首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sulphate accumulates in the rhizosphere of plants grown in hydroponic systems. To avoid such sulphate accumulation and promote the use of environmentally sound hydroponic systems, we examined the effects of four sulphate concentrations (0.1, 5,2, 10.4 and 20.8 m M ) on photosynthesis, ribulose-l,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) activities and related physiological processes in greenhouse–grown tomato plants ( Lycopersicon esculentum Mill. cv. Trust). The lowest sulphate concentration (0.1 m M ) significantly decreased photosynthetic capacity (Pc) and Rubisco activities on a leaf area basis. This result was supported by our data for dry matter per plant, which was low for plants in the 0.1 m M treatment. The photosynthesis-related variables such as leaf conductance, chlorophyll and soluble protein were lowest for the 0.1 m M treatment. Both total Rubisco activity and the activated ratio were reduced with this treatment. However, Rubisco activities expressed per g of protein or per g of chlorophyll were not significantly affected. These results suggest that sulphur deficiency depressed Pc– by reducing the amount of both Rubisco and chlorophyll and by causing an inactivation of Rubisco. The ratio of organic sulphur vs organic nitrogen (S/N) in plants of the 0.1 m M treatment was far below the normal values. This low S/N ratio might be accountable for the negative effect of low sulphate on Pc and plant growth. Pc and dry matter were not affected until sulphate concentration in the nutrient solution reached a high level of 20.8 m M .  相似文献   

2.
Previous studies suggest that the positive response of transplanted rice (Oryza sativa L.) to nursery fertiliser application was due to increased seedling vigour or possibly to increased nutrient content. This paper presents results of two glasshouse experiments designed to test the hypothesis that seedling vigour was responsible for the response of transplanted seedlings to nursery treatments. The aim of the present study was to explore the concept of seedling vigour of transplanted rice and to determine what plant attributes conferred vigour on the seedlings. Seedling vigour treatments were established by subjecting seedlings to short-term submergence (0, 1 and 2 days/week) in one experiment and to leaf clipping or root pruning and water stress in another to determine their effect on plant growth after transplanting. Submerging seedlings increased plant height but depressed shoot and root dry matter and root:shoot ratio of the seedling at 28 days after sowing. After transplanting these seedlings, prior submergence depressed shoot dry matter at 40 days. Nursery nutrient application increased plant height, increased root and shoot dry matter, but generally decreased root:shoot ratio. Pruning up to 60% of the roots at transplanting decreased shoot and root dry matter, P concentration in leaves at panicle initiation (PI) and straw dry matter and grain yield at maturity. By contrast, pruning 30% of leaves depressed shoot and root dry matter by 30% at PI, and root dry matter and straw and grain yield by 20% at maturity. The combined effects of leaf clipping and root pruning on shoot, root and straw dry matter were largely additive. It is concluded that the response of rice yield to nursery treatments is largely due to increased seedling vigour and can be effected by a range of nutritional as well as non-nutritional treatments of seedlings that increase seedling dry matter, nutrient content, and nutrient concentration. Impairment of leaf growth and to a lesser extent root growth in the nursery depressed seedling vigour after transplanting. However, rather than increasing stress tolerance, seedling vigour was more beneficial when post transplant growth was not limited by nutrient or water stresses.  相似文献   

3.
Residual nutrients from Murashige and Skoog medium were analyzed following a 5-wk multifactor experiment. Plant density, sugar concentration, and plant growth regulators (benzyladenine and ancymidol) were examined using four genotypes of daylily (Hemerocallis) to determine which factors most influenced nutrient use. Active nutrient uptake was observed for 11 nutrients (potassium, sodium, copper, phosphorus, iron, calcium, magnesium, manganese, boron, sulfur, and zinc) with lower concentrations in spent medium than in the tissue water volume (fresh-dry mass expressed as mL H2O). Two patterns of nutrient use were visualized by correlative analysis of nutrient uptake. Greatest growth lowered plant nutrient concentrations of potassium, sodium, phosphorus, iron, and copper in all genotypes, and luxuriant uptake was indicated with least growth. Potassium, sodium, iron, and copper concentrations in plant dry matter were equal to or exceeded what is observed in vigorously growing nursery plants. However, phosphorus concentration in plant dry matter was low enough to be considered deficient when compared to Hemerocallis plants in nursery production. With a second group of nutrients (calcium, magnesium, manganese, and boron), the genotype, “Barbara Mitchell” lacked active uptake and was deficient. Calcium concentration was low in all plants compared to Hemerocallis grown under nursery conditions (“Barbara Mitchell” was the lowest concentration) despite active uptake by the other three genotypes—“Brocaded Gown,” “Mary’s Gold,” and “Heart of a Missionary.” Magnesium concentration in these three genotypes was low enough in vessels with greatest growth to question its adequacy at high densities. Increased sucrose in medium reduced the dry matter concentrations of all tested nutrients. Plant growth regulators had less impact on nutrient use than genotype and plant density. Nutrient uptake may be an important physiological component of genotypic variation.  相似文献   

