首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosomal DNA from group I Pseudomonas species, Azotobacter vinelandii, Azomonas macrocytogens, Xanthomonas campestris, Serpens flexibilis, and three enteric bacteria was screened for sequences homologous to four Pseudomonas aeruginosa alginate (alg) genes (algA, pmm, algD, and algR1). All the group I Pseudomonas species tested (including alginate producers and nonproducers) contained sequences homologous to all the P. aeruginosa alg genes used as probes, with the exception of P. stutzeri, which lacked algD. Azotobacter vinelandii also contained sequences homologous to all the alg gene probes tested, while Azomonas macrocytogenes DNA showed homology to all but algD. X. campestris contained sequences homologous to pmm and algR1 but not to algA or algD. The helical bacterium S. flexibilis showed homology to the algR1 gene, suggesting that an environmentally responsive regulatory gene similar to algR1 exists in S. flexibilis. Escherichia coli showed homology to the algD and algR1 genes, while Salmonella typhimurium and Klebsiella pneumoniae failed to show homology with any of the P. aeruginosa alg genes. Since all the organisms tested are superfamily B procaryotes, these results suggest that within superfamily B, the alginate genes are distributed throughout the Pseudomonas group I-Azotobacter-Azomonas lineage, while only some alg genes have been retained in the Pseudomonas group V (Xanthomonas) and enteric lineages.  相似文献   

2.
Total genomic DNA of 13 pseudomonads representing rRNA homology groups I-IV were screened for sequences homologous to four Pseudomonas aeruginosa alginate (alg) genes by Southern hybridization. Biotinylated probes for three structural genes (algA, algC and algD) and one regulatory gene (algR1) were prepared. Genomic DNA of strains representing group I (P. syringae pv. glycinea, P. viridiflava and P. corrugata) hybridized with all four gene probes. Hybridizing fragments were of differing sizes, indicating that evolutionary divergence among group I members has occurred. P. corrugata has not been reported to synthesize alginate. Genomic DNA from representatives of groups II-IV gave no or very weak hybridization with the probes except for algC. This study indicates that the ability to produce alginic acid as an exopolysaccharide among the pseudomonads is restricted to members of rRNA homology group I in agreement with earlier physiological studies.  相似文献   

3.
4.
The myelin associated glycoproteins (MAG) are integral plasma membrane proteins which are found in oligodendrocytes and Schwann cells and are believed to mediate the axonal-glial interactions of myelination. In this paper we demonstrate the existence in central nervous system myelin of two MAG polypeptides with Mrs of 67,000 and 72,000 that we have designated small MAG (S-MAG) and large MAG (L-MAG), respectively. The complete amino acid sequence of L-MAG and a partial amino acid sequence of S-MAG have been deduced from the nucleotide sequences of corresponding cDNA clones isolated from a lambda gt11 rat brain expression library. Based on their amino acid sequences, we predict that both proteins have an identical membrane spanning segment and a large extracellular domain. The putative extracellular region contains an Arg-Gly-Asp sequence that may be involved in the interaction of these proteins with the axon. The extracellular portion of L-MAG also contains five segments of internal homology that resemble immunoglobulin domains, and are strikingly homologous to similar domains of the neural cell adhesion molecule and other members of the immunoglobulin gene superfamily. In addition, the two MAG proteins differ in the extent of their cytoplasmically disposed segments and appear to be the products of alternatively spliced mRNAs. Of considerable interest is the finding that the cytoplasmic domain of L-MAG, but not of S-MAG, contains an amino acid sequence that resembles the autophosphorylation site of the epidermal growth factor receptor.  相似文献   

5.
Nearly complete sequences of 16S rRNA genes were determined for eight bacterial strains representing five species of the rRNA homology group II pseudomonads that are members of the beta subclass of the class Proteobacteria. Comparative analysis with published sequence data indicated that Pseudomonas andropogonis, Ps. caryophylli, Ps. gladioli pv. gladioli and Ps. cepacia aggregate in one coherent cluster at 94·2% sequence similarity; Ps. solanacearum and Ps. pickettii shared 95·3% and 92·8% similarity with Alcaligenes eutrophus in another cluster. Both clusters joined at 87·8% similarity, which is similar to that for genera in this subclass of Proteobacteria. Based on this study and on comparison with other works we suggest that these species are separated from authentic pseudomonads and constitute a new genus or possibly two related genera accommodating Ps. andropogonis, Ps. caryophylli, Ps. gladioli, Ps. cepacia, and Ps. solanacearum, Ps. pickettii and A. eutrophus, respectively. Four strains of Ps. solanacearum representing Biovars 1, 2, 3 and 4 were subdivided into two clusters at 99·1% sequence similarity, in agreement with other published phenotypic and genotypic studies. The two clusters may be potentially regarded as subspecies.  相似文献   

