age. When assuming one metabolic equivalent (MET) equals 1 kcal. kg body wt(-1). h(-1), TEE(PAR) underestimated TEE from doubly labeled water (TEE bias) by 555 kcal/day +/- 2 SD limits of agreement of 913 kcal/day. The measured basal metabolic rate (BMR) was >1 kcal. kg body wt(-1). h(-1) and remained so until 16 yr of age. TEE bias was reduced when setting 1 MET equal to the measured (bias = 60 +/- 51 kcal/day) or predicted (bias = 53 +/- 50 kcal/day) BMR but was not consistent for an individual child (+/- 2 SD limits of agreement of 784 and 764 kcal/day, respectively) or across all maturation groups. After BMR was corrected, TEE bias remained greatest in the prepubertal girls. In conclusion, in children and adolescents, FM is more strongly related to AEE than activity time, and AEE, pubertal maturation, and gender explain 36% of the variance in FM. PAR should not be used to determine TEE of individual children and adolescents in a research setting but may have utility in large population-based pediatric studies, if an appropriate MET value is used to convert physical activity data to TEE data.  相似文献   

4.
T. Jürimäe  T. Hurbo 《HOMO》2009,60(3):225-238
The purpose of the present study was to examine the relationship of handgrip strength with basic anthropometric variables, hand anthropometric variables, total body and hand composition, total body and hand bone mineral density (BMD) and bone mineral content (BMC) in prepubertal children aged between 8 and 11 years (n=64, 27 boys, 37 girls). Height and body mass were measured and body mass index (BMI kg/m2) was calculated. Biceps and triceps skinfolds, arm relaxed, arm flexed, forearm and wrist girths, acromiale-radiale, radiale-stylion-radiale and midstylion-dactylion length and humerus breadth were measured. Specific hand anthropometric variables according to Visnapuu and Jürimäe [2007. Handgrip strength and hand dimensions in young handball and basketball players. J. Strength Cond. Res. 21, 923-929] were used. Five fingers’ spans, fingers’ lengths and perimeters of the hand were measured. Total body and right-hand fat percentage, fat mass and lean mass (LBM) were measured by dual-energy X-ray absorptiometry (DXA). Right-hand BMC and BMD were analysed from the bone variables. Maximal handgrip strength of the right hand was measured with the hand dynamometer. Stepwise multiple regression analysis indicated that the most important predictive value from the basic anthropometric variables was body height, explaining 76.1% (R2×100), 40.7% and 50.6% of the handgrip strength in boys, girls and total group, respectively. Measured skinfold thicknesses and breadths were not related to handgrip strength in any group. Forearm girths significantly predicted handgrip strength in boys (30.8%), girls (43.4%) and total group (43.4%). As a rule, handgrip strength was more dependent on the anthropometric and body composition variables in boys than girls. It was concluded that body height, forearm girth, midstylion-dactylion and acromiale-radiale length and hand LBM and BMC are the most limiting factors influencing handgrip strength in prepubertal children.  相似文献   

5.
OBJECTIVES: The 10-microg gonadotropin-releasing hormone (GnRH) test assesses pituitary gonadotroph responsiveness, whereas the 100-microg dose assesses maximal secretory capacity. Our aims were to establish normative data for the low-dose test in children and to evaluate the test in diagnosing common pubertal disorders. METHODS: We retrospectively classified 107 children who underwent 10-microg GnRH tests into normal prepubertal (20 boys, 10 girls), normal early pubertal (10 boys, 16 girls), constitutional delay of puberty (CDP, 13 prepubertal boys >12 years), hypogonadotropic hypogonadism (HH, 5 prepubertal boys >12 years), central precocious puberty (CPP, 19 girls) or premature thelarche/variant (13 girls). RESULTS: Peak LH response was higher in prepubertal boys >12 years compared with younger boys (p < 0.01) but showed no further change in early puberty. CDP boys had LH responses similar to prepubertal boys >12 years. HH boys showed an absent LH response which diagnosed HH with 100% sensitivity and 96% specificity. Thelarche girls had LH:FSH peak ratios lower than normal prepubertal (p = 0.001), pubertal (p < 0.05) or CPP (p = 0.001) girls. CONCLUSIONS: We have established normative values for the low-dose GnRH test in children. The test successfully differentiated HH from CDP in boys, and contributed to the differential diagnosis of CPP and premature thelarche in girls.  相似文献   

