首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth rate of normal cells multiplied in vitro decreases as the cell density of the culture increases. Previous results suggested that this density-dependent inhibition of growth in nontransformed cells was due to the diffusion of growth inhibitory substances in the medium of dense cultures. In this paper, we demonstrate that dense cultures of 3T3 cells secrete inhibitory and stimulatory factors. Macromolecules of conditioned medium were fractionated on Biogel P150 and the different fractions were tested on quiescent cultures of 3T3 cells stimulated or not to proliferate by addition of alpha globulin. When target cells were not stimulated to proliferate by addition of exocrine growth factors, we observed the inhibitory activity of a large molecular weight inhibitor (IDF45) and the stimulatory activity of autocrine growth factors (fraction about 35 and 10 K molecular weight), on the incorporation of 14C inosine into nucleotide pool and RNA. However, DNA synthesis was significantly stimulated with fraction 10 K only. This discrepancy between the stimulation of RNA and DNA synthesis may be explained by the presence, simultaneously, of inhibitory and stimulatory factors in fraction 35 and 10 K molecular weight. The presence of inhibitory factor was demonstrated when the fractions were tested on target cells stimulated to proliferate by alpha globulin addition and labeled with 14C thymidine. In these conditions, the stimulatory activity of autocrine growth factors was not observable, and only the inhibitory activity on DNA synthesis of fractions 35 and 10 K appeared. It is tempting to assume that the regulation of in vitro cell proliferation is determined by the balance between these antagonist stimulatory and inhibitory autocrine growth factors.  相似文献   

2.
3.
4.
In the present study, a dynamic mathematical model for the growth of granulocyte progenitor cells in the hematopoietic process is developed based on the principles of diffusion and chemical reaction. This model simulates granulocyte progenitor cell growth and oxygen consumption in a three-dimensional (3-D) perfusion bioreactor. Material balances on cells are coupled to the nutrient balances in 3-D matrices to determine the effects of transport limitations on cell growth. The method of volume averaging is used to formulate the material balances for the cells and the nutrients in the porous matrix containing the cells. All model parameters are obtained from the literature. The maximum cell volume fraction reached when oxygen is depleted in the cell layer at 15 days and is nearly 0.63, corresponding to a cell density of 2.25 x 10(8) cells/mL. The substrate inhibition kinetics for cell growth lead to complex effects with respect to the roles of oxygen concentration and supply by convection and diffusion on cell growth. Variation in the height of the liquid layer above the cell matrix where nutrient supply is introduced affected the relative and absolute amounts of oxygen supply by hydrodynamic flow and by diffusion across a gas permeable FEP membrane. Mass transfer restrictions of the FEP membrane are considerable, and the supply of oxygen by convection is essential to achieve higher levels of cell growth. A maximum growth rate occurs at a specific flow rate. For flow rates higher than this optimal, the high oxygen concentration led to growth inhibition and for lower flow rates growth limitations occur due to insufficient oxygen supply. Because of the nonlinear effects of the autocatalytic substrate inhibition growth kinetics coupled to the convective transport, the rate of growth at this optimal flow rate is higher than that in a corresponding well-mixed reactor where oxygen concentration is set at the maximum indicated by the inhibitory kinetics.  相似文献   

5.
Litter decomposition provides nutrients that sustain ecosystem productivity, but litter may also hamper root proliferation. The objectives of this work were to assess the inhibitory effect of litter decomposition on seedling growth and root proliferation; to study the role of nutrient immobilization and phytotoxicity; and to characterize decomposing litter by (13)C NMR spectroscopy. A litter-bag experiment was carried out for 180 d with 16 litter types. Litter inhibitory effects were assessed by two bioassays: seed germination and root proliferation bioassays. Activated carbon (C) and nutrient solutions were used to evaluate the effects of phytotoxic factors and nutrient immobilization. An inhibitory effect was found for all species in the early phase of decomposition, followed by a decrease over time. The addition of activated C to litter removed this inhibition. No evidence of nutrient immobilization was found in the analysis of nitrogen dynamics. NMR revealed consistent chemical changes during decomposition, with a decrease in O-alkyl and an increase in alkyl and methoxyl C. Significant correlations were found among inhibitory effects, the litter decay rate and indices derived from NMR. The results show that it is possible to predict litter inhibitory effects across a range of litter types on the basis of their chemical composition.  相似文献   

