首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Oxidants, generated by activated neutrophils, have been implicated in the pathophysiology of vascular disorders and lung injury; however, mechanisms of oxidant-mediated endothelial barrier dysfunction are unclear. Here, we have investigated the role of focal adhesion kinase (FAK) in regulating hydrogen peroxide (H(2)O(2))-mediated tyrosine phosphorylation of intercellular adhesion proteins and barrier function in endothelium. Treatment of bovine pulmonary artery endothelial cells (BPAECs) with H(2)O(2) increased tyrosine phosphorylation of FAK, paxillin, beta-catenin, and vascular endothelial (VE)-cadherin and decreased transendothelial electrical resistance (TER), an index of cell-cell adhesion and/or cell-matrix adhesion. To study the role of FAK in H(2)O(2)-induced TER changes, BPAECs were transfected with vector or FAK wild-type or FAK-related non-kinase (FRNK) plasmids. Overexpression of FRNK reduced FAK expression and attenuated H(2)O(2)-mediated tyrosine phosphorylation of FAK, paxillin, beta-catenin, and VE-cadherin and cell-cell adhesion. Additionally, FRNK prevented H(2)O(2)-induced distribution of FAK, paxillin, beta-catenin, or VE-cadherin toward focal adhesions and cell-cell adhesions but not actin stress fiber formation. These results suggest that activation of FAK by H(2)O(2) is an important event in oxidant-mediated VE barrier function regulated by cell-cell and cell-matrix contacts.  相似文献   

2.
Acute increases in cellular protein O-linked N-acetyl-glucosamine (O-GlcNAc) modification (O-GlcNAcylation) have been shown to have protective effects in the heart and vasculature. We hypothesized that d-glucosamine (d-GlcN) and Thiamet-G, two agents that increase protein O-GlcNAcylation via different mechanisms, inhibit TNF-α-induced oxidative stress and vascular dysfunction by suppressing inducible nitric oxide (NO) synthase (iNOS) expression. Rat aortic rings were incubated for 3h at 37°C with d-GlcN or its osmotic control l-glucose (l-Glc) or with Thiamet-G or its vehicle control (H(2)O) followed by the addition of TNF-α or vehicle (H(2)O) for 21 h. After incubation, rings were mounted in a myograph to assess arterial reactivity. Twenty-four hours of incubation of aortic rings with TNF-α resulted in 1) a hypocontractility to 60 mM K(+) solution and phenylephrine, 2) blunted endothelium-dependent relaxation responses to ACh and substance P, and 3) unaltered relaxing response to the Ca(2+) ionophore A-23187 and the NO donor sodium nitroprusside compared with aortic rings cultured in the absence of TNF-α. d-GlcN and Thiamet-G pretreatment suppressed the TNF-α-induced hypocontractility and endothelial dysfunction. Total protein O-GlcNAc levels were significantly higher in aortic segments treated with d-GlcN or Thiamet-G compared with controls. Expression of iNOS protein was increased in TNF-α-treated rings, and this was attenuated by pretreatment with either d-GlcN or Thiamet-G. Dense immunostaining for nitrotyrosylated proteins was detected in the endothelium and media of the aortic wall, suggesting enhanced peroxynitrite production by iNOS. These findings demonstrate that acute increases in protein O-GlcNAcylation prevent TNF-α-induced vascular dysfunction, at least in part, via suppression of iNOS expression.  相似文献   

