首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The size of RNA attached to nascent DNA fragments of Escherichia coli with a chain length of 400 to 2000 nucleotides is estimated to be about 50 to 100 nucleotides from: (a) the density of the molecules of known sizes; (b) the decrease of the molecular size produced by hydrolysis with RNases or alkali; and (c) the size of RNA released by DNase treatment. Only a small decrease in molecular size is produced by RNase or alkali treatment, excluding the possibility that the RNA is located in the middle of the fragment or that ribonucleotide sequences are scattered in the molecule. The RNA is not located at the 3′ end of the molecule either, since the DNA is degraded by 3′ → 5′ exonuclease action of bacteriophage T4 DNA polymerase which has neither RNase nor DNA endonuclease activity. Positive evidence for the covalent attachment of the RNA to the 5′ end of the DNA is provided by the finding that one 5′-OH terminus of DNA is created from each RNA-linked DNA fragment by alkaline hydrolysis. The quantitative production of the 5′-OH group at the 5′ end of DNA is also found upon hydrolysis with pancreatic RNase, indicating that the 3′-terminal base of the RNA segment of the fragments is a pyrimidine. On the other hand, when the RNA-linked DNA fragments hydrolysed with alkali or pancreatic RNase are incubated with [γ-32P]ATP and polynucleotide kinase and the DNA thus labelled is degraded to constituent 5′-mononucleotides, the 32P is found only in dCMP. Therefore, C is the specific 5′-terminal base of the DNA segment of the RNA-linked DNA fragments, and the RNA-DNA junction has the structure … p(rPy)p(dC)p …  相似文献   

3.
When alpha--32 P-labeled deoxyribonucleoside triphosphates are injected into plasmodia of the eukaryotic slime mold, Physarum polycephalum, they are incorporated initially into strands of DNA which are mostly less than 300 nucleotides long. Sixty minutes after injection incorporated deoxyribonucleoside triphosphates are found in much longer strands. If the short strands found two minutes after injection are denatured and centrifuged to equilibrium in a Cs(2)SO(4) density gradient, they migrate to a density slightly greater than that of single-stranded Physarum DNA. When these short strands are treated with alkali to hydrolyze RNA, a small fraction of the incorporated -32P is made acid-soluble and is identified as a mixture of the four ribonucleoside 2',3'-monophosphates. Such transfer of -32P to ribonucleotides occurs when any of the 4 alpha--32P-labeled deoxyribonucleoside triphosphates is used for injection, but the transfer is greatest with [alpha--32P]dGTP. We conclude that very short stretches of RNA are found linked through phosphodiester bonds to nascent DNA chains in Physarum polycephalum and that any of the 16 possible combinations of ribo- and deoxyribonucleotides can occur at the RNA-DNA junction.  相似文献   

4.
Short fragments of DNA (5 S) isolated by denaturation from polyoma replicative intermediates pulse-labeled in vitro were shown to have RNA covalently attached by three criteria: (1) such fragments were slightly denser than bulk viral DNA. (2) They could be labeled directly with α-32P-labeled ribotriphosphates. (3) Alkaline hydrolysis of fragments labeled with α-32P-labeled deoxynucleoside triphosphates showed 32P transfer to 3′ ribonucleoside monophosphates. Except for a preference of transfer from dC, the link showed little sequence specificity. The data are compatible with the notion that all short fragments in replicating viral DNA are initiated by an RNA primer. This RNA is maximally 30 bases long and is rather short-lived.  相似文献   

5.
The break in the complementary DNA strand of early G4 replicative form II DNA (RFII) and in the viral DNA strand of late RFII DNA was located using two single cleavage restriction enzymes (EcoRI and PstI) and by limited nick translation of the break using DNA polymerase I and 32P-labelled deoxyribonucleotides followed by digestion with the restriction enzymes HaeIII and HindII. The break in the complementary DNA strand was unique and in HaeIII Z5 close to the EcoRI cleavage site whereas the break in the viral DNA strand was on the other side of the molecule in HaeIII Z2 approxiately 50% away from the EcoRI cleavage site. Distribution of a short 3H pulse in early G4 replicating intermediates that were synthesising both DNA strands at the same time showed that synthesis of the strands started on opposite sides of the molecule and proceeded in opposite convergent directions, suggesting that initiation of synthesis of the two strands was independent and not unified in a single growing fork.  相似文献   