6.
The physiological and molecular effects of tobacco smoke in adult humans and the development of cancer have been well described. In contrast, how tobacco smoke affects embryonic development remains poorly understood. Morphological studies of the fetuses of smoking pregnant women have shown various physical deformities induced by constant fetal exposure to tobacco components, especially nicotine. In addition, nicotine exposure decreases fetal body weight and bone/cartilage growth in addition to decreasing cranial diameter and tibia length. Unfortunately, the molecular pathways leading to these morphological anomalies are not completely understood. In this study, we applied interactome data mining tools and small compound interaction networks to elucidate possible molecular pathways associated with the effects of tobacco smoke components during embryonic development in pregnant female smokers. Our analysis showed a relationship between nicotine and 50 additional harmful substances involved in a variety of biological process that can cause abnormal proliferation, impaired cell differentiation, and increased oxidative stress. We also describe how nicotine can negatively affect retinoic acid signaling and cell differentiation through inhibition of retinoic acid receptors. In addition, nicotine causes a stress reaction and/or a pro-inflammatory response that inhibits the agonistic action of retinoic acid. Moreover, we show that the effect of cigarette smoke on the developing fetus could represent systemic and aggressive impacts in the short term, causing malformations during certain stages of development. Our work provides the first approach describing how different tobacco constituents affect a broad range of biological process in human embryonic development.  相似文献   

7.
Li WM  Huang WQ  Huang YH  Jiang DZ  Wang QR 《Cytokine》2000,12(7):1017-1023
Recently, cytokines and interleukins such as SCF, GM-CSF, G-CSF, TGF-beta, IL-6, IL-7, IL-8, IL-11 have been reported to be elaborated by endothelial cells. For further study, serum free bone marrow endothelial cell conditioned medium (BMEC-CM) was collected and ultrafiltrated by using a centriprep 10. The concentrated retentate (R-BMEC-CM) contained some substances whose molecular weight was more than 10 000 daltons. The filtrate (F-BMEC-CM) contained some substances whose molecular weight was less than 10 000 daltons. The effects of R-BMEC-CM and F-BMEC-CM on the growth of haematopoietic progenitors and the expression of cytokine and interleukin mRNAs of BMEC were investigated. The results showed that R-BMEC-CM stimulated the growth of CFU-GM, HPP-CFC, BFU-E, CFU-E, and CFU-Meg; while F-BMEC-CM inhibited the growth of these progenitors. Using the method of hybridizing to the Atlas cDNA Array, we were able to detect the presence of mRNAs of cytokines and interleukins in bone marrow endothelial cells. Our finding of the existence of mRNAs of SCF, GM-CSF, IL-6, TGF-beta, IL-1, and IL-11 in these cells was in agreement with the data reported previously. Furthermore, we detected mRNAs of MIP-2, Thymosion-beta4, PDGF, MSP-1, IFN-gamma, IL-13 and inhibin, which are related to haematopoiesis. Among these cytokines and interleukins, SCF, GM-CSF, IL-6, IL-1, and IL-11 are haematopoietic stimulators which may be responsible for the stimulative effects on the growth of haematopoietic progenitors. One of our new findings, the thymosin-beta4, is a small molecular haematopoietic inhibitor. It may be responsible for the inhibitory effect of F-BMEC-CM on haematopoietic progenitors. The presence of mRNAs of BMP, MSP-1, MIP-2, PDGF and IL-13 suggests that bone marrow endothelial cells might elaborate these substances. Their influence on haematopoietic progenitors needs further study.  相似文献   

8.
Commercial preparations of human chorionic gonadotropin (hCG) inhibited chemical induction of δ -aminolevulinic acid synthetase and porphyrin formation in chick embryo liver cell cultures. The inhibition was not attributable to hCG since highly purified preparations of the hormone were not inhibitory. After fractionation of crude hCG on Sephadex G-100, inhibitory activity was found in two fractions, one of slightly smaller and one of much smaller molecular weight than hCG. Thus partially purified hCG may have other biologic effects than those caused by the hormone itself. Moreover, the occurrence of substances in crude hCG which at low concentrations can interfere with drug and hormone effects on liver cells is of biologic and potential clinical interest.  相似文献   