3.
We have recently shown that exposure of human keratinocytes to physiologic doses of ultraviolet B (UVB) activates epidermal growth factor receptor (EGFR)/extracellular-regulated kinases 1 and 2 (ERK1/2) and p38 signaling pathways via reactive oxygen species, an effect that can be modulated by antioxidants. Trolox, a water-soluble vitamin E analog, is among the antioxidants that are currently being investigated for their preventive and protective potential against harmful effects of UV radiation to the skin. We found that Trolox inhibits both basal and UVB-induced intracellular H(2)O(2) generation in primary keratinocytes in a concentration-dependent manner. Trolox did not significantly affect UVB-induced phosphorylation of EGFR. Stronger inhibition was observed for ERK1/2 activation at lower, and for p38 activation at higher, concentrations of Trolox added to cells before exposure to UVB. Similarly different effects were found with regard to length of pretreatment with Trolox before UVB exposure-increasing inhibition for ERK1/2 activation at shorter, and for p38 activation at longer, pretreatment intervals. UVB-induced c-jun-N-terminal kinase activation was potently suppressed by Trolox. Also, increasing the pretreatment time of Trolox decreased the rate of cell death following UVB. In conclusion, UVB-induced signaling pathway activation is differentially modulated by Trolox. Further investigation into the time-dependent biologic activation of Trolox and its metabolic products, and modulation of signal transduction with cell outcome should facilitate development of rational strategies for pharmacologic applications.  相似文献   

4.
We investigated cellular injury and death induced by ultrapure human Hb (HbA(0)) and its diaspirin cross-linked derivative DBBF-Hb in normal and glutathione (GSH)-depleted bovine aortic endothelial cells subjected to hydrogen peroxide (H(2)O(2)). HbA(0) underwent extensive degradation and heme loss, whereas DBBF-Hb persisted longer in its ferryl (Fe(4+)) form. The formation of ferryl HbA(0) or ferryl DBBF-Hb was associated with a significant decrease in endothelial cell GSH compared with the addition of H(2)O(2) or Hbs alone. This effect was inhibited by catalase, but not by superoxide dismutase or deferoxamine mesylate. The presence of HbA(0) and DBBF-Hb reduced H(2)O(2)-induced apoptosis, as measured by cell morphology, annexin V binding assay, and caspase inhibition, consistent with the ability to consume H(2)O(2) in an enzyme-like fashion. However, the pattern of cell death and injury produced by HbA(0) and DBBF-Hb appeared to be distinctly different among proteins as well as among cells with and without GSH. These findings may have important implications for the use of cell-free Hb as oxygen therapeutics in patients with coexisting pathologies who may lack antioxidant protective mechanisms.  相似文献   

5.
Selection and characterization of bovine aortic endothelial cells   总被引:40,自引:0,他引:40  
S M Schwartz 《In vitro》1978,14(12):966-980
This paper reports techniques for isolation, selection and long-term passage of bovine aortic endothelium (BAE). A [3H]thymidine-selection technique was developed to limit overgrowth of cultures by contaminating smooth-muscle cells. The resulting cultures could be passaged for a replicative life span of 35 to 40 doublings and maintained a stable, normal karyotpye throughout this period. Despite the fact that these cultures reached a stable monolayer with density-inhibited growth state, postconfluent cells showed focal areas of a second growth pattern called "sprouting." This was seen only when cultures were maintained at high densities for periods of 1 to 2 weeks. Ultrastructural analysis, as well as immunofluorescence studies with markers for endothelial cells (factor VIII) and smooth-muscle cells (actin), indicates that this phenomenon is not due to overgrowth of a residual population of smooth-muscle cells, but may represent a second growth pattern of the endothelial cells themselves.  相似文献   

6.
Shen JZ  Zheng XF  Kwan CY 《Life sciences》2000,66(21):PL291-PL296
This study aims to examine the effects of different reactive oxygen species (ROS) on the resting tension of endothelium-denuded rat aortic rings. In these preparations, H2O2 (30 microM) induced a fast and transient contraction, which could be abolished by pretreatment of catalase (800 U/ml), but not affected by superoxide anion scavenger, superoxide dismutase (SOD; 150 U/ml) or the hydroxyl free radical scavenger, DMSO/mannitol (each 3 mM). In contrast, pyrogallol, a putative superoxide anion donor, induced a biphasic contraction, which could be abolished by SOD, but not by catalase or DMSO/mannitol. Unlike H2O2 and pyrogallol, Vitamin C(VitC)/Fe2+ (each 100 microM), a commonly used hydroxyl radical-generating system, triggered a tonic contraction which could be prevented by DMSO/mannitol, but not by SOD or catalase. Interestingly, H2O2-induced contraction could be concentration-dependently (10-100 microM) inhibited by suramin and reactive blue-2 (RB-2), two widely used ATP receptor antagonists. On the other hand, suramin or RB-2, at concentration up to 100 microM, affected neither pyrogallol nor VitC/Fe2+-induced contraction. In conclusion, we showed for the first time that different ROS could contract rat aorta with different mechanisms of action, and H2O2 elicits a transient contraction probably as a result of the ATP receptor activation.  相似文献   

