首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cell's decision to divide must be regulated with the highest fidelity. Otherwise, abnormalities occurring in the replication of genetic material and cytokinesis would be incompatible with life. It has been known for almost a century that cells comprising a population undergo cellular division at extremely variable rates, even though genetically identical cell clones have been examined. Studies with T lymphocytes at the single cell level have revealed that the rate of cellular division is determined by the accumulation of a critical number of ligand-triggered interleukin-2 (IL2) receptors at the cell surface throughout the G1 phase of the cell cycle. Thus, the cell “counts” the number of triggered IL2 receptors, and only decides to divide when the critical number has been attained. This information is then transferred to the cellular interior via intracellular sensors comprised of D-type cyclins, which ultimately determine when the cell surpasses the “Restriction Point” in late G1, and which commits the cell irrevocably to initiate DNA replication. Beyond the R-point, the cell assembles a definite number of macromolecular pre-replication complexes (Pre-RCs) comprised of at least 6 distinct proteins at sites of the origin of replication on DNA. Complete assembly of the Pre-RCs is a prerequisite for their subsequent disassembly, which must occur before the initiation of DNA strand replication, and which occurs asynchronously throughout the S-phase of the cell cycle and only terminates when the entire DNA has been duplicated. Thus, the fidelity of the decision to divide is exquisitely regulated by macromolecular mechanisms initiated at the cell surface and transferred to the cellular interior so that the cell can make the decision in a quantal (all-or-none) fashion. The question before us is how this quantal decision is made at the molecular level. The available data indicate that the assembly and disassembly of a definite number of large multicomponent macromolecular complexes make the quantal decisions. Here, it is postulated that all fundamental cellular decisions, i.e. survival, death, proliferation and differentiation, are regulated in this fashion. It remains to be determined how the cell counts the signals it receives, and what the molecular forces are that dictate the behavior of macromolecular complexes. Alexander Hamilton: “The best security for the fidelity of men, is to make interest coincide with duty.”  相似文献   

2.
The quantal theory of immunity   总被引:1,自引:0,他引:1  
Smith KA 《Cell research》2006,16(1):11-19
Exactly how the immune system discriminates between all environmental antigens to which it reacts vs. all selfantigens to which it does not, is a principal unanswered question in immunology. As set forth in this review, because of the advances in our understanding of the immune system that have occurred in the last 50 years, for the first time it is possible to formulate a new theory, termed the "Quantal Theory of Immunity", which reduces the problem from the immune system as a whole, to the individual cells comprising the system, and finally to a molecular explanation as to how the system behaves as it does.  相似文献   

