首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Density-dependent inhibition of growth has been assumed to be under the control of inhibitory molecules diffusing from dense cell cultures. Growth inhibitory factors have been fractionated or purified from medium conditioned by different cell types. In the present work, it was shown that IDF45 (inhibitory factor diffusing from 3T3 cells) decreased DNA synthesis in chick embryo fibroblasts (CEF) and was an inhibitor of CEF growth; this inhibition was reversible. Since similitudes between oncogene products and growth factors have been observed, it was of interest to compare the inhibitory effect of IDF45 upon the stimulation of DNA synthesis induced either by serum or by pp60-src. CEF infected by Ny68 virus (a mutant of Rous sarcoma virus ts for the expression of transformation) were density-inhibited at 41 degrees C, but were stimulated at this temperature by addition of 1% serum. This stimulation was 94% inhibited by IDF45. The same Ny68-infected cells could also be stimulated by transfer to 37 degrees C, the permissive temperature (in the absence of serum). The stimulation of DNA synthesis by src expression was poorly inhibited by IDF45. From our results, it appears that oncogene expression in CEF induces a loss in their sensitivity to IDF45. This would explain why transformed cells escape DDI of growth.  相似文献   

2.
From medium conditioned by 3T3 cells, we had previously purified to apparent homogeneity a novel inhibitory diffusible factor of 45 kDa (IDF45), and then determined the amino-terminal sequence. IDF45 prevented reversibly the growth of chick embryo fibroblast (CEF). In these cells, DNA synthesis stimulated by 1% serum was 50% inhibited in the presence of 45 ng/ml (1 nM) IDF45. In the present article, we show that, in CEF, DNA synthesis stimulated by IGF-I was 100% inhibited in the presence of purified IDF45. Furthermore, the 45-kDa protein (IDF45) was, after Western blotting, able to bind IGF-I. The inhibitory effect of IDF45 upon serum stimulation did not seem to be the result of its inhibitory activity upon IGF-I stimulation, since stimulation by IGF-I and serum were additive. Moreover, it was possible to dissociate the two inhibitory effects: when added to v-src transformed CEF, IDF45 was able to 100% inhibit stimulation induced by IGF-I and was unable to significantly decrease stimulation induced by serum, as was previously observed. Taken together, our results strongly suggest that IDF45 has two distinct functions, one of which was to bind IGF-I and the other to inhibit serum stimulation. Indeed, it was impossible to separate the two functions when IDF45 was purified by cation exchange fast protein liquid chromatography, a method very different from reverse-phase fast protein liquid chromatography previously used for purification to apparent homogeneity of IDF45. On the other hand, if the IGF binding activity and inhibitory activity effect upon serum stimulation were carried by two different proteins, the presence of IGF-I (in conditions where most of the 45-kDa proteins were bound to IGF-I) should not have affected the activity of the molecule inhibiting serum stimulation. However, we observed the contrary: when IDF45 was bound to IGF-I, it lost its inhibitory effect upon stimulation induced by serum. This suggests that the two activities occurred on the same protein and that IDF45 is a bifunctional protein.  相似文献   

3.
We purified to homogeneity a growth inhibiting diffusible factor (IDF45) secreted by dense cultures of mouse 3T3 cells and which was able to inhibit 100% of DNA synthesis stimulated by serum in chick embryo fibroblasts (CEF) (Blat et al., 1989a). We then demonstrated that this factor was an IGF-binding protein (Blat et al., 1989b). Indeed, its N-terminal amino acid sequence was homologous to that of rat IGFBP-3. Our present results show that basic fibroblast growth factor (bFGF) induced, respectively, a fivefold and threefold increase in DNA synthesis in mouse embryo fibroblasts (MEF) and CEF. IDF-45 inhibited the stimulation induced by bFGF by about 65%, while stimulation induced by insulin, PDGF, or EGF was only weakly or not at all inhibited by IDF45. When bFGF stimulation was determined in the presence of a high concentration of insulin in conditions which minimize the effect of endogenous IGF-I or -II, this stimulation was decreased by about 50% in the presence of IDF45. This result suggests that addition of bFGF stimulates IGF secretion, thereby resulting in partial loss of inhibition, by IDF45, of bFGF stimulation.  相似文献   