7.
Oxidative stress occurs in brains of Alzheimer's disease (AD) patients. A major question in AD research is whether the oxidative stress is just secondary to neurodegeneration. To test whether oxidative stress is an inherent property of AD tissues, the ability of cultured fibroblasts bearing the AD Presenilin-1 246 Ala-->Glu mutation to handle reactive oxygen species (ROS) was compared to controls. Although ROS in cells from AD subjects were only slightly less than cells from controls under basal conditions (-10%) or after exposure to H(2)O(2) (-16%), treatment with antioxidants revealed clear differences. Pretreatment with DMSO, a hydroxyl radical scavenger, reduced basal and H(2)O(2)-induced ROS levels significantly more in cells from controls (-22%, -22%) than in those from AD subjects (-4%, +14%). On the other hand, pretreatment with Trolox diminished H(2)O(2)-induced ROS significantly more in cells from AD (-60%) than control subjects (-39%). In summary, cells from AD patients have greater Trolox sensitive ROS and less DMSO sensitive ROS than controls. The results demonstrate that fibroblasts bearing this PS-1 mutation have altered means of handling oxidative stress and appear useful for determining the mechanism underlying the altered redox metabolism.  相似文献   

8.
Although the basic fibroblast growth factor (bFGF) gene lacks a traditional consensus signal peptide domain indicative for secretion, many cell types have receptors for bFGF. Since endothelium is a rich source of cell-associated bFGF, we asked under what conditions could bFGF be released or secreted from confluent cultures of bovine aortic endothelial (BAE) cells. The level of bFGF in BAE cell lysates was compared with the level of heparin-releasable bFGF in intact BAE cell monolayers, intact cells with exposed extracellular matrix (nonlytic matrices), and extracellular matrices prepared by cell lysis (lytic matrices). Less than 10% of total cell-associated bFGF was released from intact cell monolayers and nonlytic matrices. In contrast, the levels of bFGF released from lytic matrices depended upon the conditions used to prepare the matrices. Cell lysis at neutral pH generated matrices that released the highest bFGF levels (approximately 50% of total cell-associated bFGF). These matrices were heavily contaminated by histones, indicating the cellular release and adsorption of intracellular proteins to the matrix. Matrices prepared by BAE cell exposure to basic pH (100 mM NH4OH) contained low bFGF content and minor histone contamination. These latter matrices were chosen to study bFGF sequestration, under physiological conditions, into the extracellular matrix of confluent BAE cell cultures. Incubation with endotoxin, an agent acutely toxic to BAE cells, resulted in cellular release and adsorption of endogenous bFGF to cells and matrices, accompanied by histone deposition in the matrices. These results suggested that one mechanism for bFGF release from BAE cell monolayers was passive release induced by severe cell injury and/or cell lysis with secondary adsorption to the matrix.  相似文献   