3.
We study processes by which T-lymphocytes "learn" to discriminate "self" from "non-self". We show that intrinsic features of the T cell activation and proliferation process are sufficient to tolerize (self) reactive T-lymphocyte clones. Self vs non-self discrimination therefore develops without any down-regulatory (e.g. suppressive) interactions. T-lymphocyte clones will expand by proliferation only if the IL2 concentration is high enough to induce a proliferation rate larger than the rate of cell decay. This concentration is the proliferation threshold. Because effector T cells are short-lived the proliferation threshold must be quite high. Such high numbers of cells producing IL2 are achieved only when sufficient (memory) precursors are activated. Self and non-self antigens differ with respect the number of (memory) precursor cells they accumulate, as a result of two processes, i.e. precursor depletion and memory accumulation, and can thus be discriminated. Precursor depletion: the dynamics of long-lived precursors can cause tolerization. In neonatal circumstances precursor influx is still low, newborn cells reacting with self antigens are immediately activated, generating (few), i.e. fewer than the proliferation threshold, effectors that decay rapidly. Thus total lymphocyte numbers remain low, yielding self tolerance. Conversely, large doses of similar antigens introduced in mature systems push "their" lymphocyte clone over the proliferation threshold because a large (accumulated) precursor population is rapidly activated. Small doses are however low zone tolerized. Memory accumulation: peripheral T-lymphocyte populations in fact consist of a mixture of virgin precursors and memory cells. If the formation process of (long-lived) memory cells is taken into account and virgin precursors are made short-lived, the proliferation threshold again accounts for self non-self discrimination. Memory cells accumulate when antigenic restimulation is low; it is low when the antigen concentration and/or the antigen affinity is low. Therefore self antigens, which are present in relatively high concentrations, fail to accumulate high affinity memory cells, and are hence tolerated. Memory cells crossreacting to self antigens with low affinity, however accumulate neonatally, pushing those clones over the proliferation threshold whenever "their" high affinity antigen enters the immune system. Thus the model generates differences in the antigenicity (i.e. memory precursor frequency) of self and non-self.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
陈缘  高福  谭曙光 《生物工程学报》2023,39(10):4004-4028
T细胞是机体抗肿瘤免疫的核心,以T细胞功能调控为基础的免疫检查点疗法已经在多种肿瘤的临床治疗中取得了重大突破,以基因工程化T细胞为基础的过继性免疫细胞疗法在血液瘤治疗中取得了重要进展,免疫治疗已经对肿瘤的临床治疗产生了深刻变革,成为肿瘤临床治疗策略的重要组成部分。T细胞受体(T cell receptor,TCR)赋予了T细胞识别肿瘤抗原的特异性,能够识别由主要组织相容性复合体(major histocompatibility complex,MHC)呈递的包括胞内抗原在内的广泛肿瘤抗原,具有高度的抗原敏感性,因而具有广泛的抗肿瘤应用前景。2022年第一款TCR药物的上市开启了TCR药物开发的新纪元,多项TCR药物临床研究表现出潜在的肿瘤治疗价值。本文综述了以TCR为基础的免疫治疗策略研究进展,包括T细胞受体工程化T细胞(T cell receptor-engineered T cell,TCR-T)和TCR蛋白药物,以及基于TCR信号的其他免疫细胞疗法,以期为以TCR为基础的免疫治疗策略开发提供参考。  相似文献   

5.
The interleukins   总被引:8,自引:0,他引:8  
S B Mizel 《FASEB journal》1989,3(12):2379-2388
The interactions between immune and inflammatory cells are mediated in large part by proteins, termed interleukins (IL), that are able to promote cell growth, differentiation, and functional activation. Seven interleukins have been described; each has unique biological activities as well as some that overlap with the others. Macrophages, cells that play important roles in both immunity and inflammation, produce IL 1 and IL 6, whereas T cells produce IL 2-IL 6 and bone marrow stromal cells produce IL 7. IL 1 and IL 6 not only play important roles in immune cell function, but also stimulate a spectrum of inflammatory cell types and induce fever. The growth and differentiation of eosinophils is markedly enhanced by IL 5. IL 2 is a potent proliferative signal for T cells, natural killer cells, and lymphokine-activated killer cells. IL 1, IL 3, IL 4, and IL 7 enhance the development of a variety of hematopoietic precursors. IL 4-IL 6 also serve to enhance B cell proliferation and antibody production. The understanding of interleukin structure and function has led to new and important insights into the fundamental biology of immunity and inflammation.  相似文献   

6.
7.
Pawlu C  DiAntonio A  Heckmann M 《Neuron》2004,42(4):607-618
Whether glutamate is released rapidly, in an all-or-none manner, or more slowly, in a regulated manner, is a matter of debate. We analyzed the time course of excitatory postsynaptic currents (EPSCs) at glutamatergic neuromuscular junctions of Drosophila and found that the decay phase of EPSCs was protracted to a variable extent. The protraction was more pronounced in evoked and spontaneous quantal EPSCs than in action potential-evoked multiquantal EPSCs; reduced in quantal EPSCs from endophilin null mutants, which maintain release via kiss-and-run; and dependent on synaptotagmin isoform, calcium, and protein phosphorylation. Our data indicate that glutamate is released from individual synaptic vesicles for milliseconds through a fusion pore. Quantal glutamate discharge time course depends on presynaptic calcium inflow and the molecular composition of the release machinery.  相似文献   

