首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Elongation factor 2 (eEF-2) is a 100-kD protein that catalyzes the ribosomal translocation reaction, resulting in the movement of ribosomes along mRNA. eEF-2 is the target for a very specific Ca2+/calmodulin-dependent eEF-2 kinase. Phosphorylation of eEF-2 makes it inactive in translation, which suggests that protein synthesis can be regulated by Ca2+ through eEF-2 phosphorylation. Recent data demonstrate that eEF-2 phosphorylation can be involved in cell-cycle regulation and other processes where changes of intracellular Ca2+ concentration induce a new physiological state of a cell. The main role of eEF-2 phosphorylation in these processes is temporary inhibition of overall translation in response to transient elevation of the Ca2+ concentrations in the cytoplasm. Temporary inhibition of translation may trigger the transition of a cell from one physiologic state into another because of the disappearance of short-lived repressors and thus the activation of expression of new genes.  相似文献   

2.
Phosphorylation of translation elongation factor 2(eEF-2) by a specific Ca2+/calmodulin-dependent eEF-2 kinase plays an important role in the regulation of protein synthesis in mammalian cells. We show here that an eEF-2 kinase similar to the mammalian enzyme is present in tissues of the amphibian Xenopus laevis. We investigated changes in the activity of eEF-2 kinase in extracts of Xenopus oocytes at different stages of oogenesis. The eEF-2 kinase activity was constant from stage I to stage IV of oogenesis, but dramatically decreased after stage IV. Extracts of fully grown stage-VI oocytes showed no eEF-2 kinase activity. However, when extracts were analyzed by two-dimensional gel electrophoresis, eEF-2 was found to be present mostly, if not exclusively, in the dephosphorylated form throughout oogenesis. It is suggested that eEF-2 kinase disappears late in oogenesis to make protein synthesis insensitive to changes in intracellular Ca2+ concentration. This may be important for the induction of meiotic maturation.  相似文献   

3.
Eukaryotic elongation factor 2 kinase (eEF-2K) is an atypical protein kinase regulated by Ca(2+) and calmodulin (CaM). Its only known substrate is eukaryotic elongation factor 2 (eEF-2), whose phosphorylation by eEF-2K impedes global protein synthesis. To date, the mechanism of eEF-2K autophosphorylation has not been fully elucidated. To investigate the mechanism of autophosphorylation, human eEF-2K was coexpressed with λ-phosphatase and purified from bacteria in a three-step protocol using a CaM affinity column. Purified eEF-2K was induced to autophosphorylate by incubation with Ca(2+)/CaM in the presence of MgATP. Analyzing tryptic or chymotryptic peptides by mass spectrometry monitored the autophosphorylation over 0-180 min. The following five major autophosphorylation sites were identified: Thr-348, Thr-353, Ser-445, Ser-474, and Ser-500. In the presence of Ca(2+)/CaM, robust phosphorylation of Thr-348 occurs within seconds of addition of MgATP. Mutagenesis studies suggest that phosphorylation of Thr-348 is required for substrate (eEF-2 or a peptide substrate) phosphorylation, but not self-phosphorylation. Phosphorylation of Ser-500 lags behind the phosphorylation of Thr-348 and is associated with the Ca(2+)-independent activity of eEF-2K. Mutation of Ser-500 to Asp, but not Ala, renders eEF-2K Ca(2+)-independent. Surprisingly, this Ca(2+)-independent activity requires the presence of CaM.  相似文献   