9.
Angiogenesis, the formation of new capillary blood vessels, occurs almost exclusively in the microcirculation. This process is controlled by the interaction between factors with positive and negative regulatory activity. In this study, we have compared the effect of two well described positive regulators, vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2) on bovine adrenal cortex-derived microvascular endothelial (BME) and bovine aortic endothelial (BAE) cells. The parameters we assessed included (a) cellular reorganization and lumen formation following exposure of the apical cell surface to a three-dimensional collagen gel; (b) organization of the actin cytoskeleton; (c) expression of thrombospondin-1 (TSP-1), an endogenous negative regulator of angiogenesis; and (d) extracellular proteolytic activity mediated by the plasminogen activator (PA)/plasmin system. We found that (a) collagen gel overlay induces rapid reorganization and lumen formation in BME but not BAE cells; (b) FGF-2 but not VEGF induced dramatic reorganization of actin microfilaments in BME cells, with neither cytokine affecting BAE cells; (c) FGF-2 decreased TSP-1 protein and mRNA expression in BME cells, an effect which was specific for FGF-2 and BME cells, since TSP-1 protein levels were unaffected by VEGF in BME cells, or by FGF-2 or VEGF in BAE cells; (d) FGF-2 induced urokinase-type PA (uPA) in BME and BAE cells, while VEGF induced uPA and tissue-type PA in BME cells with no effect on BAE cells. Taken together, these findings reveal endothelial cell-type specific responses to FGF-2 and VEGF, and point to the greater specificity of these cytokines for endothelial cells of the microvasculature than for large vessel (aortic) endothelial cells. Furthermore, when viewed in the context of our previous observation on the synergistic interaction between VEGF and FGF-2, our present findings provide evidence for complementary mechanisms which, when acting in concert, might account for the synergistic effect.  相似文献   

10.
11.
Fibroblasts from patients with genetic and non-genetic forms of Alzheimer's disease (AD) show many abnormalities including increased bombesin-releasable calcium stores (BRCS), diminished activities of the mitochondrial alpha-ketoglutarate dehydrogenase complex (KGDHC), and an altered ability to handle oxidative stress. The link between genetic mutations (and the unknown primary event in non-genetic forms) and these other cellular abnormalities is unknown. To determine whether oxidative stress could be a convergence point that produces the other AD-related changes, these experiments tested in fibroblasts the effects of H(2)O(2), in the presence or absence of select antioxidants, on BRCS and KGDHC. H(2)O(2) concentrations that elevated carboxy-dichlorofluorescein (c-H(2)DCF)-detectable ROS increased BRCS and decreased KGDHC activity. These changes are in the same direction as those in fibroblasts from AD patients. Acute treatments with the antioxidants Trolox, or DMSO decreased c-H(2)DCF-detectable ROS by about 90%, but exaggerated the H(2)O(2)-induced increases in BRCS by about 4-fold and did not alter the reduction in KGDHC. Chronic pretreatments with Trolox more than doubled the BRCS, tripled KGDHC activities, and reduced the effects of H(2)O(2). Pretreatment with DMSO or N-acetyl cysteine diminished the BRCS and either had no effect, or exaggerated the H(2)O(2)-induced changes in these variables. The results demonstrate that BRCS and KGDHC are more sensitive to H(2)O(2) derived species than c-H(2)DCF, and that oxidized derivatives of the antioxidants exaggerate the actions of H(2)O(2). The findings support the hypothesis that select abnormalities in oxidative processes are a critical part of a cascade that leads to the cellular abnormalities in cells from AD patients.  相似文献   

12.
The radius of diffusion of basic FGF (bFGF) in the presence and in the absence of the glycosaminoglycans heparin and heparan sulfate was measured. Iodinated 125I-bFGF diffuses further in agarose, fibrin, and on a monolayer of bovine aortic endothelial (BAE) cells in the presence of heparin than in its absence. Heparan sulfates affected the diffusion of 125I-bFGF in a manner similar to, though less pronounced than, heparin. When applied at the center of a monolayer of BAE cells, bFGF plus heparin stimulated morphological changes at a 10-fold greater radius than bFGF alone. These results suggest that bFGF-heparin and/or heparan sulfate complexes may be more effective than bFGF alone in stimulating cells located away from the bFGF source because the bFGF-glycosaminoglycan complex partitions into the soluble phase rather than binding to insoluble glycosaminoglycans in the extracellular matrix. Thus, the complex of bFGF and glycosaminoglycan may represent one of the active forms of bFGF in vivo.  相似文献   

