共查询到20条相似文献,搜索用时 15 毫秒
1.
N Yamasaki T Tsujita T Eto S Masuda K Mizuno F Sakiyama 《Journal of biochemistry》1979,86(5):1291-1300
A novel method for the preparation of Kyn 62-lysozyme, in which tryptophan 62 is replaced by kynurenine, is reported. Hen egg-white lysozyme was ozonized in aqueous solution to yield one N'-formylkynurenine residue and deformylated with hydrochloric acid in frozen solution at -10 degrees C. Crude Kyn 62-lysozyme was purified by affinity and Bio Rex 70 chromatography successively. Kyn 62-lysozyme retains affinity for chitin and is essentially an active enzyme with a slightly weakened but distinct catalytic activity. After this modification, the enzyme activity was changed differently depending on the kind of substrate. At the individual optimum pH's, lytic activity was largely retained (80% active), but the catalytic efficiency for hydrolyzing glycol chitin was relatively low (30% active). Lysis of M. lysodeikticus cell suspensions was optimally catalyzed by Kyn 62-lysozyme at pH 6.2 and at 0.088 ionic strength. These values are lower by 1.3 pH unit and 0.04 ionic strength, respectively, than those of intact lysozyme. The optimum pH and ionic strength for the hydrolysis of neutral substrates were scarcely affected. These results suggest the significance of electrostatic interaction in the lysis of lysozyme. Relatively limited loss of activity induced by modification of the 62nd residue, which is thought to participate directly in the binding of the substrate at subsite C, is discussed on the basis of the similarity of side chain structure in tryptophan and kynurenine. 相似文献
2.
The indole C-2(delta 1) carbon of Trp 62 in hen egg-white lysozyme was selectively labeled with 13C through a series of reactions involving N'-formylkynurenine 62-lysozyme with K13CN, NaBH4-reduction, and acid-catalyzed dehydration. [delta 1-13C]Trp 62-lysozyme in which Trp 62 is labeled with 90% 13C has the same chemical and enzymatic properties as the native protein. The reverted lysozyme gave a single 13C-NMR signal at 125 ppm. pH-titration of the 13C signal indicated a transition at pH 3.9 for the free enzyme. In the presence of (GlcNAc)3, the resonance signals were shifted 0.5-1 ppm upfield, and the transitions in the titration curve were observed at pH 3.9 and 6.5. Asp 52 and Glu 35 were assigned to the groups with pKas of 3.9 and 6.5, respectively. In [2-13C]AHT 62-lysozyme, which has 3-(2-amino-3-hydroxy-3H-[2-13C]indol-3-yl)alanine (AHT) at position 62, AHT 62 behaved quite differently from Trp 62 on pH-titration of the 13C-label. These results suggest that a conformational change around Trp 62 is induced upon ionization of the catalytic residue and that the structural flexibility of the side chain of this aromatic residue in the substrate binding site is closely related to the function of lysozyme. 相似文献
3.
The interactions of the substrate analogues, GlcNAc, beta-methyl GlcNAc, (GlcNAc)2, and (GlcNAc)3, with turkey egg-white lysozyme [ED 3.2.1.17], in which the Asp 101 of hen lysozyme is replaced by Gly, were studied at various pH values by measuring changes in the circular dichroic (CD) band at 295 nm. Results were compared with those for hen egg-white lysozyme. The modes of binding of these substrate analogues to turkey lysozyme were very similar to those hen lysozyme except for the participation of Asp 101 in hen lysozyme. The ionization constants of the catalytic carboxyls, Glu 35 and Asp 52, in the turkey lysozyme-(GlcNAc)3 complex were determined by measuring the pH dependence of the CD band at 304 nm, which originates from Trp 108 near the catalytic carboxyls. The ionization behavior of the catalytic carboxyls of turkey lysozyme in the presence and absence of (GlcNAc)3 was essentially the same as that for hen lysozyme. The pH dependence of the binding constant of (GlcNAc)3 to hen lysozyme was compared with that to turkey lysozyme between pH 2 and 8. The pH dependence of the binding constant for (GlcNAc)3 to turkey lysozyme could be interpreted entirely in terms of perturbation of catalytic carboxyls. In the case of hen lysozyme, it was interpreted in terms of perturbation of the catalytic carboxyls and Asp 101 in the substrate-binding site. The pK values of Asp 101 in hen lysozyme and the hen lysozyme-(GLcNAc)3 complex were 4.5 and 3.4, respectively. The binding constants of (GlcNAc)3 to lysozyme molecules with different microscopic protonation forms, with respect to the catalytic carboxyls, were estimated. The binding constant of lysozyme, in which Asp 52 and Glu 35 are deprotonated, to (GlcNAc)3 was the smallest. The other three species had similar binding constant to (GlcNAc)3. 相似文献
4.