4.
It is well established that insulin and serum stimulate gene expression at the level of mRNA translation in animal cells, and previous studies have mainly focused on the initiation process. Here we show that, in Chinese hamster ovary cells expressing the human insulin receptor, insulin causes decreased phosphorylation of elongation factor eEF-2 and that this is associated with stimulation of the rate of peptide-chain elongation. eEF-2 is phosphorylated by a very specific Ca 2+/calmodulin-dependent protein kinase (eEF-2 kinase) causing its complete inactivation. The decrease in eEF-2 phosphorylation induced by insulin reflects a fall in eEF-2 kinase activity. Rapamycin, a macrolide immunosuppressant which blocks the signalling pathway leading to the stimulation of the 70/85 kDa ribosomal protein S6 kinases, substantially blocks the activation of elongation, the fall in eEF-2 phosphorylation and the decrease in eEF-2 kinase activity, suggesting that p7O S6 kinase (p70s6k) and eEF-2 kinase may tie on a common signalling pathway. Wortmannin, an inhibitor of phosphatidylinositide-3-OH kinase, had similar effects. eEF-2 kinase was phosphorylated in vitro by purified p70s6k but this had no significant effect on the in vitro activity of eEF-2 kinase.  相似文献   

5.
Previously, eEF-2 phosphorylation has been identified as a reversible mechanism involved in the inhibition of the elongation phase of translation. In this study, an increased level of phosphorylation of eukaryotic elongation factor-2 (eEF-2) was observed in the brains and livers of hibernating ground squirrels. In brain and liver from hibernators, eEF-2 kinase activity was increased relative to that of active animals. The activity of protein phosphatase 2A (PP2A), a phosphatase that dephosphorylates eEF-2, was also decreased in brain and liver from hibernators. This was associated with an increase in the level of inhibitor 2 of PP2A (I(2)(PP2A)), although there was an increase in the level of the catalytic subunit of PP2A (PP2A/C) in hibernating brains and livers. These results indicate that eEF-2 phosphorylation represents a specific and previously uncharacterized mechanism for inhibition of the elongation phase of protein synthesis during hibernation. Increased levels of eEF-2 phosphorylation in hibernators appear to be a component of the regulated shutdown of cellular functions that permits hibernating animals to tolerate severe reductions in cerebral blood flow and oxygen delivery capacity.  相似文献   

6.
《Autophagy》2013,9(3):393-396
The phosphorylation of the subunit α of eukaryotic translation initiation factor 2 (eIF2α), a critical regulatory event in controlling protein translation, has recently been found to mediate the induction of autophagy. However, the mediators of autophagy downstream of eIF2α remain unknown. Here, we provide evidence that eIF2α phosphorylation is required for phosphorylation of eukaryotic elongation factor 2 (eEF-2) during nutrient starvation. In addition, we show that eukaryotic elongation factor 2 kinase (eEF-2K) is also required for autophagy signaling during ER stress, suggesting that phosphorylation

of eEF-2 may serve as an integrator of various cell stresses for autophagy signaling. On the other hand, although the activation of eEF-2K in response to starvation requires the phosphorylation of eIF2α, additional pathways relying partly on Ca2+ flux may control eEF-2K activity during ER stress, as eIF2α phosphorylation is dispensable for both eEF-2 phosphorylation and autophagy in this context.  相似文献   

7.
The effects of the cyanobacterial toxin and protein phosphatase inhibitor, microcystin, on translation in rabbit reticulocyte lysates have been studied. Microcystin inhibited translation with similar potency to the protein phosphatase inhibitor okadaic acid. Unlike low concentrations of okadaic acid, however, it inhibited both the initiation and elongation stages. This was demonstrated using EGTA to inhibit the phosphorylation and inactivation of elongation factor eEF-2. A method for detecting changes in eEF-2 phosphorylation was developed. eEF-2 was found to exist as three different species: eEF-2 was largely monophosphorylated in reticulocyte lysates under control conditions, the remainder being unphosphorylated. Okadaic acid and microcystin increased the level of the bisphosphorylated species. The implications of multiple phosphorylation of eEF-2 for the control of translation is discussed. Microcystin was also found to increase the phosphorylation of eIF-2 alpha (and therefore to inhibit initiation) at lower concentrations than okadaic acid, suggesting that the major eIF-2 alpha phosphatase in the reticulocyte lysate is phosphatase-1.  相似文献   