8.
Analysis of T cell receptor transcripts using the polymerase chain reaction   总被引:2,自引:0,他引:2  
The immune system is composed of two major types of lymphocytes, called B and T cells, that recognize foreign antigens. Recognition of antigens is accomplished through the generation of a large repertoire of different cell surface receptors, called immunoglobulins (Igs) on B cells and T cell receptors (TCRs) on T cells. The elucidation of Ig structure and molecular genetics preceded that of the TCR because of the greater abundance of Ig protein and mRNA. Although studies of TCRs have recently shed light on many of the issues of T cell recognition, the process of examining TCR gene structure has been tedious. Such analyses are also difficult because of the time required for the production, maintenance, and culturing of T cell clones. This report describes several strategies that use the polymerase chain reaction (PCR) to analyze very rapidly the structure of TCRs. Specific manipulations of the amplified material are discussed, as are the advantages of using the PCR to study TCR diversity.  相似文献   

9.
An effective immunological eradication of tumors by the adaptive immune system depends on T cell priming, expansion of specific T cells and their effector function. It has been shown that either step may be impaired in the tumor-bearing host, and several strategies have been used to improve antitumor immune responses. In this regard, tumor-targeted IL2 therapy leads to the destruction of established melanoma metastases in fully immune competent mice as previously demonstrated. This effect has been attributed, but never directly confirmed, to the boost of antigen-experienced T cells. To this end, we demonstrate the absence of any antitumor effect of targeted IL2 in mice characterized by an impaired priming of T cell responses. Notably, in these animals tumor-targeted IL2 therapy induced tumor regression only after adoptive transfer of tumor-conditioned splenocytes. A detailed analysis revealed that T cells present within the transferred splenocytes were actively participating in the immune response as these were clonally expanded after targeted IL2 therapy. In summary, we demonstrate here that in LTα−/− mice lacking sufficient numbers of tumor-specific T cells only the passive transfer of such cells prior to therapy restores the efficacy of tumor-targeted IL2 therapy. Thus, the antitumor effect of tumor-targeted IL2 is indeed based on the boost of pre-existing T cell responses.  相似文献   

10.
The role of apoptosis in the development and function of T lymphocytes   总被引:6,自引:0,他引:6  
Apoptosis plays an essential role in T cell biology. Thymocytes expressing nonfunctional or autoreactive TCRs are eliminated by apoptosis during development. Apoptosis also leads to the deletion of expanded effector T cells during immune responses. The dysregulation of apoptosis in the immune system results in autoimmunity, tumorogenesis and immunodeficiency. Two major pathways lead to apoptosis: the intrinsic cell death pathway controlled by Bcl-2 family members and the extrinsic cell death pathway controlled by death receptor signaling. These two pathways work together to regulate T lymphocyte development and function.  相似文献   

11.
12.
Mouse spleen cells and a murine T cell hybridoma, FS6 14.13.1, produce a glucosteroid response-modifying factor (GRMFT) after stimulation with concanavalin A. GRMFT blocks glucosteroid suppression of helper T cell function and the growth of granulocyte/macrophage progenitor cells in vitro. IL 1 also protects helper T cells and myeloid precursors from glucosteroid suppression. This suggests that GRMFT and IL 1 act congruently to ensure that an effective immune response is generated when endogenous glucosteroid levels are elevated. To understand the role of GRMFT in normal immune responses and in disease states characterized by imbalances in the immune system, we began to purify and characterize GRMFT. GRMFT appears to be distinct from other well-characterized T cell-derived factors. GRMFT is larger than IL 2 as determined by gel exclusion chromatography and is completely separated from IL 2 by isoelectric focusing. Furthermore, purified IL 2 does not have GRMFT activity. Purified IL 3 also lacks GRMFT activity, and conditions that inactivate immune interferon have no effect on GRMFT. Thus, GRMFT is different from IL 2, IL 3, and immune interferon. GRMFT also lacks activity in the thymocyte co-mitogenic assay and is therefore different from IL 1. Finally, FS6 14.13.1 reportedly does not produce TRF or CSF, which suggests that GRMFT is different from these molecules as well.  相似文献   