6.
We have assessed the relative homology of mouse immunoglobulin heavy-chain gene sequence using complementary DNAs (cDNAs) synthesized against gamma-chain mRNAs (gamma 1, gamma 2a, gamma 2b, and gamma 3) purified from mouse myelomas. cDNAs complementary to the gamma-chain mRNAs did not cross-hybridize with the mu- and alpha-chain mRNAs, whereas they cross-hybridized to significant extents (22--66%) with the gamma-chain mRNAs of other subclasses. The heterologous hybrids formed, however, melt at 5--13 degrees C lower temperatures as compared to the homologous hybrids, indicating that significant portions of the heterologous hybrids are mismatched. The rates of the cross-hybridization reactions are 2- to 17-fold slower than those of the homologous hybridization reactions. Therefore, the gamma-chain gene sequences of four subclasses share a part of homology with each other, but they are different enough to be measured separately. Cross-hybridization analysis indicate that the gamma 2a and gamma 2b genes are the most closely related, while the gamma 1 and gamma 3 genes are the least related among the gamma subclass genes.  相似文献   

7.
8.
9.
Mucoid strains of Pseudomonas aeruginosa produce a high-molecular-weight exopolysaccharide called alginate that is modified by the addition of O-acetyl groups. To better understand the acetylation process, a gene involved in alginate acetylation called algF was identified in this study. We hypothesized that a gene involved in alginate acetylation would be located within the alginate biosynthetic gene cluster at 34 min on the P. aeruginosa chromosome. To isolate algF mutants, a procedure for localized mutagenesis was developed to introduce random chemical mutations into the P. aeruginosa alginate biosynthetic operon on the chromosome. For this, a DNA fragment containing the alginate biosynthetic operon and adjacent argF gene in a gene replacement cosmid vector was utilized. The plasmid was packaged in vivo into lambda phage particles, mutagenized in vitro with hydroxylamine, transduced into Escherichia coli, and mobilized to an argF auxotroph of P. aeruginosa FRD. Arg+ recombinants coinherited the mutagenized alginate gene cluster and were screened for defects in alginate acetylation by testing for increased sensitivity to an alginate lyase produced by Klebsiella aerogenes. Alginates from recombinants which showed increased sensitivity to alginate lyase were tested for acetylation by a colorimetric assay and infrared spectroscopy. Two algF mutants that produced alginates reduced more than sixfold in acetyl groups were obtained. The acetylation defect was complemented in trans by a 3.8-kb XbaI-BamHI fragment from the alginate gene cluster when placed in the correct orientation under a trc promoter. By a merodiploid analysis, the algF gene was further mapped to a region directly upstream of algA by examining the polar effect of Tn501 insertions. By gene replacement, DNA with a Tn501 insertion directly upstream of algA was recombined with the chromosome of mucoid strain FRD1. The resulting strain, FRD1003, was nonmucoid because of the polar effect of the transposon on the downstream algA gene. By providing algA in trans under the tac promoter, FRD1003 produced nonacetylated alginate, indicating that the transposon was within or just upstream of algF. These results demonstrated that algF, a gene involved in alginate acetylation, is located directly upstream of algA.  相似文献   

10.
11.
12.
Abstract A genomic DNA sequence of Streptomyces strain ISP 5485 was cloned, sequenced and compared with corresponding information from nucleic acid data banks. The DNA sequence was unique, but showed homology to DNA coding for the condensing enzyme, 2-oxoacyl synthase, of the deoxyerythronolide B synthase complex (DEBS) from Saccharopolyspora erythraea NRRL 2338. A subfragment of the sequenced DNA was used to construct a gene-specific probe that formed part of the putative 2-oxoacyl synthase gene. The PCR-amplified and labelled probe was used in hybridization experiments involving 33 streptomycete strains that produced different classes of antibiotics. The probe showed widespread homology with DNA considered to be part of analogous genes within genomes of different polyketide producers. The implications of the probe homology to bacterial chromosomal DNA are discussed.  相似文献   

13.
Phylogenetic relationships of the species belonging to the genus Myxococcus were elucidated based on the sequences of 16S rRNA genes and 16S-23S rRNA gene internal transcribed spacer (ITS) regions. The Myxococcus species were consequently classified into four distinct groups. The type strain of Myxococcus coralloides occupied an independent position (Group 1); it has been recently reclassified as Corallococcus coralloides. Group 2 comprised the type strains of both Myxococcus virescens and Myxococcus xanthus, and some strains assigned to Myxococcus flavescens. The type strain of M. flavescens was contained in Group 3 along with the strains of Myxococcus fulvus. Group 4 included the strains belonging to C. coralloides, M. fulvus, and M. stipitatus. The type strain of M. fulvus that was allocated outside Group 4 in the 16S rRNA gene tree belonged to Group 3 in the ITS tree. These results strongly suggest that the morphological characteristics of Myxococcus species are not consistent with the phylogenetic relationships. The Myxococcus species must therefore be redefined according to the phylogenetic relationships revealed in this study.  相似文献   