4.
A novel cell growth inhibitor, IDF45 (inhibitory diffusible factor), was recently purified to apparent homogeneity. It is a bifunctional molecule: able to bind Insulin like growth factor (IGF) and to 100% inhibit DNA synthesis stimulated by serum in fibroblasts. It was of interest to verify whether other members of the IGF-binding protein (IGFBP) family show the same bifunctional growth inhibitory properties. In this paper we show that purified IGFBP-1 derived from amniotic fluid is a cell growth inhibitor. In chick embryo fibroblasts, it inhibited DNA synthesis stimulated by serum. However the stimulation was maximally 60% inhibited and half of the inhibition was observed with 100ng/ml IGFBP-1. So the specific activity of IGFBP-1 is lower than that of IDF45. IGFBP-1 also reversibly prevented the CEF growth. In the same cells IGFBP-1 inhibited DNA synthesis stimulated by IGF-I. We demonstrated that the same protein IGFBP-1 is able to inhibit DNA synthesis stimulated by serum and by IGF-I. The possibility that IGFBP-1 is a bifunctional molecule is discussed.  相似文献   

5.
Our results show that an insulin-like growth factor binding protein, IGFBP-3, purified from rat serum, is an inhibitor of chick embryo fibroblast (CEF) growth. It abolished DNA synthesis in CEF stimulated by IGF-I as well as by human serum. Rat IGFBP-3 and IDF45 (an inhibitory diffusible factor secreted by mouse cells) had the same activities, confirming that they have an intrinsic capacity to inhibit serum stimulation and may be considered as growth inhibitors. Our data show that inhibition by IGFBP-3 of serum stimulation was not simply the result of its inhibition of IGF present in the serum: 1) While anti-IGF-I IgG was able to completely inhibit stimulation induced by added IGF-I, it did not decrease stimulation induced by 1% human serum. Anti-IGF-II IgG inhibited the stimulation induced by added IGF-II, but only 25% decreased the stimulation induced by 0.7% serum. The percent inhibition was not significantly increased when the concentration of serum was decreased to 0.2%, which induced 140% stimulation of DNA synthesis; 2) stimulation by 0.2% serum was much more inhibited by IGFBP-3 than by IgG anti IGF-II; 3) after separation of IGF-I and IGF-II from serum by chromatography of acidified serum proteins on BioGel P150, the remaining serum proteins (with a molecular mass greater than 45 kDa) which were depleted in IGF-I and -II (verified by RIA determination) still stimulated DNA synthesis, and this stimulation was 80% inhibited by IGFBP-3.  相似文献   

6.
Similarities between the mode of action of growth factors and the oncogene product (pp 60 src protein) of Rous Sarcoma virus have been described. However, a major difference is that addition of growth factors does not induce a malignant transformation of cells. The present work proposes a hypothesis concerning this difference. Various data suggest that density-dependent inhibition (DDI) of growth in non-transformed cells is due to the diffusion of growth inhibitory molecules. Inhibitory factors of 45 K (IDF 45) and 12 K have been fractionated. We assume that the stimulation of DNA synthesis induced by growth factor addition to dense quiescent cultures of non-transformed cells leads to an increase in the activity of autocrine inhibitory molecules in such a manner that the growth factor stimulatory effect is only transient, and cells re-enter the Go phase. On the contrary, the stimulation of DNA synthesis by v-src transformation would not be counterbalanced by inhibitory diffusing factors and cells would not enter Go phase. We present preliminary results which support this assumption. Dense quiescent cultures of chick embryo fibroblasts infected by Ny 68 virus (ts mutant for transformation of Rous Sarcoma virus) were stimulated to proliferate either by addition of growth factors in cultures maintained at 41 degrees C or by expression of transformation (by the cell transfer from 41 to 37 degrees C, the permissive temperature for expression of transformation). Stimulation of DNA synthesis by growth factors was totally inhibited by the inhibitory diffusing factors of 45 K (IDF45) whereas the stimulation of DNA synthesis produced by transformation was reproducibly not decreased by IDF45.  相似文献   

7.
Inhibitory diffusible factor IDF45, a G1 phase inhibitor   总被引:1,自引:0,他引:1  
C Blat  G Chatelain  G Desauty  L Harel 《FEBS letters》1986,203(2):175-180
An inhibitory diffusible factor of 45 kDa (IDF45) was isolated from medium conditioned by dense cultures of 3T3 cells. The procedure involved Bio-Gel P150 chromatography and 2 reverse-phase FPLC. After the final step of purification, 60 ng/ml of IDF45 inhibited 50% of alpha-globulin-stimulated DNA synthesis. It was shown that IDF45 acted in the G1 phase of the cell cycle. When added for 8 h in the G1 phase of the cell cycle, it was able to inhibit DNA synthesis in the S phase which followed this G1 phase. Furthermore, IDF45 inhibited the early stimulation of RNA synthesis induced by alpha-globulin.  相似文献   

