共查询到20条相似文献,搜索用时 140 毫秒
1.
A distant evolutionary relationship between GPI-specific phospholipase D and bacterial phosphatidylcholine-preferring phospholipase C 总被引:1,自引:0,他引:1
Rigden DJ 《FEBS letters》2004,569(1-3):229-234
In eukaryotes some surface proteins are attached to the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor. A GPI-specific phospholipase D (GPI-PLD) activity has been characterized and implicated in the regulation of anchoring, thereby influencing the dispersal of anchored proteins or their maintenance on the cell surface, and possibly in cell signalling. Despite its biological and medical importance, little is known of the structure of GPI-PLD. Here, a distant relationship between the catalytic domains of GPI-PLD and some bacterial phospholipases C is demonstrated. A model of the GPI-PLD catalytic site sheds light on catalysis and highlights possibilities for design of improved and more specific GPI-PLD inhibitors. The databases contain hitherto unnoticed close homologues of GPI-PLD from yeast and Dictyostelium discoideum. 相似文献
2.
Deeg MA Bowen RF Williams MD Olson LK Kirk EA LeBoeuf RC 《American journal of physiology. Endocrinology and metabolism》2001,281(1):E147-E154
Glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) is a high-density lipoprotein-associated protein. However, the tissue source(s) for circulating GPI-PLD and whether serum levels are regulated are unknown. Because the diabetic state alters lipoprotein metabolism, and liver and pancreatic islets are possible sources of GPI-PLD, we hypothesized that GPI-PLD levels would be altered in diabetes. GPI-PLD serum activity and liver mRNA were examined in two mouse models of type 1 diabetes, a nonobese diabetic (NOD) mouse model and low-dose streptozotocin-induced diabetes in CD-1 mice. With the onset of hyperglycemia (2- to 5-fold increase over nondiabetic levels), GPI-PLD serum activity and liver mRNA increased 2- to 4-fold in both models. Conversely, islet expression of GPI-PLD was absent as determined by immunofluorescence. Insulin may regulate GPI-PLD expression, because insulin treatment of diabetic NOD mice corrected the hyperglycemia along with reducing serum GPI-PLD activity and liver mRNA. Our data demonstrate that serum GPI-PLD levels are altered in the diabetic state and are consistent with liver as a contributor to circulating GPI-PLD. 相似文献
3.
Release of GPI-anchored membrane proteins by a cell-associated GPI-specific phospholipase D. 总被引:10,自引:0,他引:10 下载免费PDF全文
C N Metz G Brunner N H Choi-Muira H Nguyen J Gabrilove I W Caras N Altszuler D B Rifkin E L Wilson M A Davitz 《The EMBO journal》1994,13(7):1741-1751
Although many glycosylphosphatidylinositol (GPI)-anchored proteins have been observed as soluble forms, the mechanisms by which they are released from the cell surface have not been demonstrated. We show here that a cell-associated GPI-specific phospholipase D (GPI-PLD) releases the GPI-anchored, complement regulatory protein decay-accelerating factor (DAF) from HeLa cells, as well as the basic fibroblast growth factor-binding heparan sulfate proteoglycan from bone marrow stromal cells. DAF found in the HeLa cell culture supernatants contained both [3H]ethanolamine and [3H]inositol, but not [3H]palmitic acid, whereas the soluble heparan sulfate proteoglycan present in bone marrow stromal cell culture supernatants contained [3H]ethanolamine. 125I-labeled GPI-DAF incorporated into the plasma membranes of these two cell types was released in a soluble form lacking the fatty acid GPI-anchor component. GPI-PLD activity was detected in lysates of both HeLa and bone marrow stromal cells. Treatment of HeLa cells with 1,10-phenanthroline, an inhibitor of GPI-PLD, reduced the release of [3H]ethanolamine-DAF by 70%. The hydrolysis of these GPI-anchored molecules is likely to be mediated by an endogenous GPI-PLD because [3H]ethanolamine DAF is constitutively released from HeLa cells maintained in serum-free medium. Furthermore, using PCR, a GPI-PLD mRNA has been identified in cDNA libraries prepared from both cell types. These studies are the first demonstration of the physiologically relevant release of GPI-anchored proteins from cells by a GPI-PLD. 相似文献
4.
5.
6.