4.
W. Claussen 《Plant and Soil》2002,247(2):199-209
Tomato plants (Lycopersicon esculentum Mill. cv. Counter) were grown in 12-L polyethylene containers in aerated and CaCO3-buffered nutrient solutions containing different concentrations of complete stock solutions with either nitrate (stock solution N) or ammonium (stock solution A) as the only nitrogen source (X1 = standard concentration with 5 mM NO3 -N or NH4 +-N, and X3, X5.5, X8 and X11 = 3, 5.5, 8, 11 times the standard concentration), or a mixture of both stock solutions (N:A ratio = 100:0, 75:25, 50:50, 25:75, 0:100) at moderate nutrient concentration (X3). Total dry matter production and fruit dry weight were only slightly affected by increasing nutrient concentration if nitrate was supplied as the sole nitrogen source. Compared to nitrate, ammonium nitrogen caused a decrease in total dry weight (32–86% between X1 and X11), but led to an increase in both total dry weight and fruit dry weight (11% and 30%) at low concentration if supplied in addition to nitrate nitrogen (N:A ratio = 75:25). Dry matter partitioning in plants was affected by the strength of the nutrient solution, but even more by ammonium nitrogen. Fruits accumulated relatively less dry matter than did the vegetative parts of tomato plants when supplied with nutrient solutions containing ammonium as the only nitrogen source (fruit dry weight to total dry weight ratio 0.37 and 0.15 at low and high nutrient concentration), while nitrate nitrogen rather supported an increase in dry matter accumulation in the reproductive organs (fruit dry weight to total dry weight ratio 0.39–0.46). The water use efficiency (WUE) was only slightly affected by the strength of the nutrient solutions containing nitrate nitrogen (2.9–3.4 g DW (kg H2O)–1), while ammonium nitrogen led to a decrease in WUE from 2.4 to 1.3 g DW (kg H2O)–1at low (X1) and high (X11) nutrient concentration, respectively. The proline content of leaves fluctuated (0.1–5.0 mol (g fresh weight)–1) according to nutrient concentration and global radiation, and reflected enhanced sensitivity of plants to these potential stress factors if ammonium was the predominant N source supplied. It was concluded, that proline is a reliable indicator of the environmental stress imposed on hydroponically grown tomato plants.  相似文献   

5.
To investigate the physiological effects of rare earth ions, we have studied the effect of LaCl3 on the photosynthetic light reactions in tobacco (Nicotiana tobacum). When treated with 5–20 mg/L LaCl3 in Hoagland solution by water culture, the dry matter accumulation of different parts in tobacco, the content of chlorophyll increased gradually, but decreased when the concentration of LaCl3 was ≥ 50 mg/L. The optimum concentration for growth appeared to be about 20 mg/L of LaCl3 in nutrient solution. La3+ promoted the activities of the Hill reaction, Mg2+-ATPase, and stimulated the rate of photophosphorylation in chloroplast at low concentrations, but inhibited them at high concentrations. It is concluded that La3+ stimulated the growth of tobacco seedlings and accelerated the photosynthetic light reactions at suitable concentration in vivo.  相似文献   