13.
Functional activities and cell cooperation of macrophages (Mphi), T cells, and B cells of young and old Lewis rats were compared. Splenic M phi from young and old rats provided accessory help for T cell mitogenesis and B cell mitogenesis, provided accessory help for generation of PFC, and produced IL 1 equally well as measured in costimulator assays. Splenic T cells of aged Lewis rats, however, were poorly responsive in mitogen assays and did not respond to supplemental IL 2 and antigen with blast transformation and with increased help for B cells to produce PFC. "Old" B cells did not respond in vitro to mitogens with help from M phi and T cells, nor did they respond to B cell helper factor with increased PFC. The data indicate that hyporesponsiveness of the immune system, especially of B cells, in aged rats is due in part to defective reactivity to interleukins and cytokine(s) and to defective cell-cell cooperation.  相似文献   

14.
Graded or "quantal" Ca(2+) release from intracellular stores has been observed in various cell types following activation of either ryanodine receptors (RyR) or inositol 1,4,5-trisphosphate receptors (InsP(3)R). The mechanism causing the release of Ca(2+) stores in direct proportion to the strength of stimulation is unresolved. We investigated the properties of quantal Ca(2+) release evoked by activation of RyR in PC12 cells, and in particular whether the sensitivity of RyR to the agonist caffeine was altered by lumenal Ca(2+). Quantal Ca(2+) release was observed in cells stimulated with 1 to 40 mM caffeine, a range of caffeine concentrations giving a >10-fold change in lumenal Ca(2+) content. The Ca(2+) load of the caffeine-sensitive stores was modulated by allowing them to refill for varying times after complete discharge with maximal caffeine, or by depolarizing the cells with K(+) to enhance their normal steady-state loading. The threshold for RyR activation was sensitized approximately 10-fold as the Ca(2+) load increased from a minimal to a maximal loading. In addition, the fraction of Ca(2+) released by low caffeine concentrations increased. Our data suggest that RyR are sensitive to lumenal Ca(2+) over the full range of Ca(2+) loads that can be achieved in an intact PC12 cell, and that changes in RyR sensitivity may be responsible for the termination of Ca(2+) release underlying the quantal effect.  相似文献   

15.
The activation of alloantigen-specific cytotoxic T lymphocyte precursors is dependent upon the presence of both macrophages and helper T cells or regulatory molecules derived from these facilitative cells. Three biochemically distinct helper factors have been identified: interleukin 1 (macrophage-derived), Interleukin 2 (T cell derived), and immune interferon. All 3 factors are found in supernatants of mixed lymphocyte cultures (MLC), however, the removal of macrophages from these cultures completely ablates the production of these factors as well as the induction of cytotoxic T lymphocytes (CTL). The addition of IL 2 to these macrophage-depleted MLC restores the ability of responder T cells to: 1) bypass the requirement for macrophage soluble function, 2) produce immune interferon, and 3) generate CTL. The kinetics and dose response of immune interferon production in response to IL 2 correlates with the generation of CTL. The production of immune interferon as well as the generation of CTL requires T cells, alloantigen, and IL2. Furthermore, the induction of CTL by IL2 was neutralized by the addition of anti-immune interferon. These data suggest that: 1) the regulation of immune interferon production is based on a T to T cell interaction mediated by IL 2, and 2) immune interferon production may be required for IL 2 induction of CTL. These findings are consistent with the hypothesis that the induction of CTL involves a linear cell-factor interaction in which IL 1 (macrophage-derived) stimulates T cells to produce IL 2, which in turn stimulates other T cells to produce immune interferon and become cytotoxic.  相似文献   