Mutations in fukutin-related protein (FKRP) give rise to mild and more severe forms of muscular dystrophy. FKRP patients have reduced glycosylation of the extracellular protein dystroglycan, and FKRP itself shows sequence similarity to glycosyltransferases, implicating FKRP in the processing of dystroglycan. However, FKRP localization is controversial, and no FKRP complexes are known, so any FKRP-dystroglycan link remains elusive. Here, we demonstrate a novel FKRP localization in vivo; in mouse, both endogenous and recombinant FKRP are present at the sarcolemma. Biochemical analyses revealed that mouse muscle FKRP and dystroglycan co-enrich and co-fractionate, indicating that FKRP coexists with dystroglycan in the native dystrophin-glycoprotein complex. Furthermore, FKRP sedimentation shifts with dystroglycan in disease models involving the dystrophin-glycoprotein complex, and sarcolemmal FKRP immunofluorescence mirrors that of dystroglycan in muscular dystrophy mice, suggesting that FKRP localization may be mediated by dystroglycan. These data offer the first evidence of an FKRP complex in muscle and suggest that FKRP may influence the glycosylation status of dystroglycan from within the sarcolemmal dystrophin-glycoprotein complex. 相似文献
7.
The capacity of the cyclin D-dependent kinase to promote G(1) progression through modulation of RB.E2F is well documented. We now demonstrate that the cyclin D1/CDK4 kinase binds to components of the MCM complex. MCM7 and MCM3 were identified as cyclin D1-binding proteins. Catalytically active cyclin D1/CDK4 complexes were incorporated into chromatin-bound protein complexes with the same kinetics as MCM7 and MCM3, where they associated specifically with MCM7. Although the cyclin D1-dependent kinase did not phosphorylate MCM7, active cyclin D1/CDK4, but not cyclin E/CDK2, did catalyze the dissociation of an RB.MCM7 complex. Finally, expression of an active D1/CDK4 kinase but not cyclin E/CDK2 promoted the removal of RB from chromatin-bound protein complexes. Our data suggest that D1/CDK4 complexes play a direct role in altering an inhibitory RB.MCM7 complex possibly allowing for setting of the origin in preparation for DNA replication. 相似文献
8.
《Cytokine》2014,65(2):134-137
The purpose of this study was to identify the influence of vitamin D status (insufficient vs. sufficient) on circulating cytokines and skeletal muscle strength after muscular injury. To induce muscular injury, one randomly selected leg (SSC) performed exercise consisting of repetitive eccentric–concentric contractions. The other leg served as the control. An averaged serum 25(OH)D concentration from two blood samples collected before exercise and on separate occasions was used to establish vitamin D insufficiency (<30 ng/mL, n = 6) and sufficiency (>30 ng/mL, n = 7) in young, adult males. Serum cytokine concentrations, single-leg peak isometric force, and single-leg peak power output were measured before and during the days following the exercise protocol. The serum IL-10 and IL-13 responses to muscular injury were significantly (both p < 0.05) increased in the vitamin D sufficient group. The immediate and persistent (days) peak isometric force (p < 0.05) and peak power output (p < 0.05) deficits in the SSC leg after the exercise protocol were not ameliorated with vitamin D sufficiency. We conclude that vitamin D sufficiency increases the anti-inflammatory cytokine response to muscular injury. 相似文献
9.
1-Butanol is commonly used as a substrate for phospholipase D (PLD) activity measurement. Surprisingly we found that, in the presence of 30 mM 1-butanol (standard PLD assay conditions), PLD1 activity in COS-7 cells was lost after incubation for 2 min. In contrast, in the presence of the protein kinase C (PKC) inhibitor staurosporine or dominant negative PKCalpha D481E, the activity was sustained for at least 30min. The binding between PLD1 and PKCalpha was also lost after 2 min incubation with 30 mM 1-butanol while staurosporine and D481E maintained the binding. 1-Butanol at 2 mM did not inhibit PLD1 basal activity or PLD1 binding to PKCalpha, and staurosporine and PKCalpha D481E produced a constant increase in PLD1 basal activity of 2-fold. These results indicate that 1-butanol is inhibitory to PLD1 activity by reducing its association with PKCalpha, and that the concentration of 1-butanol is an important consideration in assaying basal PLD1 activity. 相似文献
10.
This paper uses phospholipase Cepsilon as a model to demonstrate that lipids can act as ligands to bind to specific motifs and regulate protein activity via allosteric effects. Phospholipids such as phosphatidic acid and free fatty acids such as arachidonate are potent activators of PLCepsilon, increasing the rate of PI hydrolysis by 8-fold and 50-fold, respectively. The mechanism appears to be a reduction of K(m), as the substrate dependence curve is shifted to the left and K(m) is reduced 10-fold. The regulation of PLCepsilon by lipids appears to be physiologic, as reconstitution or cotransfection of either cPLA(2) or PLD with PLCepsilon leads to activation of phosphodiesterase activity. Additionally, TSA-201 cells transfected with PLCepsilon and fed arachidonic acid complexed with BSA had increased (4-5-fold) hydrolysis of polyphosphoinositides. This study demonstrates the ability of lipids to act as potent and direct mediators of protein function and identifies cross talk between different classes of phospholipase (PLD and PLA(2) with PLC) mediated via lipid products. 相似文献
11.