6.
Polyoma virus transcription in vitro.   总被引:5,自引:0,他引:5  
  相似文献   

7.
A cell-free simian virus 40 (SV40) DNA replication system served to study the role of RNA in the initiation of nascent DNA chains of less than 200 nucleotides (Okazaki pieces). RNA-DNA covalent linkages were found to copurify with SV40 replicating DNA. These linkages were identified by transfer of a fraction of the 32P from the 5′ position of a deoxyribonucleotide to 2′(3′)rNMPs upon either alkaline hydrolysis or RNAase T2 digestion of SV40 replicating [32P]DNA. Alkaline hydrolysis also exposed 5′ terminal hydroxyl groups in the nascent DNA which were detected as nucleosides after digestion with P1 nuclease. The RNA-DNA covalent linkages resulted from a population of Okazaki pieces containing uniquely sized oligoribonucleotides covalently attached to their 5′ termini (RNA primers). The density of a portion of the Okazaki pieces in potassium iodide gradients corresponded to a content of 90% DNA and 10% RNA, while the remaining Okazaki pieces appeared to contain only DNA. Incubation of Okazaki pieces with a defined length in the presence of either RNAase T2 or potassium hydroxide converted about one-third to one-half of them intto a second well defined group of DNA chains of greater electrophoretic mobili y in polyacrylamide gels. The increased mobility corresponded to the removalof at least seven-residues. Since alkaline hydrolysis of similar Okazaki pieces revealed that one-third to one-half of them contained rN-32P-dN linkages, the oligoribonucleotides must be covalently attached to the 5′ ends of nascent DNA chains. Although the significance of two populations of Okazaki pieces, one with and one without RNA primers, is imperfectly understood, a sizable fraction of nascent DNA chains clearly contained RNA primers.Neither the length of the RNA primer nor the number of RNA primers per DNA chain changed significantly with increasing length of Okazaki pieces. Since the frequency of RNA-DNA junctions found in nascent DNA chains greater than 400 nucleotides was similar to that of Okazaki pieces, the complete excision of RNA primers appears to occur after Okazaki pieces are joined to the 5′ end of growing daughter strands.32P-label transfer analysis of Okazaki pieces recovered from hybrids with isolated HindII + III restriction fragments of SV40 DNA revealed a uniform distribution of rN-P-dN sequences around the replicating DNA molecule. Therefore, most, if not all, RNA primers serve to initiate Okazaki pieces rather than to initiate DNA replication at the origin of the genome. Moreover, the positions of RNA primers are not determined by a specific set of nucleotide sequences.  相似文献   

8.
Terminal deoxynucleotidyl transferase (TdT) catalyzes the condensation of deoxyribonucleotides on 3'-hydroxyl ends of DNA strands in a template-independent manner and adds N-regions to gene segment junctions during V(D)J recombination. Although TdT is able to incorporate a few ribonucleotides in vitro, TdT discrimination between ribo- and deoxyribonucleotides has never been studied. We found that TdT shows only a minor preference for incorporation of deoxyribonucleotides over ribonucleotides on DNA strands. However, incorporation of ribonucleotides alone or in the presence of deoxyribonucleotides generally leads to premature chain termination, reflecting an impeded accommodation of ribo- or mixed ribo/deoxyribonucleic acid substrates by TdT. An essential catalytic aspartate in TdT was identified, which is a first step toward understanding the apparent lack of sugar discrimination by TdT.  相似文献   

9.
We have used the technique of phosphate transfer analysis to test for the presence of phosphodiester bonds linking ribonucleotides (on the 5′ side) to deoxyribonucleotides (on the 3′ side) in DNA newly synthesized within lysates or purified nuclei of mammalian cells. We have found that such covalent junctions between RNA and DNA are present at a frequency of one junction per newly synthesized DNA strand. The junctions are located close to the ends of the nascent DNA strands. The stretches of RNA at the junction are very short compared to the stretches of DNA. These properties are consistent with the conclusion by Reichard, Eliasson, and Söderman (1974) that short stretches of RNA are present on the 5′ ends of nascent DNA strands produced during replication of polyoma virus.  相似文献   