J J Pueyo J Sancho D E Edmondson C Gómez-Moreno 《European journal of biochemistry》1989,183(3):539-544
The electrostatically stabilized complex between Anabaena variabilis ferredoxin--NADP+ reductase and Azotobacter vinelandii flavodoxin has been covalently cross-linked by treatment with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The covalent complex exhibits a molecular mass and FMN/FAD content consistent with that expected for a 1:1 stoichiometry of the two flavoproteins. Immunochemical cross-reactivity is exhibited by the covalent complex with rabbit antisera prepared separately against each protein. The complex retains NADPH-ferricyanide diaphorase activity although the Km for ferricyanide is increased twofold and the turnover number is decreased by a factor of two when compared to native reductase. NADPH-cytochrome-c reductase activity of the complex is observed at a level that is quite similar to that determined at saturating concentrations of flavodoxin, while it is only 1-2% of that exhibited by the reductase in the presence of ferredoxin. No stimulation of cytochrome-c reductase activity is observed on adding ferredoxin to the cross-linked complex. Stopped-flow data show that covalent cross-linking of the flavodoxin to the reductase reduces the rate of electron transfer from its semiquinone form to cytochrome c by a factor of 60. Anaerobic titrations of the reduced complex with NADP+ show the semiquinone/quinol couple of the flavodoxin is increased 100 mV relative to the free form and the quinone/quinol couple of complexed ferredoxin-NADP+ reductase is increased by only 25 mV, relative to the free protein. Addition of NADPH to the cross-linked complex reduces the FAD of the reductase as well as the FMN moiety of flavodoxin to a mixture of semiquinone and quinol forms. 相似文献
5.
6.
The nuclear magnetic resonance spectrum of the 19F nuclei in N-trifluoroacetylated chitotriose was studied in the presence of turkey lysozyme. In contrast to results previously obtained with hen lysozyme, the 19F nmr spectrum of the complex did not show any striking pH dependence. It was, in fact, very similar at all pH's to the spectrum of the trisaccharide complexed with hen lysozyme at low pH, where Asp 101 is protonated. The replacement of Asp 101 in turkey lysozyme by a glycine is thought to account for this difference and the results allow unequivocal assignment of a value of 4.2 to the pKa of Asp 101 in hen lysozyme. The dissociation constant of the chitotriose-turkey lysozyme complex was measured at various pH's using uv difference methods and compared with that previously reported for the hen lysozyme-chitotriose complex. Again, the results could be attributed to the loss in binding energy due to the absence of Asp 101. In contrast to chitotriose, the binding of chitobiose and methyl-2-acetamido-2-deoxy-β-d-glucopyranoside as studied by both uv difference and nmr methods is the same within experimental error for turkey and hen lysozyme. The results obtained for binding of chitobiose suggest that Asp 101 does not contribute as much to the binding energy of the disaccharide as was previously thought. Finally, the specific activities of both of these lysozymes against Micrococcus lysodeikticus were found to be identical. 相似文献
7.