6.
Objective: The aims of this study were to investigate the body fat distribution pattern in prepubertal Chinese children and to investigate the relationship between central fat distribution and specific biomarkers of cardiovascular disease. Research Methods and Procedures: The study was conducted in an urban Mainland Chinese (Jinan, Shandong) sample of children using a cross‐sectional design. Pubertal status was determined by Tanner criteria. Measurements included weight, height, waist circumference, DXA measures of total body fat and trunk fat; fasting serum measures of glucose, insulin, triglyceride, cholesterol, high‐density lipoprotein‐cholesterol; and systolic and diastolic blood pressure. Multiple regression models were developed with the biomarkers of cardiovascular risk factor as the dependent variables, and adjustments were made for significant covariates, including sex, age, height, weight, waist circumference, total body fat, trunk fat, and interactions. Results: A total of 247 healthy prepubertal subjects were studied. After co‐varying for age, weight, height, and extremity fat (the sum of arm fat and leg fat), girls had greater trunk fat than boys (p < 0.0001, R2 for model = 0.95). Insulin and triglyceride were positively related to central fat measured by DXA‐trunk fat (p < 0.05) but not related to the waist circumference. In the blood pressure model, waist circumference was a significant predictor of both systolic blood pressure and diastolic blood pressure, while DXA‐trunk fat was associated with diastolic blood pressure only. Significant interactions between sex and trunk fat, and sex and total fat, were found in relation to diastolic blood pressure. Discussion: In prepubertal Chinese children, greater trunk fat was significantly associated with higher insulin and triglyceride in boys and girls and was associated with higher diastolic blood pressure in boys only.  相似文献   

7.
The purpose of this study was to assess the interactive effects of habitual physical activity (total and vigorous intensity) and calcium intake on bone mineral content (BMC) in prepubertal boys and girls. Seventy-six children, aged 8-11 yr, wore accelerometers for up to 7 days to assess activity. Calcium intake was estimated by a 4-day weighted food diary. BMC and areal density (bone mineral density) were measured at the total body, proximal femur, and femoral neck by using dual-energy X-ray absorptiometry. Moderated regression analyses were used to assess the contributions of physical activity (total and vigorous) and calcium intake to BMC, residualized for bone area and body mass. Interactive effects of vigorous activity (> or =6 metabolic equivalents) and calcium intake were found at the total body in boys (b = 2.90 x 10(-3)) and in girls (b = 6.58 x 10(-3)) and at the proximal femur (b = 9.87 x 10(-5)) and femoral neck (b = 2.29 x 10(-5); where b is the regression coefficient from final equation) in boys only; residualized BMC was high only if both vigorous activity and calcium intake were high. There were no interactive effects of total activity and calcium intake. This study provides evidence for synergistic action of habitual vigorous activity and calcium intake on bone mass in children. Recommendations for optimizing bone mass should reflect this synergism.  相似文献   