12.
Ahn BH Rhim H Kim SY Sung YM Lee MY Choi JY Wolozin B Chang JS Lee YH Kwon TK Chung KC Yoon SH Hahn SJ Kim MS Jo YH Min DS 《The Journal of biological chemistry》2002,277(14):12334-12342
alpha-Synuclein has been implicated in the pathogenesis of many neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. Although the function of alpha-synuclein remains largely unknown, recent studies have demonstrated that this protein can interact with phospholipids. To address the role of alpha-synuclein in neurodegenerative disease, we have investigated whether it binds phospholipase D (PLD) and affects PLD activity in human embryonic kidney (HEK)-293 cells overexpressing wild type alpha-synuclein or the mutant forms of alpha-synuclein (A53T, A30P) associated with Parkinson's disease. Tyrosine phosphorylation of alpha-synuclein appears to play a modulatory role in the inhibition of PLD, because mutation of Tyr(125) to Phe slightly increases inhibitory effect of alpha-synuclein on PLD activity. Treatment with pervanadate or phorbol myristate acetate inhibits PLD more in HEK 293 cells overexpressing alpha-synuclein than in control cells. Binding of alpha-synuclein to PLD requires phox and pleckstrin homology domain of PLD and the amphipathic repeat region and non-Abeta component of alpha-synuclein. Although biologically important, co-transfection studies indicate that the interaction of alpha-synuclein with PLD does not influence the tendency of alpha-synuclein to form pathological inclusions. These results suggest that the association of alpha-synuclein with PLD, and modulation of PLD activity, is biologically important, but PLD does not appear to play an essential role in the pathophysiology of alpha-synuclein. 相似文献
13.
Anne Pipathsouk Rachel M. Brunetti Jason P. Town Brian R. Graziano Art Breuer Patrina A. Pellett Kyle Marchuk Ngoc-Han T. Tran Matthew F. Krummel Dimitrios Stamou Orion D. Weiner 《The Journal of cell biology》2021,220(8)
How local interactions of actin regulators yield large-scale organization of cell shape and movement is not well understood. Here we investigate how the WAVE complex organizes sheet-like lamellipodia. Using super-resolution microscopy, we find that the WAVE complex forms actin-independent 230-nm-wide rings that localize to regions of saddle membrane curvature. This pattern of enrichment could explain several emergent cell behaviors, such as expanding and self-straightening lamellipodia and the ability of endothelial cells to recognize and seal transcellular holes. The WAVE complex recruits IRSp53 to sites of saddle curvature but does not depend on IRSp53 for its own localization. Although the WAVE complex stimulates actin nucleation via the Arp2/3 complex, sheet-like protrusions are still observed in ARP2-null, but not WAVE complex-null, cells. Therefore, the WAVE complex has additional roles in cell morphogenesis beyond Arp2/3 complex activation. Our work defines organizing principles of the WAVE complex lamellipodial template and suggests how feedback between cell shape and actin regulators instructs cell morphogenesis. 相似文献
14.
Nonis D Schmidt MH van de Loo S Eich F Dikic I Nowock J Auburger G 《Cellular signalling》2008,20(10):1725-1739
Ataxin-2 is a novel protein, where the unstable expansion of an internal polyglutamine domain can cause the neurodegenerative disease Spinocerebellar Ataxia type 2 (SCA2). To elucidate its cellular function, we have used full-length ataxin-2 as bait in a yeast two-hybrid screen of human adult brain cDNA. As binding partners we found endophilin A1 and A3, two brain-expressed members of the endophilin A family involved in synaptic vesicle endocytosis. Co-immunoprecipitation studies confirmed the binding of these proteins as an endogenous complex in mouse brain. In vitro binding experiments narrowed the binding interfaces down to two proline-rich domains on ataxin-2, which interacted with the SH3 domain of endophilin A1/A3. Ataxin-2 and endophilin associated at the endoplasmic reticulum as well as at the plasma membrane as determined by immunofluorescence microscopy of transfected cell lines, and by centrifugation fractionation studies of mouse brain. Importantly, the pattern observed in transfected cells was conserved in rat hippocampal neurons. In the mouse brain, an association of ataxin-2 with endocytic proteins such as the adaptor CIN85 and the ubiquitin ligase c-Cbl was also demonstrated. GST pull-down assays showed ataxin-2 to directly interact with the SH3 domains A and C of CIN85 and with the SH3 domain of Src, a kinase activated after receptor stimulation. Functional studies demonstrated that ataxin-2 affects endocytic trafficking of the epidermal growth factor receptor (EGFR). Taken together, these data implicate ataxin-2 to play a role in endocytic receptor cycling. 相似文献
15.