8.
IDF45 (inhibitory diffusible factor) a mouse insulin-like growth factor binding protein (mlGFBP-3) has been shown to 100 percent inhibit DNA synthesis stimulated by serum in chick embryo fibroblasts (CEF). Our previous results suggested that this large inhibition by IDF45 of serum stimulation was not just the result of its inhibitory activity toward IGF present in serum. The addition of Mn2+ (10(-3)M) in the incubation medium enables us to show the presence of numerous binding sites per cells (about 60,000) of mlGFBP-3. However the dissociation constant (10(-8)M) indicated that this mouse IGFBP-3 bound to the membrane with low affinity. These findings lend new support to the assumption of the bifunctional property of IGFBP-3, which would have an effect outside the cell (binding of IGF in the medium) and another effect within cells or on the surface.  相似文献   

9.
Density-dependent inhibition (DDI) of growth is assumed to be the result of diffusion in the medium of growth inhibitory molecules. In this work, we demonstrate the presence of inhibitory molecules (IDFc: chicken inhibitory diffusible factor) in the medium of chick embryo fibroblasts (CEF) cultures. IDFc partially purified by Bio-Gel P150 chromatography followed by reverse phase FPLC. The dose-response curve showed that 250 ng/ml IDFc inhibited 50% DNA synthesis. IDFc was also able to inhibit the growth of sparse cultures of CEF; this inhibition was reversible. IDFc was unable to prevent the DNA synthesis in cells transformed by v-src gene expression. These results suggest that IDFc is involved in the DDI of CEF growth.  相似文献   

10.
The multiple effects of TGF beta on cell proliferation are not well understood. Our results show that TGF beta was a good but transient mitogen for chick embryo fibroblasts. DNA synthesis was three- to fourfold increased, even at high concentrations of TGF beta. We did not show a bimodal effect. An inhibitor of cell growth, that inhibits 100% of stimulation induced by serum in CEF, was purified to homogeneity from medium conditioned by mouse 3T3 cells. This inhibitor has been shown to be an IGF-binding protein (mIGFBP-3). In the present work, this mIGFBP-3 inhibited the TGF beta stimulation by about 50%, while the stimulation induced by PDGF or insulin was not inhibited by mIGFBP-3. Furthermore, TGF beta stimulation, in the presence of a high concentration of insulin in conditions which would saturate IGF receptors, was not significantly inhibited by mIGFBP-3. All together these results suggest that a part of the mitogenic effect of TGF beta may be through increasing IGF secretion and eventually other growth factors such as PDGF (as suggested previously).  相似文献   

11.
The expression of src gene in dense cultures of chick embryo fibroblasts (CEF) infected by a thermosensitive mutant (NY68) of RSV released density-dependent inhibition of growth and induced in these cells a large increase in DNA, RNA and protein synthesis. This stimulation of cellular metabolism was abolished in the presence of quercetin. Furthermore, quercetin added to the culture medium also inhibited the stimulation of pp60src kinase due to the expression of transformation.  相似文献   

12.
13.
Our results show that stimulation by serum of dense cultures of 3T3 cells rapidly induced increased synthesis of a growth inhibitor (mIGFBP-3) capable of binding IGF. mIGFBP-3 was secreted by stimulated cells immediately after its synthesis, and accumulated in the medium. Accumulation of mIGFBP-3 in the medium increased, as a function of growth factor (bFGF, PDGF, insulin) concentrations and time. bFGF was the best stimulatory factor for both DNA synthesis and accumulation of mIGFBP-3 in the first 24 h of incubation. DNA synthesis was arrested after 48 h of incubation with bFGF when accumulation of mIGFBP-3 was maximal. Since we showed that mIGFBP-3 is able to inhibit bFGF stimulation of DNA synthesis in mouse fibroblasts, it is possible that the accumulation of mIGFBP-3 induces a feedback regulation of cell growth.  相似文献   

14.
In chick embryo fibroblasts (CEF) deprived of serum, DNA synthesis is reduced to a basal level in about 12 h, cell division ceases after 24–36 h and their morphology changes to a rounded, less refringent form. During several days without serum the cAMP content of the cells showed a slow increase or a maintenance of the level found before serum was removed. When CEF deprived of serum for 24 h were treated with beef heart 3′,5′-phosphodiesterase (PHD) the cAMP level fell about 40% after 3 h, 3H-thymidine incorporation into DNA was strongly stimulated with a peak of incorporation at 12 h after the start of PHD treatment, cell morphology returned to that observed before serum deprivation, and at 24 h there was an evident growth in cell population, with a parallel increase in protein content. The growth stimulation by PHD is transitory: after cells had been deprived of serum for 4 days the PHD effect was no longer noticeable on the above parameters. Theophylline (1 mM and 4 mM) inhibited the PHD-mediated stimulation of 3H-TdR incorporation, this could well have been due to its general toxic effect on the cells (see Discussion).  相似文献   