14.
Pseudomonas aeruginosa strains isolated from patients with cystic fibrosis commonly produce a capsule-like exopolysaccharide called alginate. The alginate-producing (Alg+) phenotype results in a mucoid colony morphology and is an unstable trait. A mutant of P. aeruginosa FRD (a cystic fibrosis isolate) was obtained which was temperature sensitive for alginate production ( Algts ). At elevated growth temperatures (41 degrees C), no alginate was detected in culture supernatants of the Algts mutant, but yields of alginate increased as the temperature of incubation was reduced. The mutation responsible for the Algts phenotype, alg-50(Ts), has been mapped to a region of the FRD chromosome closely linked to trp-2. The alg-50(Ts) marker did not map near the met-l-linked chromosomal mutations responsible for the instability of the Alg+ phenotype. A broad host range cosmid cloning system based upon derivatives of plasmid RK2 was used to construct a P. aeruginosa clone bank. After transfer of the clone bank to the Algts mutant, hybrid plasmids were obtained which complemented the Algts defect. Deletion mapping of the original 20.3 kilobases of P. aeruginosa DNA cloned showed that a 4.7-kilobase fragment would complement the alg-50(Ts) mutation.  相似文献   

15.
16.
Mucoid strains of Pseudomonas aeruginosa overproduce alginate, a linear exopolysaccharide Of D-mannuronate and variable amounts of L-guluronate. The mannuronate residues undergo modification by C-5 epimerization to form the L-guluronates and by the addition of acetyl groups at the 0-2 and 0-3 positions. Through genetic analysis, we previously identified algF, located upstream of algA in the 18-kb alginate biosynthetic operon, as a gene required for alginate acetylation. Here, we show the sequence of a 3.7-kb fragment containing the open reading frames termed algI, algJ, and algF. An algI::Tn5O1 mutant, which was defective in algIJFA because of the polar nature of the transposon insertion, produced alginate when algA was provided in trans. This indicated that the algIJF gene products were not required for polymer biosynthesis. To examine the potential role of these genes in alginate modification, mutants were constructed by gene replacement in which each gene (algI, algJ, or algF) was replaced by a polar gentamicin resistance cassette. Proton nuclear magnetic resonance spectroscopy showed that polymers produced by strains deficient in algIJF still contained a mixture of D-mannuronate and L-guluronate, indicating that C-5 epimerization was not affected. Alginate acetylation was evaluated by a colorimetric assay and Fourier transform-infrared spectroscopy, and this analysis showed that strains deficient in algIJF produced nonacetylated alginate. Plasmids that supplied the downstream gene products affected by the polar mutations were introduced into each mutant. The strain defective only in algF expression produced an alginate that was not acetylated, confirming previous results. Strains missing only algJ or algI also produced nonacetylated alginates. Providing the respective missing gene (algI, algJ, or algF) in trans restored alginate acetylation. Mutants defective in algI or algJ, obtained by chemical and transposon mutagenesis, were also defective in their ability to acetylate alginate. Therefore, algI and algJ represent newly identified genes that, in addition to algF, are required for alginate acetylation.  相似文献   

17.
18.
19.
L Chu  T B May  A M Chakrabarty  T K Misra 《Gene》1991,107(1):1-10
Alginate (Alg), a random polymer of mannuronic acid and glucuronic acid residues, is synthesized and secreted by Pseudomonas aeruginosa primarily during its infection of the lungs of cystic fibrosis patients. The molecular biology and biochemistry of the enzymatic steps leading to the production of the Alg precursor GDP-mannuronic acid have been elucidated, but the mechanism of polymer formation and export of Alg are not understood. We report the nucleotide sequence of a 2.4-kb DNA fragment containing the algE gene, previously designated alg76, encoding the AlgE protein (Mr 54,361) that is believed to be involved in these late steps of Alg biosynthesis. Expression of algE appears to occur from its own promoter. The promoter region contains several direct and inverted repeat sequences and shares structural similarity with promoters of several other alg genes from P. aeruginosa. In addition, the AlgE protein was overproduced from the tac promoter in P. aeruginosa. N-terminal amino acid sequence analysis showed that the polypeptide contains a signal peptide which is cleaved to form the mature protein during AlgE export from the cell cytoplasm.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号