8.
BMI and percent body fat (%BF) are both related to height (Ht) in prepubertal children, so may misrepresent childhood adiposity, especially in tall or short children. We sought to construct replacement functions for BMI and %BF that are independent of Ht. Fat mass (FM) was measured using dual‐energy X‐ray absorptiometry, together with Ht and body mass (BM) in 746 healthy boys and girls aged 8 years (0.34 s.d.). Relationships between BM, FM, and Ht were measured and values of p and q derived such that the functions BM. Ht?p and FM.BM?q were unrelated to Ht. BM was not directly proportional to Ht2, BMI being significantly related to Ht in both boys and girls (P < 0.001). BM was proportional to Ht3, BM. Ht?3 being independent of Ht. Similarly, FM was not directly proportional to BM and %BF was significantly related to Ht (P < 0.001). While FM was proportional to BM2, FM.BM?1.5 was the function found to be independent of Ht. Using the 85th and 95th percentiles as the cutoffs for overweight and obesity respectively, 6.4% of the boys and 6.8% of the girls were classified differently by BMI and the Ht independent measure BM. Ht?3. Similarly, 10.1% boys and 13.7% girls were classified differently by %BF and the Ht independent measure FM.BM?1.5. We propose that improved diagnostic accuracy of body composition in 8‐year‐olds is provided by the BM function (BMF, BM. Ht?3) and FM function (FMF, FM.BM?1.5) replacing BMI and %BF, which both overestimate the adiposity of taller children and underestimate it in shorter children.  相似文献   

9.
Bones in the axial and appendicular skeletons exhibit heterogeneous growth patterns between different ethnic and sex groups. However, the influence of this differential growth on the expression of bone mineral content is not yet established. The aims of the present study were to investigate: 1) whether there are ethnic and sex differences in axial and appendicular dimensions of South African children; and 2) whether regional segment length is a better predictor of bone mass than stature. Anthropometric measurements of stature, weight, sitting height, and limb lengths were taken on 368 black and white, male and female 9-year-old children. DXA (dual-energy x-ray absorptiometry) scans of the distal ulna, distal radius, and hip and lumbar spine were also obtained. Analyses of covariance were performed to assess differences in limb lengths, adjusted for differences in stature. Multiple regression analyses were used to assess significant predictors of site-specific bone mass. Stature-adjusted means of limb lengths show that black boys have longer legs and humeri but shorter trunks than white boys. In addition, black children have longer forearms than white children, and girls have longer thighs than boys. The regression analysis demonstrated that site-specific bone mass was more strongly associated with regional segment length than stature, but this had little effect on the overall pattern of ethnic and sex differences. In conclusion, there is a differential effect of ethnicity and sex on the growth of the axial and appendicular skeletons, and regional segment length is a better predictor of site-specific bone mass than stature.  相似文献   

10.
Twenty years ago it was believed that pubertal growth was stimulated by testicular androgen in boys and by adrenal androgen in girls. Estrogen, which was used to inhibit growth in excessively tall girls, was not thought to have growth-promoting effects. We hypothesized that estrogen has a biphasic effect on epiphyseal growth, with maximal stimulation at low levels. We showed that the administration of low doses of estrogen, corresponding to a serum estradiol level of about 4 pg/ml (15 pmol/l) caused more than a 60% increase over the prepubertal growth rate in both boys and girls. To test the hypothesis that estrogen is the principal mediator of the pubertal growth spurt in boys, we administered the aromatase inhibitor, testolactone, to boys with familial male-limited precocious puberty. Testolactone produced near normalization of both growth velocity and bone maturation, despite levels of serum testosterone that remained within the adult male range. The observation that low levels of estrogen stimulate growth and bone maturation suggested that estrogen might explain the more rapid epiphyseal maturation of prepubertal girls compared to boys. To determine whether prepubertal girls have higher estrogen levels than prepubertal boys, we developed an ultrasensitive recombinant cell bioassay for estrogen with a sensitivity of 0.02 pg/ml (0.07 pmol/l) estradiol equivalents. Prepubertal girls had approximately eight-fold higher levels of serum estradiol than did prepubertal boys (0.6 ± 0.6 pg/ml (SD) (2.2 ± 2.2 pmol/l) vs 0.08 ± 0.2 pg/ml (0.29 ± 0.73 pmol/l), P < 0.05). We concluded that the pubertal growth spurt of both sexes is driven primarily by estrogen, and that the more rapid epiphyseal maturation of prepubertal girls (vs boys) may be explained by their higher estradiol levels.  相似文献   