16.
Antigens are presented to T cells as short peptides bound to MHC molecules on the surface of body cells. The binding between MHC/peptides and T cell receptors (TCRs) has a low affinity and is highly degenerate. Nevertheless, TCR-MHC/peptide recognition results in T cell activation of high specificity. Moreover, the immune system is able to mount a cellular response when only a small fraction of the MHC molecules on an antigen-presenting cell is occupied by foreign peptides, while autoimmunity remains relatively rare. We consider how to reconcile these seemingly contradictory facts using a quantitative model of TCR signalling and T cell activation. Taking into account the statistics of TCR recognition and antigen presentation, we show that thymic selection can produce a working T cell repertoire which will produce safe and effective responses, that is, recognizes foreign antigen presented at physiological levels while tolerating self. We introduce "activation curves" as a useful tool to study the repertoire's statistical activation properties.  相似文献   

17.
18.
T cells, as they develop in the thymus come to express antigen receptors. The specificity of these receptors cannot be predicted and must include many with potential anti-self reactivity. Those that encounter self-antigens, in association with self-MHC (major histocompatibility complex), with high affinity are inactivated and do not leave the thymus. Not all self-antigens however are expressed in the thymus and thus many potentially self-reactive T cells enter the periphery. It poses therefore a fundamental immunological question: how peripheral self-tolerance is maintained in health? Dendritic cells (DC) play a central role in the activation of T cells, especially na?ve T cells. Their importance in initiating immune responses against pathogens has been well established. However, DC represent complex populations of cells. Recent advances in our knowledge including molecular understanding of DC/T cell interactions have begun to reveal another important dimension of DC functions in the periphery, being not only initiators but also regulators of the immune system. This review summarises recent findings on the roles of DC in the regulation of immune responses and the maintenance of peripheral tolerance, in an attempt to explain how break down of this may lead to immunopathologies and autoimmunity. The concept of a regulatory DC and its possible role in the generation of T regulatory cells in health and in diseases are also discussed. Based on these, the need for a "continuing education" of the immune system throughout one's life, in which DC are again the "tutors", is postulated.  相似文献   

19.
20.
Lymphokine activities in conditioned medium from activated helper T cell lines are most commonly defined by the proliferation of "specific" lymphokine-dependent cell lines. Various sublines of IL 2-dependent (and ostensibly specific) HT-2 and CTLL cells have now been shown to proliferate in response to BSF-1/IL 4 as well. After activation with antigen or mitogen, D10.G4.1, an antigen-specific cloned T helper cell that has recently been shown to produce IL 4 but not IL 2, secretes two distinct cytokines that induce the growth of HT-2 cells. These "T cell growth factors" (TCGF) can be separated by reversed phase high-performance liquid chromatography (RP-HPLC). The TCGF activity of one of these factors can be blocked by 11B11, an antibody specific for IL 4. The second TCGF activity is not affected by 11B11 or by antibodies specific for IL 2. This TCGF activity can be neutralized by a goat polyclonal antibody to granulocyte-macrophage colony-stimulating factor (GM-CSF), and has a RP-HPLC elution profile identical to that of recombinant GM-CSF. Recombinant GM-CSF induces both proliferation and long-term growth of HT-2 but not CTLL cells, and this activity can be neutralized by the same antibody to GM-CSF. GM-CSF is best known as a factor that induces the maturation and growth of granulocytes and macrophages from bone marrow-derived hematopoietic precursor cells. The ability of GM-CSF to induce the growth of certain T cell lines indicates that this molecule may play a role in T cell-mediated immune responses, either as an autocrine growth factor or a paracrine stimulus from both lymphoid and nonlymphoid tissues that produce this cytokine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号