9.
JS-K, a non-ionic diazeniumdiolate derivative, is capable of arylating nucleophiles and spontaneously generating nitric oxide (NO) at physiological pH. This recently synthesized low molecular weight compound is shown here to be an inhibitor of cell growth with concomitant activation of mitogen-activated protein kinase (MAPK) members ERK, JNK, and p38 and their downstream effectors c-Jun and AP-1. Inhibitors of these MAPK pathways abrogated the growth inhibitory actions of JS-K. In addition to the well-described actions of JNK as a kinase for c-Jun, we show that c-Jun is also an ERK target. Furthermore, JS-K generated NO in culture and NO inhibitors antagonized both MAPK induction and the growth inhibitory effects of JS-K. These results suggest two possible mechanisms for the mediation of JS-K growth inhibitory actions, namely NO-induction of MAPK pathway constituents as well as possible arylation reactions. The data support the idea that prolonged MAPK activation by JS-K action is important in mediating its growth-inhibitory actions. JS-K thus represents a promising platform for novel growth inhibitory analog synthesis.  相似文献   

10.
Polyamines are known to be involved in cell growth regulation in breast cancer. To evaluate the efficacy of bis(ethyl)polyamine analogs for breast cancer therapy and to understand their mechanism of action we measured the effects of a series of polyamine analogs on cell growth, activities of enzymes involved in polyamine metabolism, intracellular polyamine levels, and the uptake of putrescine and spermidine using MCF-7 breast cancer cells. The IC50 values for cell growth inhibition of three of the compounds, N1,N12-bis(ethyl)spermine, N1,N11-bis(ethyl)norspermine, and N1,N14-bis(ethyl)homospermine, were in the range of 1-2 microM. Another group of three compounds showed antiproliferative activity at about 5 microM level. These compounds are also capable of suppressing colony formation in soft agar assay and inducing apoptosis of MCF-7 cells. The highly effective growth inhibitory agents altered the activity of polyamine biosynthetic and catabolic enzymes and down-regulated the transport of natural polyamines, although each compound produced a unique pattern of alterations in these parameters. HPLC analysis showed that cellular uptake of bis(ethyl)polyamines was highest for bis(ethyl)spermine. We also analyzed polyamine analog conformations and their binding to DNA minor or major grooves by molecular modelling and molecular dynamics simulations. Results of these analyses indicate that tetramine analogs fit well in the minor groove of DNA whereas, larger compounds extend out of the minor groove. Although major groove binding was also possible for the short tetramine analogs, this interaction led to a predominantly bent conformation. Our studies show growth inhibitory activities of several potentially important analogs on breast cancer cells and indicate that multiple sites are involved in the mechanism of action of these analogs. While the activity of an analog may depend on the sum of these different effects, molecular modelling studies indicate a correlation between antiproliferative activity and stable interactions of the analogs with major or minor grooves of DNA.  相似文献   

11.
Summary The murine peritoneal cavity contains factors that inhibit the in vitro growth and colony formation of macrophages. The inhibition of macrophage growth is not due to cell death. In the presence of inhibitors, the growth of colony-forming macrophages is suppressed, and small clusters are formed as a result of limited proliferation. The more mature mono-nuclear phagocytes (blood monocytes and peritoneal exudate macrophages) are more sensitive to the overall inhibitory effect of the peritoneal inhibitors than the less mature bone marrow mononuclear phagocytes. Furthermore, using dialysis and Amicon ultrafiltration, at least two inhibitors with differential inhibitory effects can be demonstrated. The colony formation of bone marrow mononuclear phagocytes is suppressed mainly by a protease-resistant, small molecular weight (<1,000) dialyzable inhibitor. In contrast, peritoneal exudate macrophages are sensitive to both the small molecular weight inhibitor and a protease-sensitive, large molecular weight (>12,000), nondialyzable inhibitor. The data suggest a possible existence of a dual inhibitor control on the proliferation of mononuclear phagocytes in vivo. In addition, the in vitro cultured peritoneal exudate cells are capable of producing inhibitors that mimic the activity of the in vivo inhibitors. This investigation was supported by Grants CA 09 11(SY) and AI15563(CCS) from the National Institutes of Health, Bethesda, MD  相似文献   

12.
Fatty acids of different chain lengths were added to cultures of Bacillus subtilis growing in nutrient sporulation medium, and the effects of these fatty acids on growth, oxygen uptake, adenosine triphosphate (ATP) concentration, and membrane protein composition were examined. All fatty acids inhibited growth, the effect being reduced in the presence of glycolytic compounds and reversed by transfer to medium without fatty acids. The inhibition of growth was correlated with a reduction in both the rate of oxygen consumption and the concentration of ATP per cell. The concentration required to obtain a certain degree of inhibition increased with decreasing molecular weight of the fatty acid. However, the reduced nicotinamide adenine dinucleotide oxidation system of cell envelope preparations (i.e., the electron transport system) was not inhibited. Submaximal growth inhibition was accompanied by the relative increase of a membrane protein band revealed by urea-acetic acid gel electrophoresis. This increase was blocked by actinomycin or chloramphenicol. All of the above changes could also be produced by 2,4-dinitrophenol. The inhibition results are best explained by assuming that the fatty acids reversibly react with the cell membrane or proteins in it; they could either alter the membrane structure or uncouple the electron transport chain from two types of proteins, those used for ATP regeneration and others needed for the transport of certain compounds into the cells.  相似文献   