11.
OBJECTIVES: To compute the annual changes in total bone mineral content (BMCt), lean tissue mass and fat mass (LTM and FM) during growth. METHODS: Whole body DXA data were used to calculate the annual changes of the parameter P (P = BMCt, LTM or FM), as a percentage, as DeltaP% = 100 x (P(i+1) - P(i)) / P(i); with P(i) and P(i+1) the values for P at age i and age (i+1). Smoothed curves were then obtained from DeltaP% values plotted against age. RESULTS: Changes in FM were different in males and females. A peak velocity was marked for the three tissues at age 6.5 in boys, and at age 6.5-7.5 in girls; a pubertal peak spurt appeared at age 12 in girls and between age 13 and 14 in boys. This latter peak was followed by an exponential decrease, and no significant changes were found for the three components after age 20 in girls and age 21-22 in boys. CONCLUSION: Changes in tissue accretion during growth are easy to follow when expressed in percentages. Fat changes, especially, should be around 17% in girls and 15% in boys at the age of puberty.  相似文献   

12.
Objective: To assess Tanner staging (breast and pubic hair development) and its relationship to measures of body composition, blood pressure, and fasting insulin and glucose in young black girls. Research Methods and Procedures: Subjects were 138 black girls, 8 to 12 years of age, recruited from elementary schools in low socioeconomic status neighborhoods. Exclusion criteria included the presence of any acute/chronic medical conditions. Pubertal stages were assessed by one of two pediatricians and analyzed individually, as well as with a composite index (prepubertal, pubertal/premenarcheal, or pubertal/menarcheal). Glucose and insulin were measured after a 12‐hour fast. Measures of body composition included height, weight, BMI, waist and hip circumferences, fat mass, fat‐free soft tissue, bone mineral density (DXA), and visceral adipose tissue (magnetic resonance imaging). Resting systolic and diastolic blood pressure were measured by Dinamap. Results: With age in the model, breast development explained significant proportions of the variance in height, weight, fat‐free soft tissue, bone mineral density, and insulin. Adding pubic hair development or menarche to those models did not significantly increase the proportion of variance that was explained by breast development. Furthermore, using a composite index of pubertal staging explained a smaller proportion of the variance compared with breast development alone. Discussion: Combined with age, breast development was a better predictor of body composition and fasting insulin than was pubic hair development or a composite index of pubertal staging.  相似文献   

13.
The aims of this study were to determine reference norms for a fat-free mass index (FFMI) and fat mass index (FMI) in a large population of healthy children in Japan, to observe differences in these values in three age groups between ages three and eleven, and to develop percentile distributions for these parameters. Five hundred twenty-two boys and six hundred forty-nine girls with a wide spectrum of stature, body mass, and body composition underwent bioelectrical impedance analysis (BIA) for the determination of fat-free mass (FFM) and fat mass (FM). Both FFM and FM were divided by stature(2) to give FFMI and FMI, as described previously. Normal FFMI and FMI were defined within the range of the 25th to 75th percentile of age- and gender-specific data in this study. The reference norms for FFMI (3-11 yrs) were 12.7-13.4 kg/m(2) in boys and 12.0-13.0 kg/m(2) in girls. A modest increase in boys was observed with an age increase; otherwise, there were no marked age differences in FFMI for the children as a whole. The reference norms for FMI were 2.8-3.6 kg/m(2) in boys and 3.2-3.8 kg/m(2) in girls. For each 3-year category (i.e., ages 3-5, 6-8 and 9-11 yrs.), FMI progressively increased by an average of 28.6% in boys and 18.8% in girls, compared to an increase in BMI of 11.0 and 11.3% respectively. FFMI and FMI are appropriate for many purposes, and have the advantage of expressing both aspects of body composition in common units. In conclusion, the data presented as percentiles can serve as reference in comparing a child's body composition to that of healthy children of the same age and gender. The reference standards should be appropriate for almost all children in the Japan for whom stature, body mass, and body composition can be measured satisfactorily. However, a more sophisticated approach is ultimately required for evaluating body composition. This article is a preliminary attempt to promote future research in the area of childhood body composition.  相似文献   

14.