8.
The eukaryotic elongation factor 2 kinase (eEF-2K) modulates the rate of protein synthesis by impeding the elongation phase of translation by inactivating the eukaryotic elongation factor 2 (eEF-2) via phosphorylation. eEF-2K is known to be activated by calcium and calmodulin, whereas the mTOR and MAPK pathways are suggested to negatively regulate kinase activity. Despite its pivotal role in translation regulation and potential role in tumor survival, the structure, function, and regulation of eEF-2K have not been described in detail. This deficiency may result from the difficulty of obtaining the recombinant kinase in a form suitable for biochemical analysis. Here we report the purification and characterization of recombinant human eEF-2K expressed in the Escherichia coli strain Rosetta-gami 2(DE3). Successive chromatography steps utilizing Ni-NTA affinity, anion-exchange, and gel filtration columns accomplished purification. Cleavage of the thioredoxin-His(6)-tag from the N-terminus of the expressed kinase with TEV protease yielded 9 mg of recombinant (G-D-I)-eEF-2K per liter of culture. Light scattering shows that eEF-2K is a monomer of ~85 kDa. In vitro kinetic analysis confirmed that recombinant human eEF-2K is able to phosphorylate wheat germ eEF-2 with kinetic parameters comparable to the mammalian enzyme.  相似文献   

9.
Overview: phosphorylation and translation control   总被引:3,自引:0,他引:3  
J W Hershey 《Enzyme》1990,44(1-4):17-27
Protein synthesis is controlled by the phosphorylation of proteins comprising the translational apparatus. At least 12 initiation factor polypeptides, 3 elongation factors and a ribosomal protein are implicated. Stimulation of translation correlates with enhanced phosphorylation of eIF-4F, eIF-4B, eIF-2B, eIF-3 and ribosomal protein S6, whereas inhibition correlates with phosphorylation of eEF-2 and the alpha-subunit of eIF-2. Strong evidence for regulatory roles exists for eIF-2, eIF-4F and eEF-2, whereas changes in other factor activities due to phosphorylation remain to be demonstrated. Regulation of the specific activity of the translational apparatus by phosphorylation appears to be a general mechanism for the control of rates of global protein synthesis, and may also play a role in modulating the translation of specific mRNAs.  相似文献   

10.
Apoptosis triggered by endoplasmic reticulum (ER) stress has been implicated in many diseases but its cellular regulation remains poorly understood. Previously, we identified salubrinal (sal), a small molecule that protects cells from ER stress-induced apoptosis by selectively activating a subset of endogenous ER stress-signaling events. Here, we use sal as a probe in a proteomic approach to discover new information about the endogenous cellular response to ER stress. We show that sal induces phosphorylation of the translation elongation factor eukaryotic translation elongation factor 2 (eEF-2), an event that depends on eEF-2 kinase (eEF-2K). ER stress itself also induces eEF-2K-dependent eEF-2 phosphorylation, and this pathway promotes translational arrest and cell death in this context, identifying eEF-2K as a hitherto unknown regulator of ER stress-induced apoptosis. Finally, we use both sal and ER stress models to show that eEF-2 phosphorylation can be activated by at least two signaling mechanisms. Our work identifies eEF-2K as a new component of the ER stress response and underlines the utility of novel small molecules in discovering new cell biology.  相似文献   

11.
Eukaryotic elongation factor 1 (eEF-1) contains the guanine nucleotide exchange factor eEF-1B that loads the G protein eEF-1A with GTP after each cycle of elongation during protein synthesis. Two features of eEF-1B have not yet been elucidated: (i) the presence of the unique valyl-tRNA synthetase; (ii) the significance of target sites for the cell cycle protein kinase CDK1/cyclin B. The roles of these two features were addressed by elongation measurements in vitro using cell-free extracts. A poly(GUA) template RNA was generated to support both poly(valine) and poly(serine) synthesis and poly(phenylalanine) synthesis was driven by a poly(uridylic acid) template. Elongation rates were in the order phenylalanine > valine > serine. Addition of CDK1/cyclin B decreased the elongation rate for valine whereas the rate for serine and phenylalanine elongation was increased. This effect was correlated with phosphorylation of the eEF-1delta and eEF-1gamma subunits of eEF-1B. Our results demonstrate specific regulation of elongation by CDK1/cyclin B phosphorylation.  相似文献   