10.
11.
Hydroxyurea treatment of 3T6 mouse fibroblast cells infected with polyoma virus resulted within 15 min in more than a 20-fold reduction of the rate of both viral and cellular DNA synthesis. After the initial rapid inhibition, the rate of DNA synthesis remained essentially constant for at least 2 h. In the inhibited cells viral DNA accumulated as short chains with a sedimentation coefficient of about 4S (hydroxyurea fragments). A variable proportion of these fragments was released from the template strands when the viral DNA was extracted by the Hirt procedure. Reannealing experiments demonstrated that hydroxyurea fragments were polyoma-specific and probably synthesized on both parental strands at the replication forks.  相似文献   

12.
13.
14.
A cell extract prepared from the lig-ts7 mutant of Escherichia coli is able to carry out a complete round of DNA replication of colicin E1 plasmid at 25 °C. However, the apparent rate of elongation of the progeny strands at this temperature is much smaller than in an extract from the thermoresistant revertant cells. Chain elongation in the lig-ts extract is depressed by raising the incubation temperature from 25 °C to 32 °C, whereas that in the lig+ revertant extract is not. The rate of closure of the progeny strands of newly formed open circular molecules is also reduced in the lig-ts extract, even at 25 °C.The DNA pulse-labelled with the lig-ts extract for 30 seconds at 32 °C contains a large amount of short DNA fragments of approximately 7 S, in addition to DNA chains of various sizes between 7 S and 17 S (unit length). Most of these replicating molecules are converted to completely replicated closed circular molecules upon chasing with a lig+ extract. DNA-DNA hybridization experiments show that molecules replicated to various extents contain 7 S DNA fragments of both strands, but more of the L-strand component, whose 5′-to-3′ direction corresponds to the overall direction of unidirectional replication. The longer DNA chains are enriched in the H-strand component.The cell extracts used for the plasmid DNA replication have an activity which converts alkali-labile closed circular plasmid DNA containing apurinic sites to alkali-stable closed circular molecules. Addition of nicotinamide mononucleotide leads to conversion of the alkali-labile DNA to open circular molecules. In the replication system with the cell extract, however, the compound does not interfere with elongation of progeny strands. Chain elongation in the lig-ts extract at 25 °C is not significantly affected by nicotinamide mononucleotide. Thus, the 7 S DNA fragments formed with the lig-ts extract are unlikely to be generated as a result of incomplete repair of misincorporated nucleotides. We conclude that both strands of colicin E1 plasmid DNA replicate discontinuously.  相似文献   

15.
Earlier experiments demonstrated that the Okazaki fragments synthesized during discontinuous polyoma DNA synthesis in isolated nuclei at their 5′ ends contained structural elements consisting of polyribonucleotides starting with ATP or GTP (Reichard et al., 1974). These structures could be released by digestion with pancreatic DNAase and were named initiator RNA. They consist of a large family of polyribonucleotides differing in base sequence but having a common size of about a decanucleotide. We now demonstrate that limitation of DNA synthesis by low concentrations of deoxyribonucleoside triphosphates in parallel limits the synthesis of initiator RNA. This is additional evidence for the primer function of initiator RNA. When ribonucleoside triphosphates other than ATP were deleted from the incubation medium only a small decrease of DNA and initiator RNA synthesis occurred. Under those conditions deoxyribonucleotides substituted for ribonucleotides and were incorporated internally into the primer. From this result as well as the insensitivity of initiator RNA synthesis to α-amanitin (Reichard &; Eliasson, 1979) we suggest that a mammalian counterpart to primase, the dnaG gene product of Escherichia coli(Rowen &; Kornberg, 1978a), catalyzes the synthesis of initiator RNA.  相似文献   

16.
17.
A general procedure is described for the two-step chemical synthesis from [32P]orthophosphoric acid of the eight common ribo- and deoxyribonucleoside 3′,5′-cyclic monophosphates. The method is simple and reliable and both steps are carried out in the same reaction flask without an intermediate purification step. 32P-labelled cyclic nucleotides are obtained after paper chromatography in yields of 20–60% relative to starting [32P]orthophosphoric acid and with a specific activity of greater than 1 mCi/μmole. Alternative methods for the purification of reaction mixtures and for the preparation of 32P-labelled 3′,5′-cyclic AMP and 3,′,5′-cyclic GMP are described.  相似文献   