Background

Recent studies have shown that puberty starts at younger ages than previously. It has been hypothesized that the increasing prevalence of childhood obesity is contributing to this trend. The purpose of this study was to analyze the association between prepubertal body mass index (BMI) and pubertal timing, as assessed by age at onset of pubertal growth spurt (OGS) and at peak height velocity (PHV), and the secular trend of pubertal timing given the prepubertal BMI.

Methodology/Principal Findings

Annual measurements of height and weight were available in all children born from 1930 to 1969 who attended primary school in the Copenhagen municipality; 156,835 children fulfilled the criteria for determining age at OGS and PHV. The effect of prepubertal BMI at age seven on these markers of pubertal development within and between birth cohorts was analyzed. BMI at seven years was significantly inversely associated with age at OGS and PHV. Dividing the children into five levels of prepubertal BMI, we found a similar secular trend toward earlier maturation in all BMI groups.

Conclusion/Significance

The heavier both boys and girls were at age seven, the earlier they entered puberty. Irrespective of level of BMI at age seven, there was a downward trend in the age at attaining puberty in both boys and girls, which suggests that the obesity epidemic is not solely responsible for the trend.  相似文献   

15.
In the spinal cord injury (SCI) population, a relationship between adiposity and leg bone has not been reported, nor one between serum estradiol and leg bone mass. A cross-sectional, comparative study of 10 male pairs of monozygotic twins discordant for SCI was performed. Relationships were determined among bone mineral density (BMD), bone mineral content (BMC), lean mass, fat mass, and serum sex steroids. In the twins with SCI, significant relationships were evident between leg BMD or BMC with total body percent fat (r2= 0.49, P < 0.05; r2= 0.45, P = 0.05), leg fat mass (r2 = 0.76, P < 0.0005; r2= 0.69, P = 0.005), and serum estradiol (r2= 0.40, P = 0.05; r2= 0.37, P = 0.05). By stepwise regression analysis, in the twins with SCI, leg fat mass was found to be the single most significant predictor of leg BMD or BMC (F = 12.01, r2= 0.76, P = 0.008; F = 50.87, r2= 0.86, P < 0.0001). In the able-bodied twins, leg lean mass correlated with leg BMD and BMC (r2= 0.58, P = 0.01; r2= 0.87, P = 0.0001). By use of within-pair differences, significant correlations were found for leg lean mass loss with leg BMD loss (r2= 0.56, P = 0.01) or leg BMC loss (r2= 0.64, P = 0.0005). In conclusion, in twins with SCI, significant correlations were observed between fat mass and leg BMD or BMC as well as between serum estradiol values and leg BMD. The magnitude of the leg muscle mass loss was correlated with the magnitude of bone loss.  相似文献   