6.
Previous studies have shown increases in the concentration of ethylene in the soil and roots of plants when the soil is water saturated (flooded). In Zea mays L. this occurs in association with an overall reduction in growth but without extensive foliar senescence and in conjunction with the development of an adventitious root system. We have assessed the possibility that ethylene may be involved in these responses to flooding. Mixtures of the gas in air were therefore supplied to the roots and stem-base of Z. mays growing in nutrient solution.
Seven or 14 d exposure to ethylene (1 or 5 νl 1−1) inhibited seminal root elongation and growth in dry weight and accelerated the emergence of adventitious roots, although their final length and dry weight were depressed. Leaf extension was inhibited by 0.1,1.0 or 5.0 μl 1−1 ethylene around the roots; leaves extending rapidiy at the start of treatment were the most sensitive. Final shoot fresh and dry weights were depressed by the gas but tie shootrroot dry weighl ratio and percentage dry matter were not affected greatly. Leaf chlorosis was not observed but the concentration of phosphorus in the shoots was 26 to 31% below normal.
When aeration of the nutrient solution was stopped, the concentration of dissolved oxygen declined and the concentration of ethylene in the roots increased. Similar changes occur in response to soil flooding. Root and shoot growth was slowed by non-aeration although the shootroot dry weight ratio remained unchanged. The phosphorus concentration of the shoots was depressed but there was little chlorosis or leaf death. The similarity in these respects between the effects of ethylene and non-aeration suggests that in flooded Z. mays , ethylene contributes to their development by accelerating the emergence of adventitioos roots, inhibiting phosphorus accumulation in the shoots and by a non-toxic inhibition of plant growth.  相似文献   

7.
Silicon improves salinity tolerance in wheat plants   总被引:5,自引:0,他引:5  
Durum wheat (Triticum durum cv. Gediz-75) and bread wheat (Triticum aestivum cv. Izmir-85) were grown in a complete nutrient solution in a growth room to investigate effect of silicone supplied to the nutrient solution on plants grown at salt stress. The experiment was a 2 × 2 factorial arrangement with two levels of NaCl in nutrient solution, 0 and 100 mM, and two levels of silicone (Si) in nutrient solution, 0.25 and 0.50 mM, as Na2SiO3. The plants grown at 100 mM NaCl produced less dry matter and chlorophyll content than those without NaCl. Supplementary Si at both 0.25 and 0.5 mM ameliorated the negative effects of salinity on plant dry matter and chlorophyll content. Membrane permeability and proline content in leaves increased with addition of 100 mM NaCl and these increases were decreased with Si treatments. Sodium (Na) concentration in plant tissues increased in both leaves and roots of plants in the high NaCl treatment and Si treatments lowered significantly the concentrations of Na in both leaves and roots. Bread wheat was more tolerant to salinity than durum wheat. The accumulation of Na in roots indicates a possible mechanism whereby bread wheat copes with salinity in the rooting medium and/or may indicate the existence of an inhibition mechanism of Na transport to leaves. Concentrations of both Ca and K were lower in the plants grown at high NaCl than in those in the control treatment and these two element concentrations were increased by Si treatments in both shoots and roots but remained lower than control values in most cases.  相似文献   

8.
Posters Part 2   总被引:3,自引:0,他引:3  
The effects of different CdCl2 concentrations on the growth and on certain biochemical parameters of almond seedlings (Prunus dulcis) were studied under controlled conditions in the nutrient solutions containing increasing CdCl2 concentrations ranging from 0 to 150 μM CdCl2. Under Cd stress conditions, damage was variable. Cadmium reduced dry matter production in leaves and roots. While chlorophyll content was severely decreased, that of leaf sugars appeared to be increased. Furthermore, leaf nutritional status seemed to be more altered than that of roots. Both in roots and leaves, there was an increase in MDA content as metal concentration increased. It may be suggested from the present study that toxic concentrations of Cd cause oxidative damage as shown by the increase of lipid peroxidation.  相似文献   

9.
The effects of Cd on the growth and Cd uptaking in corn (Zea mays L.) were explored under different Cd stress. The results showed that no reduction in shoot and root dry matter yields were noted when the plants were grown at Cd supply levels ≤100 μmol l?1 nutrient solution. The Cd concentration in the shoots and roots of corn increased sharply with increasing external Cd supply levels, peaked at 50 μmol l?1, and then decreased slowly with further increasing Cd levels due to high Cd toxic effects on root growth. The concentrations of chlorophyll a, chlorophyll b and chlorophyll a + b in the leaf of corn decreased slowly with increasing external Cd supply levels. Proline concentrations of corn increased when the plants were grown under the external Cd influence. The lower concentration of Cd treatments did not influenced the growth of corn significantly, and increased the uptake of Cd, the higher levels of Cd supply caused significantly physiological resposes and decreased the Cd uptaking.  相似文献   