12.
A system for analyzing covalent modifications of elongation factor-2 (eEF-2) by one-dimensional isoelectric focusing in slab polyacrylamide gels is described. Depending on the degree of phosphorylation, four species of eEF-2 could be resolved corresponding to the un-, mono-, bis-, and trisphosphorylated factor. Furthermore, the degree of ADP-ribosylation of the protein could also be assessed by this method. It was also shown that an acidic isoform of eEF-2 exists which appears not to be artifactual and that the relative level of this isoform appeared to vary between different cell types. By Western blotting the gels and using an antibody against eEF-2 it is possible to assess the state of phosphorylation of the factor in cells.  相似文献   

13.
High continuous hydrostatic pressure is known to inhibit the total cellular protein synthesis. In this study, our goal was to identify pressure-regulated proteins by using two dimensional gel electrophoresis and mass spectrometry. This analysis showed that under 30 MPa continuous hydrostatic pressure the biosynthesis of eukaryotic elongation factor-2 (eEF-2) was inhibited both in HeLa carcinoma and T/C28a4 chondrocytic cell lines. Western blot analysis of HeLa cells revealed that the cellular protein level of eEF-2 decreased by 40%-50% within 12 h of the pressure treatment. However, the steady-state mRNA level of eEF-2 was not affected by the pressure. Cycloheximide addition after 4 h-pressure treatment suggested that the half-life of eEF-2 protein was shorter in pressurized cells. eEF-2 is responsible for the translocation of ribosome along the specific mRNA during translation, and its phosphorylation prevents the ribosomal translocation. Therefore, increased phosphorylation of eEF-2 was considered as one mechanism that could explain the reduced level of protein synthesis in pressurized HeLa cell cultures. However, Western blot analysis with an antibody recognizing the Thr56-phosphorylated form of eEF-2 showed that phosphorylation of eEF-2 was not elevated in pressurized samples. In conclusion, the inhibition of protein synthesis under high pressure occurs independent of the phosphorylation of eEF-2. However, this inhibition may result from the decrease of cellular eEF-2 protein.  相似文献   

14.
The activity of the eukaryotic elongation factor 2 (eEF-2)-specific Ca(2+)- and calmodulin-dependent protein kinase III (CaM PK III) is regulated by phosphorylation. The kinase can be inactivated by treatment with alkaline phosphatase and subsequently reactivated by endogenous protein kinase. This kinase can be substituted for by the catalytic subunit of cAMP-dependent protein kinase but not by casein kinase II. The purified kinase preparation contains only one protein as judged by gel electrophoresis. This protein has a molecular mass of approximately 90 kDa and an isoelectric point of 5.2. Reactivation of the eEF-2 kinase is associated with the phosphorylation of this protein. The amino acid sequence obtained from the 90-kDa protein reveals substantial homology with that of murine heat shock protein 86 (HSP 86) a member of the HSP 90-family. Conventional preparations of HSP 90 contain an inactive eEF-2 kinase that could be activated after dephosphorylation and phosphorylation by the catalytic subunit of cAMP-dependent protein kinase.  相似文献   

15.
Okadaic acid, a tumour promoter which potently inhibits protein phosphatases, inhibited translation in the reticulocyte-lysate cell-free system. Inhibition was dose-dependent, with half-maximal effects occurring at 20-40 nM-okadaic acid. Inhibition of translation by okadaic acid resulted in the accumulation of polyribosomes, indicating that it was due to a decrease in the rate of elongation relative to initiation. Okadaic acid (at concentrations which inhibited translation) caused increased phosphorylation of a number of proteins in the lysate. Prominent among these was a protein of Mr 100,000, which has previously been identified as elongation factor 2 (EF-2). EF-2 is a specific substrate for a Ca2+/calmodulin-dependent protein kinase, which phosphorylates EF-2 on threonine residues. The Mr-100,000 band was phosphorylated exclusively on threonine residues, and its degree of 32P labelling was decreased by the Ca2+ chelator EGTA and by the calmodulin antagonist trifluoperazine. These agents attenuated the effects of okadaic acid on EF-2 phosphorylation and translation. When ranges of concentrations of each agent were tested, their effects on EF-2 labelling correlated well with their ability to reverse the okadaic acid-induced inhibition of translation. These findings demonstrate that increased phosphorylation of EF-2 results in an impairment of peptide-chain elongation when natural mRNA is used. The possible physiological role of EF-2 phosphorylation in the control of translation is discussed.  相似文献   