16.
BACKGROUND/AIMS: Since GH plays an important role in bone mineralization, and several studies demonstrated the positive influence of a higher calcium intake on bone mass, we studied the effect of calcium supplementation in GHD children during GH therapy. METHODS: 28 prepubertal GHD children, 5.0-9.9 years old, were assigned to two groups: group A (n = 14; 7 females) treated with GH, and group B (n = 14; 7 females) treated with GH + calcium gluconolactate and carbonate (1 g calcium/day per os). Auxological parameters, total bone mineral content (TBMC) and density (TBMD), leg BMC and BMD, lumbar BMD, fat mass (FM) and lean tissue mass (LTM), blood 25-hydroxyvitamin D (25-OHD), parathyroid hormone (PTH), osteocalcin (OC) and urinary N-terminal telopeptide of type I collagen (NTx) were determined at the start of therapy and after 1 and 2 years of treatment. RESULTS: During the 2 years of the study, TBMC, TBMD, leg BMC and BMD (but not lumbar BMD) increased in both groups of patients, however after 2 years of treatment they were significantly higher in the calcium-supplemented group B than in group A (p < 0.05, for all parameters). At the start of therapy, in both groups of patients percentage FM was higher and total and leg LTM lower than in controls (p < 0.05 for each parameter). Thereafter, FM decreased and LTM increased and after 2 years they were both different from baseline (p < 0.05). After 2 years of treatment, leg BMC and BMD were more positively correlated with regional leg LTM in patients of group B (r = 0.834 and r = 0.827, respectively; p < 0.001) than in patients of group A (r = 0.617 and r = 0.637, respectively; p < 0.05). 25-OHD and PTH levels were in the normal range in all patients at the start and during treatment. OC levels were lower and urinary NTx levels higher in patients than in controls (p < 0.05 for both parameters), either at the start and after 1 year of treatment. After 2 years of treatment, OC levels were significantly higher than at the start of the study (p < 0.05) in both groups of patients, but they were higher in group B than in group A (p < 0.05); on the contrary, urinary Ntx levels were lower in group B than in group A (p < 0.05). CONCLUSION: In GHD children, treated with GH, calcium supplementation improved bone mass; it may aid in reaching better peak bone mass and in protecting weight-bearing bones, usually completed in childhood to maximum levels, from risk of osteoporosis and fractures later in life.  相似文献   

17.
Objective: To evaluate the 2‐year changes in body composition of white and African American boys and girls. Research Methods and Procedures: A total of 114 boys and girls ages 12 to 14 years with equal sex and ethnic distribution between African American and white races participated in measurements of body composition using DXA, underwater weighing (densitometry), skinfold thickness, corporal diameters, circumferences, isotope dilution (H218O), and bioelectric impedance. Results: Sixty‐eight of the 114 children advanced from Tanner Stages 1 and 2 to Tanner Stages 3 to 5 over a 2‐year period. More than 50% of the children were in the top 15th percentile according to normative data for body mass index but not for triceps skinfold. All measures except for percentage of fat, density, and four of the six skinfolds increased significantly during the 2 years, with no differences between races, genders, or fat group. The boys who advanced in Tanner Stage reduced their percentage of fat and a number of skinfolds and increased their lean body mass, but the girls did not. The percentage of water was significantly higher in the fatter children and declined significantly over 2 years. Most children remained in the same quartile of body fat, lean body mass, and bone mineral content over 2 years. Discussion: The data are consistent with the hypothesis that over 2 years, growth is the major determinant of changing body composition, with body‐fat group and sexual maturation being additional variables.  相似文献   

18.
AIMS/METHODS: We established age- and sex-related reference ranges for serum insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding protein-3 (IGFBP-3) levels in 807 healthy Turkish children (428 boys, 379 girls), and constructed a model for calculation of standard deviation scores of IGF-I and IGFBP-3 according to age, sex and pubertal stage. RESULTS: Serum IGF-I and IGFBP-3 concentrations tended to be higher in girls compared to boys of the same ages, but the differences were statistically significant only in pubertal ages (9-14 years) for IGF-I and only in prepubertal ages for IGFBP-3 (6-8 years) (p < 0.05). Peak IGF-I concentrations were observed earlier in girls than boys (14 vs. 15 years, Tanner stage IV vs. V) starting to decline thereafter. IGFBP-3 levels peaked at age 13 and at Tanner stage IV in both sexes with a subsequent fall. Serum levels of IGF-I and IGFBP-3 increased steadily with age in the prepubertal stage followed by a rapid increase in IGF-I in the early pubertal stages. A relatively steeper increase in IGF-I but not in IGFBP-3 levels was observed at age 10-11 years in girls and at 12-13 years in boys which preceded the reported age of pubertal growth spurt. At late pubertal stages, both IGF-I and IGFBP-3 either did not change or decreased by increasing age. Interrelationships between growth factors and anthropometric measurements have been described, and the physiologic consequences of these have been discussed in detail. CONCLUSIONS: Differences in the pattern of IGF-I and IGFBP-3 in the present paper and those reported in other studies emphasize the importance of locally established reference ranges. Establishment of this reference data and a standard deviation score prediction model based on age, sex and puberty will enhance the diagnostic power and utility of IGF-I and IGFBP-3 in evaluating growth disorders in our population.  相似文献   