10.
Summary 1. In solution culture with oats (Avena sativa) the effect of the K concentration of the nutrient solution on yield and K uptake rates has been investigated. The K concentration of the different treatments were: 0.1, 0.3, 0.9 and 2.7 me K/l. These concentrations were kept constant during the whole growing period. 2. The growth of the plants in all treatments was normal. Even with the lowest K concentration no visible symptoms of K deficiency occurred. The highest grain yield was obtained with a K concentration of 0.9 me K/l. This yield was about 40% higher than the yield with the lowest K concentration and about 5% higher than the grain yield with the highest K concentration. 3. The increasing K supply had a favorable effect on the fat and crude protein content of the grains. The highest K concentration (2.7 me K/l) resulted in the highest content of crude protein (20%) and of fat (6.2%). 4. The rates of K uptake throughout the growing period differed considerably. The highest rates were measured during the shooting stage and the blossom stage. The K concentration of the nutrient solution influenced the uptake rates significantly. High yields were obtained if the K uptake at the beginning of the blossom stage was higher than 50% of the total K uptake. 5. The optimal K concentration for the yield performance, 0.9 me K/l, found in this experiment cannot be compared with K concentrations of the soil solution under field conditions without reservations. Under field conditions root growth and the contact surface between soil solution and root surface are different. Assuming that under field condition this contact surface nutrient solution/root surface is not larger than in solution culture, also a K concentration of 1 me K/l of the soil solution should meet the K demand of the plants, necessary for the production of high grain yields.   相似文献   

11.
The effect of hexachlorobenzene (HCB) and acetone on growth and ultrastructure of the freshwater alga Chlorella pyrenoidosa was studied. The algal cells were grown for 76 h under continuous light in 10 ppm HCB with 0.33% acetone or in 0.33% acetone alone; the control cells were grown in nutrient solution only. As was deduced from determinations of dry matter, carbohydrates, chlorophyll content and total nitrogen, 0.33% acetone in nutrient solution slightly decreased the growth of the cells without having any influence on their ultrastructure while 3.33% acetone affected the ultrastructure of the cells severely. An incubation of Chlorella with 10 ppm HCB in nutrient sultion containing 0.33% acetone led to a drastic decrease of all growth parameters studied, total nitrogen and chlorophyll content being affected most strongly. These latter observations were in accord with the changes in ultrastructure showing damage to the cell membranes, disintegrated cytoplasm and sometimes even break down of cell organells leaving only starch grains, the pyrenoid and some endomembranes. In addition to these cells with severe lesions, quite normal cells were found.  相似文献   

12.
甲醛胁迫下四种盆栽植物的生理动态反应   总被引:1,自引:0,他引:1  
选择巢蕨(Neottopteris nidus)、巴西铁(Dralaena fragrans)、虎尾兰(Sansevieria trifasciata)和黑美人(Aglaonema commutatum)4种室内盆栽植物作为典型的试验材料,以15 mg·m-33甲醛分别进行熏蒸处理,测定单位干物质甲醛的吸收量、相对电导率、丙二醛含量和叶绿素含量等,以研究这些植物在甲醛胁迫下的生理动态反应。结果表明:在甲醛胁迫的4 d时间内,巢蕨和巴西铁的单位干物质甲醛吸收量均在第3天达到峰值,而黑美人和虎尾兰则一直在缓慢增加,其中以巢蕨吸收的量最多,巴西铁单位干物质甲醛吸收量最少; 4种植物的相对电导率、丙二醛的含量均随甲醛胁迫时间的增加而增加,以巢蕨的相对电导率最高,虎尾兰最低,但巴西铁的丙二醛的含量最高,巢蕨最低; 4种植物的叶绿素含量均随甲醛胁迫时间的增加而降低,其中黑美人降低幅度最高,虎尾兰最低。  相似文献   

13.
Summary Patterns of variations in dry matter concentrations in tomato plants reflected production and translocation of dry matter, implying the possibility of controlling and regulating growth and development of plants by use of dry matter concentration as a useful parameter.Dry matter concentrations, analogous to nutrient concentrations, varied depending on growth conditions, and on type, age and position of plant organs.Interpretation of patterns of variations in contents and concentrations of leaf dry matter in plants, grown under widely different conditions, agreed with the source/sink hypothesis.High water applications were associated with high dry matter concentrations in upper leaves of young pot plants with low sink capacity and with low dry matter concentrations in leaves of older, trough-grown plants with high sink capacity.Accumulation of dry matter in upper leaves of plants is suggested to be associated with development of secondary sinks and, accumulation of dry matter in lateral shoots is considered as a possible explanation of apical dominance.Water regime and transpiration influenced distribution of contents of dry and fresh matter and of absorbed nutrient elements. Redistribution was influenced by water regime.The term, distribution is in the following used in connection with not only absolute values (contents) but also relative values (concentrations).  相似文献   