Because receptors, G proteins, and phospholipases all exist within a membrane lipid environment, it is not unreasonable to assume that an enzyme capable of changing the lipid environment can affect the coupling relationship among these signal transducing components. Our previous study showed that a muscarinic acetylcholine receptor regulates phosphatidylcholine phospholipase D via a G protein in brain. We demonstrate here that phosphatidylinositol phospholipase C and phosphatidylcholine phospholipase D are simultaneously activated within 15 s by muscarine in the presence of 1 microM GTP gamma S. More important, inhibition of phospholipase D by zinc attenuated carbamylcholine-induced activation of phospholipase C by 30%. Our additional evidence strongly indicates that the receptor-regulated phospholipase D plays an important modulatory role in agonist-stimulated phosphatidylinositol breakdown. This modulatory effect may be achieved by changing the membrane microenvironment in which phospholipase C and phosphoinositol lipids reside, consequently amplifying the inositol phospholipid signaling process. Our results lead us to postulate that the potential interaction between two different signaling pathways may provide a cell with intracellular coordination and enable the cell to achieve functional responses. 相似文献
16.
Regulation of phospholipase D 总被引:11,自引:0,他引:11
Exton JH 《FEBS letters》2002,531(1):58-61
Structural studies of plant and bacterial members of the phospholipase D (PLD) superfamily are providing information about the role of the conserved HKD domains in the structure of the catalytic center and the catalytic mechanism of mammalian PLD isozymes (PLD1 and PLD2). Mutagenesis and sequence comparison studies have also defined the presence of pleckstrin homology and phox homology domains in the N-terminus and have demonstrated that a conserved sequence at the C-terminus is required for catalysis. The N- and C-terminal regions of PLD1 also contain interaction sites for protein kinase C, which can directly activate the enzyme through a non-phosphorylating mechanism. Small G proteins of the Rho and ADP-ribosylation factor families also directly regulate the enzyme, with RhoA binding to a sequence in the C-terminus. Certain tyrosine kinases and members of the Ras subfamily of small G proteins can activate the enzyme, but the mechanisms appear to be indirect. The mechanisms by which agonists activate PLD in vivo probably involve multiple pathways. 相似文献
17.
Conditions of phospholipase D adsorption on silica gels have been studied. The immobilized phospholipase D is shown to differ from the soluble form in thermostability, pH optima and activation conditions. A question is discussed as to the connection of the use of activators and the adsorption immobilization. It is assumed that phospholipase D belongs to enzymes, functioning only in the immobilized state. 相似文献
18.
Transphosphatidylation by phospholipase D 总被引:43,自引:0,他引:43
19.
The kinetochore, which consists of DNA sequence elements and structural proteins, is essential for high-fidelity chromosome transmission during cell division. In budding yeast, Sgt1, together with Skp1, is required for assembly of the core kinetochore complex (CBF3) via Ctf13 activation. Formation of the active Ctf13-Skp1 complex also requires Hsp90, a molecular chaperone. We have found that Sgt1 interacts with Hsp90 in yeast. We also have determined that Skp1 and Hsc82 (a yeast Hsp90 protein) bind to the N-terminal region of Sgt1 that contains tetratricopeptide repeat motifs. Results of sequence and phenotypic analyses of sgt1 mutants strongly suggest that the N-terminal region containing the Hsc82-binding and Skp1-binding domains of Sgt1 is important for the kinetochore function of Sgt1. We found that Hsp90's binding to Sgt1 stimulates the binding of Sgt1 to Skp1 and that Sgt1 and Hsp90 stimulate the binding of Skp1 to Ctf13, the F-box core kinetochore protein. Our results strongly suggest that Sgt1 and Hsp90 function in assembling CBF3 by activating Skp1 and Ctf13. 相似文献
20.
J.H. Exton 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》1999,1439(2):121-133
Phospholipase D (PLD) is a widely distributed enzyme that is under elaborate control by hormones, neurotransmitters, growth factors and cytokines in mammalian cells. Protein kinase C (PKC) plays a major role in the regulation of the PLD1 isozyme through interaction with its N-terminus. PKC activates this isozyme by a non-phosphorylation mechanism in vitro, but phosphorylation plays a role in the action of PKC on the enzyme in vivo. Although PLD1 can be phosphorylated by PKC in vitro, it is unclear that this occurs in vivo. Small GTPases of the ADP-ribosylation factor (ARF) and Rho families directly activate PLD1 in vitro and there is evidence that Rho proteins are involved in agonist regulation of PLD1 in vivo. ARF proteins stimulate PLD activity in the Golgi apparatus, but the role of these proteins in agonist regulation of the enzyme is less clear. PLD1 undergoes tyrosine phosphorylation in response to H2O2 treatment of cells. The functional consequence of this phosphorylation and soluble tyrosine kinase(s) involved are presently unknown. 相似文献