19.
Few large studies have evaluated the emergence of sexual dimorphism in fat distribution with appropriate adjustment for total body composition. The objective of this study was to determine the timing and magnitude of sex differences in regional adiposity from early childhood to young adulthood. Regional fat distribution was measured using dual‐energy X‐ray absorptiometry (trunk and extremity fat using automatic default regions and waist and hip fat using manual analysis) in 1,009 predominantly white participants aged 5–29 years. Subjects were divided into pre (Tanner stage 1), early (Tanner stages 2–3), late (Tanner stages 4–5), and post (males ≥20 years and females ≥18 years) pubertal groups. Sexual dimorphism in trunk fat (adjusted for extremity fat) was not apparent until late puberty, when females exhibited 17% less (P < 0.001) trunk fat than males. By contrast, sex differences in waist fat (adjusted for hip fat) were apparent at each stage of puberty, the effect being magnified with age, with prepubertal girls having 5% less (P = 0.027) and adult women having 48% less (P < 0.0001) waist fat than males. Girls had considerably more peripheral fat whether measured as extremity or hip fat at each stage. Sex differences in regional adiposity were significantly greater in young adults than in late adolescence. Exclusion of overweight participants did not materially affect the estimates. Sexual dimorphism in fat patterning is apparent even prepubertally with girls having less waist and more hip fat than boys. The magnitude of the sex difference is amplified with maturation, and particularly from late puberty to early adulthood.  相似文献   

20.
We investigated the reproducibility of total and regional body composition measurements performed on a dual energy X-ray absorptiometer (DXA). A group of 38 women aged 21–81 (mean 52. 4) years was scanned twice with repositioning to determine intra-observer reproducibility of measurements of bone mineral density (BMD, g · cm−2), bone mineral content (BMC, g), lean mass (LM, kg) and fat mass (FM, kg) of the total body and of the major subregions of the body. In addition, the ability of the DXA machine to detect changes in LM and FM (simulated by placing 11.1 and 22.3 kg porcine lard on the body of 11 subjects) was examined. Coefficients of variations calculated from the root mean square averages of individual standard deviations were as follows (BMD, BMC, FM, LM): 1.4%, 1.1%, 1.4%, 1.7% (total body), 2.2%, 2.1%,-,- (head), 2.8%, 2.8%, 2.0%, 2.2% (trunk), 3.6%, 3.9%, 4.0%, 4.9% (arms), 2.7%, 1.3%, 2.6%, 2.8% (legs). Percentage fat (%fat) of exogenous lard was 81.3 (SD 3.5)% as assessed by the absorptiometer which corresponded well with the result of chemical analysis (82.8%). Estimated %fat of exogenous lard was not influenced by initial body mass or percentage body fat. Percentages of expected mean values with 11.1 kg lard placed on the body were 99.9 (SD 0.3) for body mass, 100.5 (SD 2.1) for LM, and 99.5 (SD 3.5) for FM. BMD was overestimated by 3.2% (P < 0.005) with 11.1 kg lard on the body. BMD as well as BMC increased significantly with 22.3␣kg lard on the body (P < 0.005). The results showed that BMD, BMC, LM, and FM of the total body were precisely estimated by the DXA machine used. Regional measurements were less precise. Changes in total body soft tissue composition were precisely and accurately estimated. The lard placed on the body falsely affected BMD and BMC measurements. Changes in body mass could have a similar effect. Accepted: 6 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号