13.
Marini M  Roda LG 《Peptides》2000,21(1):125-135
The possible presence of enzymes able to hydrolyze leucine enkephalin has been investigated in human saliva. The data obtained indicate that, in the presence of saliva, Leu-enkephalin is partially hydrolyzed. The disappearance of the substrate is paired with the formation of hydrolysis byproducts whose composition indicates the presence of all three classes of enzymes known to hydrolyze enkephalins: aminopeptidases, dipeptidylaminopeptidases, and dipeptidylcarboxypeptidases. The presence of low molecular weight substances with inhibitory activity on proteolytic enzymes has also been detected. These substances are active on all three classes of enkephalin-degrading enzymes, although the inhibition is more evident on dipeptidylpeptidases than on aminopeptidases. Substrate degradation was found to be higher in male than in female saliva: this seems to be caused by the activities both of enzymes and low molecular weight inhibitors that are different in the two sexes.  相似文献   

14.
Human keratinocytes are highly responsive to mitogenic and antiapoptotic signaling by the insulin-like growth factor-I receptor (IGF-IR). IGF-IR hyperstimulation is a feature of hyperplastic skin conditions, making the IGF-IR an appealing target for antisense therapeutic intervention. In this study, we used a C5-propynyl-dU,dC-phosphorothioate oligo-2'-deoxyribonucleotide antisense 15-mer to the human IGF-IR mRNA, along with liposome transfection, to inhibit IGF-IR activity in a human keratinocyte cell line and demonstrated potent inhibition of cell growth despite the presence of serum. To investigate the sequence specificity of these effects and to establish the concentration range over which a purely antisense effect could be demonstrated, we introduced 1, 2, 4, 8, and 15 base mismatches into the oligonucleotide and analyzed changes in inhibitory efficacy. In the 10-30 nM concentration range, the introduction of 1 and 2 mismatches into the middle of the 15-mer only modestly affected inhibitory efficacy, whereas >4 mismatches profoundly reduced mRNA, protein, and growth-inhibitory effects. From these results, we conclude that (1) sequence-specific antisense inhibition of IGF-IR activity in keratinocytes is achievable, (2) potent anti-IGF-IR antisense inhibition can be achieved in vitro at concentrations as low as 10 nM, and (3) a sequence-dependent mechanism is likely to underpin the observed in vivo therapeutic effects (Wraight et al. Nat. Biotechnol. 2000;18:521) of these antisense oligonucleotides (AS-ODN) in cutaneous hyperplastic disorders, such as psoriasis.  相似文献   

15.
Summary Supernatants from two human breast carcinoma cell lines, 734B and 231, have been shown to inhibit lymphocyte activation by mitogens and antigens. This inhibition appears to be specific for lymphocytes or recently stimulated cells, while having no effect on the growth of established cell lines. Studies of the mechanism of inhibition revealed that the factors inhibit lymphocyte activation and that the factors must be present at the initiation of lymphocyte stimulation for inhibition to occur. The supernatants do not inhibit lymphocyte activation by blocking binding of PHA to lymphocytes. Preliminary purification steps have shown that the inhibitory factors present in the tissue culture supernatants are precipitated at 50% ammonium sulfate saturation and their molecular weights are greater than 100 000. The inhibitory capacity of the 734B supernatants was destroyed by heating at 70° C, while the factors present in the 231 supernatants were only partially destroyed by heating to 90° C. The possible mechanism of action of the inhibitory substances released by tumors and their relevance to tumor growth are important to understanding of immune responses to neoplasia.  相似文献   