18.
Replicating polyoma virus DNA, pulse-labeled with 3H-thymidine, was isolated from infected mouse embryo cells by velocity sedimentation in neutral sucrose and purified by benzoylated-naphthoylated DEAE-cellulose chromatography. Nascent strands, prepared by heat denaturation of purified replicative intermediate, banded at a slightly higher buoyant density in neutral cesium sulfate gradients than single strands derived from superhelical viral DNA. Treatment of nascent strands with a mixture of ribonucleases 1A and T1 shifted their buoyant density to that of single strands derived from superhelical viral DNA. These results indicate that an oligoribonucleotide component is covalently associated with replicating polyoma DNA strands.  相似文献   

19.
The rate of synthesis of cellular DNA is stimulated in stationary phase mouse embryo cells infected with polyoma virus. Nascent cellular DNA strands pulselabeled with [3H]thymidine in the presence of replicating viral DNA are smaller, by an average of 2·1 × 107 daltons, than DNA made under similar conditions in uninfected cells. Previous work (Cheevers et al., 1972) has indicated that this observation is the consequence of activation in infected cells of cellular DNA initiation sites not in operation during a similar pulse-labeling interval in uninfected cells. Similar results were obtained using cells infected with the temperature-sensitive Ts-a mutant of polyoma at 32 °C, which permits both the induction of cellular DNA synthesis and replication of viral DNA. However, at a temperature of 39 °C, which permits only the induction of cellular DNA replication in Ts-a-infected cells, the size of newly synthesized DNA is not different from that of uninfected cells. Similarly, in rat embryo cells abortively infected with polyoma (wild-type), stimulation of cellular DNA synthesis occurs but viral DNA replication is restricted, and no difference is apparent in the size of newly formed DNA as compared to uninfected cells. These results are interpreted to mean that in productively infected cells, polyoma DNA and some regions of the host genome may be co-ordinately replicated.  相似文献   

20.
We have purified a set of small DNA molecules from various strains of exponentially growing Escherichia coli, including E. coli polAex2. This material included very short molecules (2 S), the nascent DNA (“Okazaki fragments”) and some longer molecules. Most of the [3H]thymidine incorporated during a brief period of labeling was found in the 5 S to 15 S Okazaki fragments. There was a large number of the 2 S molecules in the cell. The properties of the 5′ ends of these molecules were investigated using three procedures. (1) The DNA preparation, pulse-labeled with [3H]thymidine, was reacted with polynucleotide kinase and ATP to insure that all 5′ ends were phosphorylated. After subjection of the DNA to alkaline hydrolysis, the proportion of incorporated 3H pulse-label that became susceptible to digestion by spleen exonuclease was determined. In different experiments there was an increment of up to 20% in the amount of pulse-labeled E. coli polAex2 DNA that could be hydrolyzed by the exonuclease after treatment with alkali. (2) As in the preceding protocol, phosphorylation of the 5′ ends was assured by reaction with kinase and ATP; the preparation was then treated with alkali and the number of 5′-OH ends generated that could be labeled with 32P using [γ-32P]ATP and kinase in a second reaction was determined. The data indicated that 3 to 30% of the molecules could be labeled after alkali digestion, but not before. (3) The DNA molecules were reacted with kinase and [γ-32P]ATP after having been exposed previously to alkaline phosphatase. The end-labeled molecules were then subjected to an alkaline hydrolysis and the resulting hydrolysate chromatographed on a polyethyleneimine-cellulose thinlayer plate. Alkali treatment was found to release 2′(3′),5′-ribonucleoside diphosphates from 1 to 30% of the molecules; pAp and pGp predominated. Control experiments showed that these ribonucleotides were covalently linked to the 5′ ends of polydeoxyribonucleotides. Curiously, the smaller the DNA molecule the less likely it was to possess a 5′-terminal ribonucleotide. Very few apparent RNA/DNA molecules were observed in the non-polAex2 strains tested. These observations are in part in agreement with previous reports, and we infer that at least some of the nascent E. coli polAex2 DNA molecules are initiated in vivo with a ribonucleotide primer. The relatively smaller proportion of molecules with apparent 5′-terminal ribonucleotides among the smaller DNA molecules and in strains other than E. coli polAex2 suggests to us that there may exist a mechanism for initiating DNA molecules that does not require an RNA primer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号