Greg J. Bartling Harry D. Brown Swaraj K. Chattopadhyay 《Biotechnology and bioengineering》1974,16(3):361-369
Hen's egg white lysozyme (EC 3.2.1.17) has been covalently attached to a polystyrene matrix via interaction of protein nucleophiles with an aromatic imidazolide function under anhydrous conditions. The polymer-enzyme complex is prepared in a way which allows nonaqueous solubilization of the complex. The activity of the bound enzyme compares favorably with the activity of the native protein. The pH optima for the matrix-supported protein are shifted toward the basic side. The effect of substrate concentration on rate has been determined. (A preliminary report of this work has been published: G. J. Bartling, H. D. Brown, S. K. Chattopadhyay, Nature 243 , 342–344 (1973).) 相似文献
8.
V Bartlett R R Stewart K Nakatsu 《Canadian journal of physiology and pharmacology》1979,57(10):1130-1137
The receptors mediating inhibition of the rat ileum by adenosine and adenine nucleotides were studied. ATP and ADP were more potent than AMP or adeonsine. Theophylline antagonized the effects of adenosine and AMP but not those of ATP or ADP. Preparations desensitized to ATP or ADP were still inhibited by adenosine and vice versa. The nonadrenergic, noncholinergic inhibition produced by field stimulation or nicotine was not attenuated by the presence of theophylline or desensitization to ATP. These data indicate that more than one adenine derivative receptor is present in rat ileum and that ATP and adenosine are unlikely candidates for the unknown transmitter. 相似文献
9.
We have used optically detected magnetic resonance (ODMR) to characterize the degree of solvent availability of the tryptophan residues in lysozyme that are likely to be responsible for the observed phosphorescence. From the phosphorescence spectra, ODMR zero-field splittings (zfs), and ODMR line widths, we concur with the X-ray structure [Blake, C. C., Mair, G. A., North, A. C. T., Phillips, D. C., & Sarma, V. R. (1967) Proc. R. Soc. London, ser. B 167, 365-377] that Trp-62 behaves as an exposed residue and Trp-108 is buried. In addition, we present evidence that ODMR can be used in conjunction with conventional phosphorescence to evaluate the degree of order in the microenvironments of tryptophan in a protein containing several tryptophans. By the specific modification of residues Trp-62 and Trp-108, we have identified those portions of the ODMR lines in the native enzyme that are due to those specific residues. Barring major enzyme conformational changes in the vicinity of unmodified tryptophan residues when Trp-62 or Trp-108 are selectively modified, we find that Trp-108 dominates both the phosphorescence and the ODMR signals in native lysozyme. The results are discussed in view of previous fluorescence findings. 相似文献
10.
11.
Penicillinase (beta-lactamase I, EC 3.5.2.6) secreted by Bacillus cereus, strain 569/H, was covalently attached to aminoethyl cellulose via glutaraldehyde. The immobilized derivative shows increased thermostability and decreased susceptibility to conformational changes induced by certain substrates of penicillinase. The decline in the rate of hydrolysis of such substrates was consequently suppressed by immobilization. A marked increase in Km was observed with all substrates except for the unsubstituted 6-aminopenicillanic acid. The altered properties of the new derivative are attributed to the constraint imposed by immobilization on the conformational flexibility of the enzyme molecule. Thus, apart from obvious technological interest, immobilized penicillinase provides a useful model for the study of the role of flexibility in the function of an enzyme. 相似文献
12.
Hemoglobin A, cross-linked between Lys 99 alpha 1 and Lys 99 alpha 2, was used to obtain a partially oxidized tetramer in which only one of the four hemes remains reduced. Because of the absence of dimerization, asymmetric, partially oxidized derivatives are stable. This is evidenced by the fact that eight of the ten possible oxidation states could be resolved by analytical isoelectric focusing. A triply oxidized hemoglobin population HbXL+3 was isolated whose predominant component was (alpha + alpha +, beta + beta 0). This triferric preparation was examined as a possible model for the triliganded state of ferrous HbA. The aquomet and cyanomet derivatives were characterized by their CD spectra and their kinetic reactions with carbon monoxide. CD spectra in the region of 287 nm showed no apparent change in quaternary structure upon binding ligand to the fourth, ferrous heme. The spectra of the oxy and deoxy forms of the cyanomet and aquomet derivatives of HbXL+3 differed insignificantly and were characteristic of the normal liganded state. Upon addition of inositol hexaphosphate (IHP), both the oxy and deoxy derivatives of the high-spin triaquomet species converted to the native deoxy conformation. In contrast, IHP had no such effect on the conformation of the low-spin cyanomet derivatives of HbXL+3. The kinetics of CO combination as measured by stopped-flow and flash photolysis techniques present a more complex picture. In the presence of IHP the triaquomet derivative does bind CO with rate constants indicative of the T state whether these are measured by the stopped-flow technique or by flash photolysis.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
13.