13.
When a confluent monolayer of bovine aortic endothelial (BAE) cells is wounded with a razor blade, endothelial cells (ECs) spontaneously move into the denuded area. If bovine pericytes or smooth muscle cells (SMCs) are plated into the denuded area at low density, they block the movement of the ECs. This effect is dependent upon the number of cells plated into the wound area and contact between ECs and the plated cells. Antibodies to transforming growth factor-beta 1 (TGF-beta 1) abrogate the inhibition of BAE cell movement by pericytes or SMCs. TGF-beta 1, if added to wounded BAE cell monolayers, also inhibits cell movement. When cultured separately, BAE cells, pericytes, and SMCs each produce an inactive TGF-beta 1-like molecule which is activated in BAE cell-pericyte or BAE cell-SMC co-cultures. The activation appears to be mediated by plasmin as the inhibitory effect on cell movement in co-cultures of BAE cells and pericytes is blocked by the inclusion of inhibitors of plasmin in the culture medium.  相似文献   

14.
Human umbilical vein endothelial (HUVE) and bovine aortic endothelial (BAE) cells in culture were examined to determine whether membrane proteins similar to human platelet glycoproteins (GP) IIb and IIIa were present. The HUVE and BAE cells were either 125I-surface labeled or metabolically labeled. Triton X-100 lysates of labeled cells were immunoprecipitated with polyclonal antibodies prepared against purified human platelet GP IIb-IIIa complex. Two membrane proteins were detected on both HUVE (Mr = 130,000 and 110,000) and BAE (Mr = 135,000 and 105,000) cells, which were similar to human platelet GP IIb (Mr = 125,000) and GP IIIa (Mr = 108,000). The two membrane proteins from HUVE cells and the two from BAE cells cosedimented in sucrose gradients, indicating that they exist as a complex. Unlike the human platelet GP IIb-IIIa complex, the HUVE and BAE membrane protein complexes were not dissociated by chelation of Ca2+. Platelet GP IIb and GP IIIa and the related membrane proteins on both HUVE and BAE cells showed similar changes in electrophoretic mobility upon disulfide reduction. These data demonstrate that human and bovine endothelial cells synthesize membrane proteins that have properties similar to the platelet membrane GP IIb-IIIa complex.  相似文献   

15.
16.
17.
We have investigated the effects of H2O2 (150 or 300 microM) on the ultrastructure and permeability of the pulmonary endothelium in rat lungs perfused for 60 min with buffered Hanks' bovine serum albumin medium. In one group of experiments, we examined the effect of H2O2 on the uptake and transport of cationized ferritin (CF) by endothelial cells in intra-acinar arteries, alveolar capillaries, and interlobular veins. The influence of the oxidant on endothelial adsorptive endocytic processes was assessed by measuring the density of ferritin particles in luminal vesicles, multivesicular bodies, and basal lamina. In a second group of experiments, we examined the effects of H2O2 on the fine structure and permeability to electron-dense macromolecules of arterial, microvascular, and venous endothelium. For this purpose, at the end of the 60-min perfusion with H2O2, CF was perfused to identify leaky vessels. We found that H2O2 caused a dose-dependent inhibition of transcytosis of CF in all vascular segments. At the lower dose of H2O2, inhibition of transcytotic activity was not associated with structural injury to the vascular endothelium or with elevation of wet-to-dry ratios. At the higher oxidant dose, inhibition of transcytosis was associated with leaky arterial endothelium and elevation of wet-to-dry ratios (6.44 +/- 0.12 vs. 5.64 +/- 0.16, P less than 0.02). The effects of H2)2 were prevented by adding catalase to the perfusate. The selective loss of structural integrity and leakiness of the arterial endothelium were diminished but not completely abolished by perfusing the oxidant retrograde from the venous side.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The formulation of human vaccines often includes adjuvants such as aluminum hydroxide that are added to enhance the immune responses to vaccine antigens. However, these adjuvants may also affect the conformation of antigenic proteins. Such structural modifications could lead to changes in antigenicity such that suboptimal protective immune responses could be generated relative to those induced by the vaccine antigens alone. Here, we used attenuated total reflectance infrared spectroscopy (ATR-FTIR) to compare the secondary structures of recombinant HIV-1-gp41 (gp41) in solution or adsorbed to aluminum hydroxide. The gp41 secondary structure content was 72% alpha-helices and 28% beta-sheets in 5 mM formate buffer p(2)H 2.5, while it was 66% beta-sheets and 34% random coil in acetonitril/(2)H(2)O (95/5:v/v). A fully reversible conformational change of gp41 in acetonitril/(2)H(2)O (95/5:v/v) was observed upon addition of either 35 mM formate p(2)H 2.5 or 0.1% (w/v) detergent (Tween 20, Hecameg, Brij 35 or beta-d-octyl-glucopyranoside). When gp41 was adsorbed to aluminum hydroxide in the presence of 0.1% (w/v) detergent, in either formate or in acetonitril/(2)H(2)O (95/5:v/v) its secondary structure remained stable and was identical to that of gp41 in 5 mM formate buffer p(2)H 2.5. The method described here could be applied for the characterization of gp41 conformers for use in immunological screening of antigens, and more generally to all antigenic proteins adsorbed to aluminum hydroxide.  相似文献   