16.
Cerebral ischaemia is associated with brain damage and inhibition of neuronal protein synthesis. A deficit in neuronal metabolism and altered excitatory amino acid release may both contribute to those phenomena. In the present study, we demonstrate that both NMDA and metabolic impairment by 2-deoxyglucose or inhibitors of mitochondrial respiration inhibit protein synthesis in cortical neurons through the phosphorylation of eukaryotic elongation factor (eEF-2), without any change in phosphorylation of initiation factor eIF-2alpha. eEF-2 kinase may be activated both by Ca(2+)-independent AMP kinase or by an increase in cytosolic Ca2+. Although NMDA decreases ATP levels in neurons, only the effects of 2-deoxyglucose on protein synthesis and phosphorylation of elongation factor eEF-2 were reversed by Na(+) pyruvate. Protein synthesis inhibition by 2-deoxyglucose was not as a result of a secondary release of glutamate from cortical neurons as it was not prevented by the NMDA receptor antagonist 5-methyl-10,11-dihydro-5H-dibenzo-(a,d)-cyclohepten-5,10-imine hydrogen maleate (MK 801), nor to an increase in cytosolic-free Ca2+. Conversely, 2-deoxyglucose likely activates eEF-2 kinase through a process involving phosphorylation by AMP kinase. In conclusion, we provide evidence that protein synthesis can be inhibited by NMDA and metabolic deprivation by two distinct mechanisms involving, respectively, Ca(2+)-dependent and Ca(2+)-independent eEF-2 phosphorylation.  相似文献   

17.
Regulation of elongation factor-2 kinase by pH   总被引:6,自引:0,他引:6  
Dorovkov MV  Pavur KS  Petrov AN  Ryazanov AG 《Biochemistry》2002,41(45):13444-13450
Elongation factor-2 kinase (eEF-2K) is a Ca(2+)/calmodulin-dependent protein kinase that phosphorylates and inactivates eEF-2 and that can regulate the rate of protein synthesis at the elongation stage. Here we report that a slight decrease in pH, within the range observed in vivo, leads to a dramatic activation of eEF-2K. The activity of eEF-2K in mouse liver extracts, as well as the activity of purified recombinant human eEF-2K, is low at pH 7.2-7.4 and is increased by severalfold when the pH drops to 6.6-6.8. eEF-2K requires calmodulin for activity at neutral as well as acidic pH. Kinetic studies demonstrate that the pH does not affect the K(M) for ATP or eEF-2 and activation of eEF-2K at acidic pH is due to an increase in V(max). To analyze the potential role of eEF-2K in regulating protein synthesis by pH, we constructed a mouse fibroblast cell line that expresses eEF-2K in a tetracycline-regulated manner. Overexpression of eEF-2K led to a decreased rate of protein synthesis at acidic pH, but not at neutral pH. Our results suggest that pH-dependent activation of eEF-2K may play a role in the global inhibition of protein synthesis during tissue acidosis, which accompanies such processes as hypoxia and ischemia.  相似文献   