16.
2-(2-hydroxy-ethylsulfanyl)-3-methyl-1,4-naphthoquinone or CPD-5, a K vitamin analog, was previously indicated to be a potent growth inhibitor for Hep 3B hepatoma cells in vitro. Here, we show that CPD-5 and two newly synthesized analogs, 2-(2-hydroxy-ethylsulfanyl)-3-methyl-5- nitro-1,4-naphthoquinone (PD-37) and 2-(2-hydroxy-ethylsulfanyl)-3- methyl-5-acetylamino-1,4-naphthoquinone (PD-42), are potent growth inhibitors of 13 different human cancer cell lines, with IC50 values in the range of 3-54 microM. Phospho-ERK was induced by each of three K vitamin analogs in every cell line in a dose-dependent manner, at growth inhibitory doses. ERK phosphorylation and growth inhibitory effects were strongly correlated, with p=0.0080 for CPD-5, p=0.0076 for PD-37 and p=0.0251 for PD-42. The induction of phospho-ERK and growth inhibition were antagonized by thiol-containing anti-oxidants, but not by catalase, consistent with a possible arylating mechanism. The data show a novel class of growth inhibitors with a wide spectrum of action that induces ERK hyper-phosphorylation, as a possible new growth inhibitory feature.  相似文献   

17.
18.
Objectives:  The aim of this study was to determine whether normal human embryonic stem cells (hESC) would secrete factors that arrest growth of human epithelial cancer cell lines.
Materials and methods:  Cell proliferation was examined using the MTT assay then haemocytometer cell counts. Staining with propidium iodide followed by flow cytometry was used to detect cell cycle stages. Heat denaturation and molecular fractionation experiments were also performed.
Results:  We found that hESC conditioned medium (hESC CM) inhibited SKOV-3 and HEY cell proliferation. Similar results were also obtained when we used breast and prostate cancer cell lines, whereas little or no inhibitory effect was observed when human fibroblasts were tested. Moreover, a co-culture model confirmed that inhibition of cancer cell proliferation is mediated by soluble factors produced by hESCs. We also determined that the proportion of cancer cells in G1 phase was increased by hESC CM treatment, accompanied by decrease in cells in S and G2/M phases, suggesting that the factors slow progression of cancer cells by cell cycle inhibition. Heat denaturation and molecular fractionation experiments indicated a low molecular weight thermostable factor was responsible for these properties.
Conclusions:  Our findings provide evidence that the human embryonic microenvironment contains soluble factor(s) that are capable of inhibiting growth of cancer cells, and that exposure to such factors may represent a new cancer treatment strategy.  相似文献   

19.
Populations of subterranean clover were used to examine the effect of lowering nutrient supply on crowding in even-aged monospecific populations. Two hypotheses were being tested. Under one, termed ‘altered-speed’, reducing the nutrient supply to populations merely slows down the crowding process. Under the other, called ‘altered-form’, reducing the nutrient supply intensifies the crowding process (Morris & Myerscough 1984). The populations were grown at eight densities of sowing and three levels of nutrient supply. Non-thinning yield-density curves and self-thinning lines were fitted to the data. For the thinning populations, reducing the nutrient supply led to altered-form crowding, with thinning lines of reduced slope and intercept for total and shoot weight being observed in populations grown at lower levels of nutrient supply. For the non-thinning yield-density curves, lowering the nutrient supply did alter crowding effects, but not to the extent necessary to give full altered-form crowding. Rather, crowding effects intermediate between altered-speed and altered-form were observed. No altered-speed crowding was observed in this experiment. Comparison was made between the altered-speed crowding observed in other data (Hozumi & Ueno 1954: White & Harper 1970) with the altered-form crowding observed here and elsewhere (Hozumi & Ueno 1954). In these data, altered-form crowding was consistently associated with an increase in the proportion of root in the plants' growth as nutrient level was reduced, while in altered-speed crowding there was a complete lack of any such nutrient effect on root-shoot proportion. This was taken as evidence that under altered-speed crowding, variations in the level of nutrient supply did not lead to major change in the way that plants interfered with each other. For altered-form crowding, major change in the way plants interfered with each other's growth did occur as nutrient level fell.  相似文献   

20.
Cord blood T cells were enriched by nylon wool colomn, and effects of PHA-stimulated T cell supernatant collected from 18 h to 7 days on the proliferation of CFU-c were studied. The results showed that the supernatant collected at 18 h (PHA-TCM) could significantly inhibit the growth of CFU-c and the inhibition was PHA-TCM dose dependent, suggesting there is a CFU-c inhibitory activity in PHA-TCM. Kinetic studies demonstrated that the activity was decreased in the supernatant collected at 48 h and disappeared at 7 days. On the other hand, unstimulated T cell supernatant and PHA alone had no inhibitory effect on CFU-c growth. Indomethacin did not affect the production of the inhibitory activity and no interferon activity could be detected in PHA-TCM. These suggested that the inhibition was mediated by a non-interferon, non-prostaglandin suppressor. Further studies revealed that the suppressor was a protein stable at 56 degrees C and lost in pH 2 and pH 11 for 3 h, its molecular weight was large than 10,000 dolton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号