14.
Goodfriend  W.L.  Olsen  M.W.  Frye  R.J. 《Plant and Soil》1998,202(2):241-250
Plants were cultivated in a nutrient solution containing increasing cadmium concentrations (i.e. 0.001–25 µM), under strictly controlled growth conditions. Changes in both growth parameters and enzyme activities, directly or indirectly related to the cellular free radical scavenging systems, were studied in roots and leaves of 14-day-old maize plants (Zea mays L., cv. Volga) as a result of Cd uptake. A decrease in both shoot length and leaf dry biomass was found to be significant only when growing on 25 µM Cd, whereas concentrations of chlorophyll pigments in the 4th leaf decreased from 1.7 µM Cd on. Changes in enzyme activities occurred at lower Cd concentrations in solution leading to lower threshold values for Cd contents in plants than those observed for growth parameters. Peroxidase (POD; E.C. 1.11.1.7) activity increased in the 3rd and 4th leaf, but not in roots. In contrast, glucose-6-phosphate dehydrogenase (G6PDH; E.C. 1.1.1.49), isocitrate dehydrogenase (ICDH; E.C. 1.1.1.42) and malic enzyme (ME; E.C. 1.1.1.40) activities decreased in the 3rd leaf. According to the relationship between the POD activity and the Cd content, a toxic critical value was set at 3 mg Cd per kg dry matter in the 3rd leaf and 5 mg Cd per kg dry matter in the 4th. Anionic POD were determined both in root and leaf protein extracts; however, no changes in the isoperoxidase pattern were detected in case of Cd toxicity. Results show that in contrast with growth parameters, the measurement of enzyme activities may be included as early biomarkers in a plant bioassay to assess the phytotoxicity of Cd-contaminated soils on maize plants.  相似文献   

15.
Iron is an essential element to marine biota. Different types of dissolved organic matter (DOM), such as humic substances have impacts on the marine coastal waters iron chemistry. The aim of the study was to examine how the presence of humic substances (both aquatic and sedimentary) may affect iron bioavailability to the bloom-forming cyanobacterium Microcystis aeruginosa Kutzing incubated on standard and modified mineral BG-11 media. The final iron concentrations in the growth media ranged from 0.1 to 100microM. The results demonstrate that both the growth rate and the concentration of chlorophyll a in cultures of M. aeruginosa are limited by insufficient (<10microM) Fe concentrations. The addition of aquatic humic substances in the presence of iron in concentrations <0.1microM increased the optical density 25-fold, and the production of chlorophyll a 15-fold as compared with the cultures exposed to iron only at the same concentration. Sedimentary humic acids in the presence of iron at a concentration of 10microM reduced the growth and production of chlorophyll a by 50% as compared to the cultures exposed to iron only at the same concentration. Possible mechanisms of humic substances - metal ion - alga interactions are discussed. It is suggested that aquatic humic substances could be of great importance in the formation of cyanobacteria blooms.  相似文献   

16.
To determine the effects of nutrients on growth and toxin production of Nodularia strain GR8b, several nutrient concentrations were tested in batch and chemostat cultures. In batch cultures, phosphate (55-5,500 mg L-1) and nitrate (100-30,000 mg L-1) concentrations were applied, whereas in chemostat cultures, phosphate concentrations (5-315 mg L-1) were tested. Intra- and extracellular toxin concentrations, together with biomass parameters, were measured. In the batch cultures with low phosphate concentrations, chlorophyll a and protein contents were reduced, but dry weights and cell numbers were not significantly affected. The highest nitrate concentrations resulted in reduced dry weight concentrations. Nodularin concentration per dry weight, nodularin to protein ratio, and dissolved nodularin were highest at the end of the experiment, but were not influenced by the nutrient concentrations. Nodularin concentration per cell was also rather constant under the varying nutrient concentrations. In the chemostat cultures, the biomass increased with high phosphate concentrations. However, the phosphate concentrations did not have statistically significant effects on nodularin production rates.  相似文献   