19.
H(2)S is endogenously generated in vascular smooth muscle cells. The signal transduction pathways involved in the vascular effects of H(2)S have been unclear and were investigated in the present study. H(2)S induced a concentration-dependent relaxation of rat aortic tissues that was not affected by vascular denervation. The vasorelaxant potency of H(2)S was attenuated by the removal of the endothelium. Similarly, the blockade of nitric oxide synthase or the coapplication of the Ca(2+)-dependent K(+) channel blockers apamin and charybdotoxin reduced the H(2)S-induced relaxation of the endothelium-intact aortic tissues. Sodium nitroprusside (SNP)-induced relaxation was completely abolished by either 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) or NS- 2028, two soluble guanylate cyclase inhibitors. Instead of inhibition, ODQ and NS-2028 potentiated the H(2)S-induced vasorelaxation, which was suppressed by superoxide dismutase. The vasorelaxant effect of H(2)S was also significantly attenuated when Ca(2+)-free bath solution was used. Finally, pretreatment of aortic tissues with H(2)S reduced the relaxant response of vascular tissues to SNP. Our results demonstrate that the vascular effect of H(2)S is partially mediated by a functional endothelium and dependent on the extracellular calcium entry but independent of the activation of the cGMP pathway.  相似文献   

20.
Li J  Ren Y  Dong X  Zhong G  Wu S  Tang C 《Peptides》2003,24(4):563-568
The effects of proadrenomedullin N-terminal 20 peptide (PAMP) and adrenotensin (ADT) on adrenomedullin (ADM)-induced vasodilation were investigated in aortic rings from rat. ADM (10(-9) to 10(-7)M) relaxed the aorta preconstricted with phenylephrine in a concentration-dependent manner. Denudation of endothelium or pretreatment with nitric oxide synthase (NOS) inhibitor, L-NAME, attenuated the vasodilatory action of ADM. ADM-induced vasorelaxation in the aortic rings with endothelium was converted to contraction by PAMP, but not by ADT. The ADM-induced vasodilation was not affected by PAMP in aorta rings without endothelium or in intact aortic rings pretreated with L-NAME. ADM-stimulated nitrite production and NOS activity of the aortas, which was inhibited by PAMP, ADT or PAMP plus ADT. ADM, PAMP, and ADT increased the cyclic adenosine monophosphate (cAMP) contents in vascular tissue. The combination of ADM with PAMP or ADT caused a smaller increase in cAMP level as compared with that of PAMP or ADT alone. These results show that ADM-induced endothelium-dependent vasodilation could be converted to vasoconstriction in the presence of PAMP, probably through a NO-dependent pathway. There was no indication that cAMP was involved in the converting effect of PAMP on ADM vasodilator action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号