18.
Transient cerebral ischemia, which is accompanied by a sustained release of glutamate and zinc, as well as H(2)O(2) formation during the reperfusion period, strongly depresses protein synthesis. We have previously demonstrated that the glutamate-induced increase in cytosolic Ca(2+) is likely responsible for blockade of the elongation step of protein synthesis, whereas Zn(2+) preferentially inhibits the initiation step. In this study, we provide evidence indicating that H(2)O(2) and thapsigargin mobilized a common intracellular Ca(2+) pool. H(2)O(2) treatment stimulated a slow increase in intracellular Ca(2+), and precluded the effect of thapsigargin on Ca(2+) mobilization. H(2)O(2) stimulated the phosphorylation of both eIF-2alpha and eEF-2, in a time- and dose-dependent manner, suggesting that both the blockade of the elongation and of the initiation step are responsible for the H(2)O(2)-induced inhibition of protein synthesis. However, kinetic data indicated that, at least during the first 15 min of H(2)O(2) treatment, the inhibition of protein synthesis resulted mainly from the phosphorylation of eEF-2. In conclusion, H(2)O(2) inhibits protein translation in cortical neurons by a process that involves the phosphorylation of both eIF-2alpha and eEF-2 and the relative contribution of these two events depends on the duration of H(2)O(2) treatment.  相似文献   

19.
Peptide-chain elongation in eukaryotes   总被引:1,自引:0,他引:1  
The elongation phase of translation leads to the decoding of the mRNA and the synthesis of the corresponding polypeptide chain. In most eukaryotes, two distinct protein elongation factors (eEF-1 and eEF-2) are required for elongation. Each is active as a complex with GTP. eEF-1 is a multimer and mediates the binding of the cognate aminoacyl-tRNA to the ribosome, while eEF-2, a monomer, catalyses the movement of the ribosome relative to the mRNA. Recent work showing that bacterial ribosomes possess three sites for tRNA binding and that during elongation tRNAs may occupy hybrid sites is incorporated into a model of eukaryotic elongation. In fungi, elongation also requires a third factor, eEF-3. A number of mechanisms exist to promote the accuracy or fidelity of elongation: eEF-3 may play a role here. cDNAs for this and the other elongation factors have been cloned and sequenced, and the structural and functional properties of the elongation factors are discussed. eEF-1 and eEF-2 can be regulated by phosphorylation, and this may serve to control rates of elongationin vivo.Abbreviations eEF eukaryotic elongation factor- - PKC protein kinase C  相似文献   

20.
Calmodulin (CaM)-dependent eukaryotic elongation factor 2 kinase (eEF-2K) impedes protein synthesis through phosphorylation of eukaryotic elongation factor 2 (eEF-2). It is subject to complex regulation by multiple upstream signaling pathways, through poorly described mechanisms. Precise integration of these signals is critical for eEF-2K to appropriately regulate protein translation rates. Here, an allosteric mechanism comprising two sequential conformations is described for eEF-2K activation. First, Ca2+/CaM binds eEF-2K with high affinity (Kd(CaM)app = 24 ± 5 nm) to enhance its ability to autophosphorylate Thr-348 in the regulatory loop (R-loop) by > 104-fold (kauto = 2.6 ± 0.3 s−1). Subsequent binding of phospho-Thr-348 to a conserved basic pocket in the kinase domain potentially drives a conformational transition of the R-loop, which is essential for efficient substrate phosphorylation. Ca2+/CaM binding activates autophosphorylated eEF-2K by allosterically enhancing kcatapp for peptide substrate phosphorylation by 103-fold. Thr-348 autophosphorylation results in a 25-fold increase in the specificity constant (kcatapp/Km(Pep-S)app), with equal contributions from kcatapp and Km(Pep-S)app, suggesting that peptide substrate binding is partly impeded in the unphosphorylated enzyme. In cells, Thr-348 autophosphorylation appears to control the catalytic output of active eEF-2K, contributing more than 5-fold to its ability to promote eEF-2 phosphorylation. Fundamentally, eEF-2K activation appears to be analogous to an amplifier, where output volume may be controlled by either toggling the power switch (switching on the kinase) or altering the volume control (modulating stability of the active R-loop conformation). Because upstream signaling events have the potential to modulate either allosteric step, this mechanism allows for exquisite control of eEF-2K output.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号