15.
When serum-starved HeLa S3 cells were stimulated to proliferate by addition of fetal calf serum (FCS), (2'-5')oligoadenylate synthetase (2-5A synthetase) activity was induced. Although no interferon (IFN) activity was detectable in the HeLa S3 cell-conditioned culture medium after growth stimulation, addition of anti-IFN-beta monoclonal antibody inhibited both the expression of the 2-5A synthetase gene and the production of the enzyme, suggesting that endogenous IFN-beta was involved in 2-5A synthetase induction. Purified preparations of three growth factors, epidermal growth factor, platelet-derived growth factor, and insulin, also induced 2-5A synthetase through IFN-beta. When serum-starved HeLa S3 cells were treated with FCS, DNA synthesis was initiated synchronously, with peaks after 12 and 32 h, although the level of 2-5A synthetase reached a maximum after the first peak of DNA synthesis. Inhibition of 2-5A synthetase induction by anti-IFN-beta antibody enhanced the second, but not the first cycle of DNA synthesis. These results suggested that in HeLa S3 cells, after stimulation with growth factors the IFN/2-5A synthetase system played a role in cell growth negative regulatory mechanisms.  相似文献   

16.
The growth rate of normal cells multiplied in vitro decreases as the cell density of the culture increases. Previous results suggested that this density-dependent inhibition of growth in nontransformed cells was due to the diffusion of growth inhibitory substances in the medium of dense cultures. In this paper, we demonstrate that dense cultures of 3T3 cells secrete inhibitory and stimulatory factors. Macromolecules of conditioned medium were fractionated on Biogel P150 and the different fractions were tested on quiescent cultures of 3T3 cells stimulated or not to proliferate by addition of alpha globulin. When target cells were not stimulated to proliferate by addition of exocrine growth factors, we observed the inhibitory activity of a large molecular weight inhibitor (IDF45) and the stimulatory activity of autocrine growth factors (fraction about 35 and 10 K molecular weight), on the incorporation of 14C inosine into nucleotide pool and RNA. However, DNA synthesis was significantly stimulated with fraction 10 K only. This discrepancy between the stimulation of RNA and DNA synthesis may be explained by the presence, simultaneously, of inhibitory and stimulatory factors in fraction 35 and 10 K molecular weight. The presence of inhibitory factor was demonstrated when the fractions were tested on target cells stimulated to proliferate by alpha globulin addition and labeled with 14C thymidine. In these conditions, the stimulatory activity of autocrine growth factors was not observable, and only the inhibitory activity on DNA synthesis of fractions 35 and 10 K appeared. It is tempting to assume that the regulation of in vitro cell proliferation is determined by the balance between these antagonist stimulatory and inhibitory autocrine growth factors.  相似文献   

17.
We have investigated the growth effects of thyrotropin (TSH) (mimicked by forskolin and acting through cyclic AMP), epidermal growth factor (EGF), serum (10%) and insulin on quiescent dog thyroid epithelial cells in primary culture in a serum-free defined medium. These cells were previously shown to retain the capacity to express major thyroid differentiation markers. In the presence of insulin and after a similar prereplicative phase of 18 +/- 2h, TSH, EGF, and serum promoted DNA synthesis in such quiescent cells only a minority of which had proliferated in vitro before stimulation. The combination of these factors induced more than 90% of the cells to enter S phase within 48 h and near exponetial proliferation. Analysis of the cell cycle parameters of the stimulated cells revealed that the G1 period duration was similar to the length of the prereplicative phase of quiescent thyroid cells; this might indicate that they were in fact in an early G1 stage rather than in G0 prior to stimulation. TSH and EGF action depended on or was potentiated by insulin. Strikingly, nanomolar concentrations of insulin were sufficient to support stimulation of DNA synthesis by TSH, while micromolar concentrations of insulin were required for the action of EGF. This suggests that insulin supported the action of TSH by acting on its own high affinity receptors, whereas its effect on EGF action would be related to its somatomedinlike effects at high supraphysiological concentrations. Insulin stimulated the progression in the prereplicative phase initiated by TSH or forskolin. In addition, in some primary cultures TSH must act together with insulin to stimulate early events of the prereplicative phase. In the presence of insulin, EGF, and forskolin, an adenylate cyclase activator, markedly synergized to induce DNA synthesis. Addition of forskolin 24 h after EGF or EGF 24 h after forskolin also resulted in amplification of the growth response but with a lag equal to the prereplicative period observed with the single compound. This indicates that events induced by the second factor can no longer be integrated during the prereplicative phase set by the first factor. These findings demonstrate the importance of synergistic cooperation between hormones and growth factors for the induction of DNA synthesis in epithelial thyroid cells and support the proposal that essentially different mitogenic pathways--cyclic AMP-dependent or independent--may coexist in one cell.  相似文献   