The stopped-flow chemical modification with N-bromosuccinimide (NBS) of Trp 62 of hen (chicken) egg white lysozyme (EC 3.2.1.17) was found to depend greatly on pH: it was not observed at pH's above 7, but it was observed at pH's lower than 6. In addition, at pH's between 6 and 7 the NBS modification showed a delta epsilon pH profile similar to a "titration curve," giving a pK (congruent to 6.5) nearly equal to the pK (congruent to 6.2) of a catalytic residue, Glu 35. The stopped-flow chemical (NBS) modification of N-acetyl-L-tryptophan ethyl ester, a model compound of Trp 62, does not depend on pH at the pH's examined, approximately 3.5-8.5. These experimental results suggest that a change in the state of Trp 62 at Subsite C is induced by protonation-deprotonation of an ionizable residue, which could be Glu 35 (catalytic site), indicating that stopped-flow NBS modification is a good probe for detection of changes in the micorenvironment around the tryptophan residue(s) of enzymes. 相似文献
14.
Purification and properties of a cross-linked complex between cytochrome c and cytochrome c peroxidase. 总被引:4,自引:2,他引:2 下载免费PDF全文
Cytochrome c (horse heart) was covalently linked to yeast cytochrome c peroxidase by using the cleavable bifunctional reagent dithiobis-succinimidyl propionate in 5 mM-sodium phosphate buffer, pH 7.0. A cross-linked complex of molecular weight 48 000 was purified in approx. 10% yield from the reaction mixture, which contained 1 mol of cytochrome c and 1 mol of cytochrome c peroxidase/mol. Of the total 40 lysine residues, four to six were blocked by the cross-linking agent. Dithiobis-succinimidylpropionate can also cross-link cytochrome c to ovalbumin, but cytochrome c peroxidase is the preferred partner for cytochrome c in a mixture of the three proteins. The cytochrome c cross-linked to the peroxidase can be rapidly reduced by free cytochrome c-557 from Crithidia oncopelti, and the equilibrium obtained can be used to calculate a mid-point oxidation-reduction potential for the cross-linked cytochrome of 243 mV. Mitochondrial NADH-cytochrome c reductase will reduce the bound cytochrome only very slowly, but the rate of reduction by ascorbate at high ionic strength approaches that for free cytochrome c. Bound cytochrome c reduced by ascorbate can be re-oxidized within 10s by the associated peroxidase in the presence of equimolar H2O2. In the standard peroxidase assay the cross-linked complex shows 40% of the activity of the free peroxidase. Thus the intrinsic ability of each partner in the complex to take part in electron transfer is retained, but the stable association of the two proteins affects access of reductants. 相似文献
15.
p62cdc23 of Saccharomyces cerevisiae: a nuclear tetratricopeptide repeat protein with two mutable domains. 总被引:8,自引:2,他引:8 下载免费PDF全文
CDC23 is required in Saccharomyces cerevisiae for cell cycle progression through the G2/M transition. The CDC23 gene product contains tandem, imperfect repeats, termed tetratricopeptide repeats, (TPR) units common to a protein family that includes several other nuclear division CDC genes. In this report we have used mutagenesis to probe the functional significance of the TPR units within CDC23. Analysis of truncated derivatives indicates that the TPR block of CDC23 is necessary for the function or stability of the polypeptide. In-frame deletion of a single TPR unit within the repeat block proved sufficient to inactivate CDC23 in vivo, though this allele could rescue the temperature-sensitive defect of a cdc23 point mutant by intragenic complementation. By both in vitro and in vivo mutagenesis techniques, 17 thermolabile cdc23 alleles were produced and examined. Fourteen alleles contained single amino acid changes that were found to cluster within two distinct mutable domains, one of which encompasses the most canonical TPR unit found in CDC23. In addition, we have characterized CDC23 as a 62-kDa protein (p62cdc23) that is localized to the yeast nucleus. Our mutagenesis results suggest that TPR blocks form an essential domain within members of the TPR family. 相似文献
16.