17.
Plants of Phaseolus vulgaris were grown from seed in open-topgrowth chambers at the present (P, 350 µmol mol–1)atmospheric CO2 concentration and at an elevated (E, 700 µmolmol–1) CO2 concentration, and at low (L, without additionalnutrient solution) and high (H, with additional nutrient solution)nutrient supply for 28 d The effects of CO2 and nutrient availabilitywere examined on growth, morphological and biochemical characteristics Leaf area and dry mass were significantly increased by CO2 enrichmentand by high nutrient supply Stomatal density, stomatal indexand epidermal cell density were not affected by elevated CO2concentration or by nutrient supply Leaf thickness respondedpositively to CO2 increasing particularly in mesophyll areaas a result of cell enlargement Intercellular air spaces inthe mesophyll decreased slightly in plants grown in elevatedCO2 Leaf chlorophyll content per unit area or dry mass was significantlylower in elevated CO2 grown plants and increased significantlywith increasing nutrient availability The content of reducingcarbohydrates of leaves, stem, and roots was not affected byCO2 but was significantly increased by nutrient addition inall plant parts Starch content in leaves and stem was significantlyincreased by elevated CO2 concentration and by high nutrientsupply Phaseolus vulgaris, elevated atmospheric CO2, CO2-nutrient interaction, stomatal density, leaf anatomy, chlorophyll, carbohydrates, starch  相似文献   

18.
Summary Rice plants (Oryza sativa L.) were grown for 125 days in nutrient solutions maintained at constant potassium concentrations over the rate 51 to 1534 M. Data are recorded at different growth stages for relative growth rate, potassium content, absorption rate of this element per gram dry weight of roots per day and its utilization in dry-matter production. Optimum concentration for maximum growth was found to be about 256 M or 10 ppm potassium. Growth was more or less constant beyond this concentration. The maximum growth was characterized by a certain relative absorption rate (IM) for maximum growth ranging from 106 to 757 g-atom of potassium per g dry weight of roots per day, during the period of cultivation. In general the content of this element in tops as a percentage of the total content does not change appreciably either under different concentrations or at different ages. When the concentration of the solution increased, the utilization of potassium (dry-matter production per unit element content) decreased. The ratio between the relative growth rate (RGR) and relative absorption rate (IM) for maximum growth of rice ranged 1.4 during the first phase of growth to 1.3 at maturity of the crop. Higher ratios indicate an insufficient nutrient supply, lower ratios, however, either an abundant supply or a depressing effect of the solution on growth.  相似文献   

19.
Arsenic (As) uptake by two perennial coastal marsh grasses growing in hydroponic conditions was studied in relation to the chemical form and concentration of As added to nutrient solution. A 4×3×2 factorial experiment was conducted with treatments consisting of four As chemical forms [arsenite, As(III); arsenate, As(V); monomethyl arsonic acid, MMAA; and dimethyl arsinic acid, DMAA], three As concentrations (0.2, 0.8, and 2.0 mg As L-1) and two plant species (Spartina patens and Spartina alterniflora). Arsenic phytoavailability and phytotoxicity were primarily determined by the As chemical form present in the nutrient solution, though As concentration also influenced both As availability and toxicity. Application of As(V) increased root, shoot and total dry matter production; this positive plant growth response may be linked with P nutrition. Organic arsenicals and As(III) were the most phytotoxic species to both marsh grasses when plant growth was considered. Arsenic uptake and transport in plant were species-specific. Phytoavailability of As followed the trend DMAA MMAA As(V) < As(III). Root and shoot As concentrations significantly increased with increasing As application rates to the rooting medium, regardless of the As chemical form. Upon absorption, inorganic arsenicals and MMAA were mainly accumulated in the root system, while DMAA was readily translocated to the shoot.  相似文献   

20.
A greenhouse study was carried out using cowpea (Vigna unguiculata (L.) Walp.) grown in Perlite® and inoculated with Nitragin® to investigate the concentration of plant nutrients and planting density required for optimum biomass production. Five concentrations (full, 0.5, 0.2, 0.1 and 0.05 strength) of Bisseling's nutrient solution and five planting densities (one to five plants per pot) were tested in a factorial randomized Graeco-Latin square design. Growth was determined as fresh and dry weights of leaves, stems, petioles, roots, flowers and pods, and whole plant.Optimum biomass production was found at 0.5 strength nutrient solution and a density of one plant per pot. Plants were more sensitive to higher planting density than to alterations of nutrient level. Over a twenty-fold range of nutrient supply, whole plant biomass yield varied at most by 44%, whereas increasing planting density from one to five plants per pot decreased biomass production by as much as 77%. There is a decrease in the shoot/root ratio as nutrient level decreases. The data suggests a potential for higher seed production at the higher densities and lowest nutrient levels, but this data was inconclusive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号