18.
At concentrations of 25 ng/ml in serum-free medium, somatomedin C (SM-C) and insulin stimulated 3H-thymidine incorporation in adult human fibroblasts 4- and 1.5-fold, respectively. The presence of 0.25% human hypopituitary serum (HHS), which by itself had little effect, enhanced the mitogenicity of both SM-C and insulin. Furthermore, 10(-7)M dexamethasone dramatically potentiated SM-C stimulation (70-fold) and insulin stimulation (28-fold) of 3H-thymidine incorporation. With dexamethasone and 0.25% HHS, significant stimulation of DNA synthesis was seen at 2.5 ng/ml for both SM-C and insulin. The effects of SM-C and insulin on 3H-thymidine incorporation were additive. These 3H-thymidine incorporation results were clearly supported by cell replication studies. On the other hand, SM-C and insulin had equivalent, nonadditive effects on RNA and protein synthesis and protein degradation. Half-maximal effects were seen for both peptides on all three metabolic processes at 2-5 ng/ml. In contrast to their synergism with SM-C in the stimulation of DNA synthesis and cell replication, HHS and dexamethasone did not enhance SM-C stimulation of RNA or protein synthesis or protein degradation. These data indicate that SM-C and insulin stimulate DNA, RNA, and protein synthesis, protein degradation, and cell replication in adult human fibroblasts at nanomolar concentrations, suggesting that each peptide is capable of acting through its own receptor. Both SM-C and insulin are also capable of synergism with low concentrations of serum and dexamethasone in the stimulation of DNA synthesis and cell replication. It is proposed that SM-C and insulin both participate in the regulation of cell growth and metabolism in vivo.  相似文献   

19.
Activation of G(q) protein-coupled receptors can either stimulate or inhibit cell growth. Previously, these opposite effects were explained by differences in the cell models. Here we show that activation of m3 muscarinic acetylcholine receptors ectopically expressed in NIH3T3 cells can cause stimulation and inhibition of growth in the same cell. A clonal cell line was selected from cells that formed foci agonist dependently (3T3/m3 cells). In quiescent 3T3/m3 cells, carbachol stimulated DNA synthesis. In contrast, when 3T3/m3 cells were growing, either due to the presence of serum or after transformation with oncogenic v-src, carbachol inhibited growth. This inhibition was not due to reduction of extracellular signal-regulated kinase activity because carbachol induced extracellular signal-regulated kinase phosphorylation in both quiescent and growing 3T3/m3 cells. Investigating the cell cycle mechanisms involved in growth inhibition, we found that carbachol treatment decreased cyclin D1 levels, increased p21(cip1) expression, and led to hypophosphorylation of the retinoblastoma gene product (Rb). Proteasome inhibitors blocked the carbachol-induced degradation of cyclin D1. Effects on p21(cip1) were blocked by a protein kinase C inhibitor. Thus, m3 muscarinic acetylcholine receptors couple to both growth-stimulatory and -inhibitory signaling pathways in NIH3T3 cells, and the observed effects of receptor activation depend on the context of cellular growth.  相似文献   

20.
Stimulation of membrane ruffling is one of the first events induced by addition of growth factors to quiescent cultures. In order to assess the importance of intact cytoskeleton in induction, by EGF + insulin, of early events such as stimulation of rRNA, c-fos, and actin mRNA expression, we studied the effect of cytochalasin D (CD) on these metabolisms. We observed that CD slightly increased rRNA synthesis in nonstimulated cells; conversely, it decreased rRNA synthesis in cells stimulated by EGF + insulin. The maximal inhibition observed was 60%. The c-fos mRNA was not expressed in control cells and was accumulated in cells stimulated by the mixture of EGF + insulin; this accumulation was inhibited by CD. Actin mRNA was expressed in control cells and its expression was stimulated by EGF + insulin. Addition of CD decreased actin mRNA accumulation in stimulated cells but increased this accumulation in unstimulated cells. Our results, taken together, show that CD specifically affected the stimulation of rRNA and mRNA expression induced by growth factors and suggest that intact cytoskeleton and possibly membrane ruffling favored this stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号