The interactions of the substrate analogs beta-methyl-GlcNAc, (GlcNAc)2, and (GlcNAc)3 with hen egg-white lysozyme [EC 3.2.1.17] in which an ester linkage had been formed between Glu 35 and Trp 108 (108 ester lysozyme), were studied by the circular dichroic and fluorescence techniques, and were compared with those for intact lysozyme. The binding constants of beta-methyl-GlcNAc and (GlcNAc)2 to 108 ester lysozyme were essentially the same as those for intact lysozyme in the pH range of 1 to 5. Above pH 5, the binding constants of these saccharides to 108 ester lysozyme did not change with pH, while the binding constants to intact lysozyme decreased. This indicates that Glu 35 (pK 6.0 in intact lysozyme) participates in the binding of these saccharides. The extent and direction of the pK shifts of Asp 52 (pK 3.5), Asp 48 (pK 4.4), and Asp 66 (pK 1.3) observed when beta-methyl-GlcNAc is bound to 108 ester lysozyme were the same as those for intact lysozyme. The participation of Asp 101 and Asp 66 in the binding of (GlcNAc)2 to 108 ester lysozyme was also the same as that for intact lysozyme. These findings indicate that the conformations of subsites B and C are not changed by the formation of the ester linkage. On the other hand, the binding constants of (GlcNAc)3 to 108 ester lysozyme were higher than those for intact lysozyme at all pH values studied. This result is interpreted in terms of an increase in the affinity for a GlcNAc residue of subsite D, which is situated near the esterified Glu 35. 相似文献
17.
Isolation and properties of two actin-binding domains in gelsolin 总被引:16,自引:0,他引:16
D J Kwiatkowski P A Janmey J E Mole H L Yin 《The Journal of biological chemistry》1985,260(28):15232-15238
Gelsolin is a Ca2+-sensitive 90-kDa protein which regulates actin filament length. A molecular variant of gelsolin is present in plasma as a 93-kDa protein. Functional studies have shown that gelsolin contains two actin-binding sites which are distinct in that after Ca2+-mediated binding, removal of free Ca2+ releases actin from one site but not from the other. We have partially cleaved human plasma gelsolin with alpha-chymotrypsin and identified two distinct actin-binding domains. Peptides CT17 and CT15, which contain one of the actin-binding domains, bind to actin independently of Ca2+; peptides CT54 and CT47, which contain the other domain, bind to actin reversibly in response to changes in Ca2+ concentration. These peptides sequester actin monomers inhibiting polymerization. Unlike intact gelsolin, neither group of peptides nucleates actin assembly or forms stable filament end caps. CT17 and CT15 can however sever actin filaments. Amino acid sequence analyses place CT17 at the NH2 terminus of gelsolin and CT47 at the carboxyl-terminal two-thirds of gelsolin. Circular dichroism measurements show that Ca2+ induces an increase in the alpha-helical content of CT47. These studies provide a structural basis for understanding the interaction of gelsolin with actin and allow comparison with other Ca2+-dependent actin filament severing proteins. 相似文献
18.
Reduction of lysozyme by diborane, followed by air oxidation of the reduced disulfides and chromatography on CM-cellulose, yielded a homogeneous derivative. In the derivative, the carboxyl groups of aspartic acid 119 and the end-chain leucine residue were reduced to their corresponding alcohols. Correct re-forming of the disulfide bonds was demonstrated by peptide mapping of the tryptic hydrolysates of the derivative and lysozyme without breaking the disulfide bonds, followed by identification of the disulfide-containing peptides. Correct disulfide pairing in the two-disulfide peptide in the tryptic hydrolysate was established from its immunochemical behavior. Preparations of the two-disulfide fragment from lysozyme and derivative had equal inhibitory activities (26 or 32%) of the reaction of lysozyme with two homologous antisera. In ORD measurements, lysozyme and the derivative had equal rotatory powers at neutral pH. However, the bo value for the derivative decreased by about 10%. Below pH 6.4 and above pH 8.0, the derivative was less rotatory than native lysozyme. In CD measurements at neutral pH, the negative ellipticity bands at 220 and 208 nm showed little or no decrease in the derivative relative to the native protein. Although conformational differences between the derivative and its parent protein were almost undetectable by ORD and CD measurements, they were readily detected by chemical monitoring of the conformation. In the derivative, both accessibility to tryptic hydrolysis and reducibility of the disulfide bonds increased markedly. The enzymic activity of the derivative was decreased but retained the same pH optimum. With antisera to lysozyme or antisera to the derivative, lysozyme and its derivative possessed equal antigenic reactivities. The immunochemical findings further confirm the correct refolding of the disulfides. Also, they indicate that aspartic acid 119 and the C-terminal leucine residue are not part of an antigenic reactive region in lysozyme. 相似文献
19.
Importance of van der Waals contact between Glu 35 and Trp 109 to the catalytic action of human lysozyme. 总被引:1,自引:1,他引:1 下载免费PDF全文
M. Muraki S. Goda H. Nagahora K. Harata 《Protein science : a publication of the Protein Society》1997,6(2):473-476
The importance of van der Waals contact between Glu 35 and Trp 109 to the active-site structure and the catalytic properties of human lysozyme (HL) has been investigated by site-directed mutagenesis. The X-ray analysis of mutant HLs revealed that both the replacement of Glu 35 by Asp or Ala, and the replacement of Trp 109 by Phe or Ala resulted in a significant but localized change in the active-site cleft geometry. A prominent movement of the backbone structure was detected in the region of residues 110 to 120 and in the region of residues 100 to 115 for the mutations concerning Glu 35 and Trp 109, respectively. Accompanied by the displacement of the main-chain atoms with a maximal deviation of C alpha atom position ranging from 0.7 A to 1.0 A, the mutant HLs showed a remarkable change in the catalytic properties against Micrococcus luteus cell substrate as compared with native HL. Although the replacement of Glu 35 by Ala completely abolished the lytic activity, HL-Asp 35 mutant retained a weak but a certain lytic activity, showing the possible involvement of the side-chain carboxylate group of Asp 35 in the catalytic action. The kinetic consequence derived from the replacement of Trp 109 by Phe or Ala together with the result of the structural change suggested that the structural detail of the cleft lobe composed of the residues 100 to 115 centered at Ala 108 was responsible for the turnover in the reaction of HL against the bacterial cell wall substrate. The results revealed that the van der Waals contact between Glu 35 and Trp 109 was an essential determinant in the catalytic action of HL. 相似文献
20.
A stable covalent complex was prepared by cross-linking adrenodoxin reductase with adrenodoxin using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The covalent complex was purified extensively until free components were removed completely. The major component of the complex had a molecular weight of 63 kDa, which corresponds to a 1:1 stoichiometric complex between adrenodoxin reductase and adrenodoxin. NADPH-cytochrome c reduction activity of the covalent complex was comparable to that of an equimolar mixture of adrenodoxin reductase and adrenodoxin (native complex), and the NADPH-ferricyanide reduction activity of the complex was equal to that of the native one. In contrast to the native complex, the covalent complex produced much less superoxide upon NADPH-oxidation, and the covalent complex was found to be more stable than the native complex, suggesting that the complex state is more favorable for catalysis. From these results, we conclude that the adrenodoxin molecule does not need to dissociate from the complex during electron transfer from NADPH to cytochrome c. 相似文献