首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
SYNOPSIS. Axenically cultivated Paramecium aurelia , stock 299, required a fatty acid for growth. This need was satisfied by oleic acid and oleic acid-containing lipids. These included: TEM-4T (tartaric acid esters of tallow monoglycerides), certain phospholipids (crude as well as highly purified preparations), Tween 80, 85, Span 80 and glyceryl monoleate. High concentrations of oleic acid in the medium inhibited growth. This inhibition was partially released or annulled by certain mixtures of "non essential" fatty acids or by increasing the stigmasterol content of the growth medium. Definite but non-stoichiometric levels of oleic acid and sterol were required for optimal growth. Tween 60, a non-ionic emulsifier similar in its surfactant properties to Tween 80, stimulated growth in the presence of suboptimal amounts of oleic acid but failed itself to replace oleic acid as a growth requirement.  相似文献   

2.
Abscisic acid, a potent growth inhibitor inhibits hypocotyl growth ofRaphanus sativus seedlings. Phenolic compounds,viz., trans-cinnamic acid, chlorogenic acid, ferulic acid, salicylic acid, tannic acid and quercetin when applied with ABA, antagonize ABA action and restore normal seedling growth. Gibberellic acid promotes hypocotyl growth and on combined application with ABA, the ratio of their concentrations determines the course of the resultant growth. This interaction can be modulated by phenolic compounds. Phenolic compounds in low concentrations when present together with GA and ABA, favour GA-induced growth by antagonizing the inhibitory influence of ABA. The inhibitory action of abscisic acid on a wide range of growth processes is so far known to be reversed only by growth promoting hormones,viz., IAA, GA and cytokinins. Antagonistic action of phenolic compounds towards ABA, and increasing the action of GA when present together with GA and ABA, establishes a dual role to this class of compounds; balancing the effect of both growth promoting and growth inhibiting hormones. Part I.  相似文献   

3.
Linoleic acid, but not stearic acid, inhibited the growth of Staphylococcus aureus NCTC 8325. Growth inhibition was associated with an increase in the permeability of the bacterial membrane. The presence of a plasmid conferring resistance to penicillin (PC plasmid, e.g. pI258blaI-) increased the growth inhibitory and membrane permeability effects of linoleic acid. Under growth inhibitory conditions, linoleic acid was incorporated into the lipid of both PC plasmid-containing and PC plasmid-negative bacteria and there was little difference between these cultures in the uptake or fate of linoleic acid. Experiments using a glycerol auxotroph of S. aureus suggested that free linoleic acid, rather than lipid containing this acid, inhibits growth. Linoleic acid probably inhibits growth by increasing the permeability of the bacterial membrane as a result of its surfactant action, and the presence of the PC plasmid increases these effects.  相似文献   

4.
Summary The effects of acetic acid and specific growth rate on acetic acid tolerance and trehalose content of Saccharomyces cerevisiae CBS 2806 were studied using anaerobic chemostat cultures. Cells grown in the presence of acetic acid at a defined specific growth rate showed a higher acetic acid tolerance and a slightly lower trehalose content. Cells grown at a low specific growth rate showed a lower energy demand, a higher acetic acid tolerance, and a higher trehalose content. These results indicate that trehalose plays a growth rate dependent role in the tolerance of S. cerevisiae to acetic acid.  相似文献   

5.
The effect of cytokinins and gibberellic acid on the inhibition of growth and α-amylase synthesis by germination inhibitors was investigated in intact and embryoless seed halves. The cytokinins, kinetin and benzyladenine, effectively reversed the inhibition of coleoptile growth and α-amylase synthesis by abscisic acid and courmarin in barley seed. An antagonism between cytokinins, kinetin and benzyladenine, effectively reversed the inhibition of coleoptile growth and α-amylase synthesis by abscisic acid and coumarins in barley seed. An antagonism between cytokinins and germination inhibitors was also shown in root growth. Abscisic acid inhibited coleoptile growth to a greater extent than the root growth while the opposite held true in the case of coumarin. The apparent increase in coleoptile growth and α-amylase synthesis by gibberellic acid plus abscisic acid (or coumarins) over abscisic acid (or coumarin) appears to be a result of the overall stimulation of growth and metabolism by exogenous gibberellic acid and probably does not involve an interaction of gibberellic acid with the inhibitors. Gibberellic acid reversed root inhibition to some extent. Abscisic acid inhibition of gibberellic acid induced α-amylase synthesis in the embryoless endosperm was not reversed by excess gibberellic acid or kinetin Cytokinin reversal of inhibition of growth and enzyme synthesis probably depends on some factor(s) in the embryo. Cytokinin reversal of inhibitor action leading to enzymen synthesis and growth may be at the level of genome or at the site protein assembly.  相似文献   

6.
Proteus vulgaris is shown to take up nicotinic acid in the early stage of growth in amounts greater than needed for growth. The time variation of the specific nicotinic acid content of the cells, calculated by dividing the amount of nicotinic acid taken up from the liquid medium by the mass of cells present at that time, is interpreted to define two parameters, the maximum specific nicotinic acid content, f(1), and the minimum content required for growth, f(2) The difference, E, between these parameters is the specific nicotinic acid content capable of supporting growth for three doublings after depletion of nicotinic acid from the medium. A kinetic model for the system is developed based upon two stages of growth, a stage in which the cells accumulate from the medium their maximum nicotinic acid content, and a stage in the nicotinic acid-depleted medium in which cell growth occurs at the expense of the cell-bound nicotinic acid.  相似文献   

7.
The ratios of satellite deoxyribonucleic acid components to chromosomal deoxyribonucleic acid in Euglena gracilis Z were measured by analytical density gradient ultracentrifugation. Chloroplast deoxyribonucleic acid with a buoyant density of 1.685 g/cm3 exhibited a constant ratio to chromosomal deoxyribonucleic acid during exponential growth and increased twofold as the culture reached the end of the exponential growth phase. The quantity of a satellite deoxyribonucleic acid with a buoyant density of 1.691 g/cm3 was not sufficient to measure the ratio to chromosomal deoxyribonucleic acid during exponential growth but increased to approximately equal the quantity of chloroplast deoxyribonucleic acid as the culture approached the end of the exponential growth phase. The quantity of a deoxyribonucleic acid component with a buoyant density of 1.700 g/cm3 was not sufficient to measure the ratio to chromosomal deoxyribonucleic acid during exponential growth but represented approximately one-third of the total deoxyribonucleic acid as the culture entered the stationary phase of growth.  相似文献   

8.
Both ascorbic acid and the 1-series prostaglandins have been reported to be important regulators of cell growth and since ascorbic acid also increases the synthesis of the 1-series prostaglandins, it is possible that the effects of ascorbic acid on cell growth might be mediated by changes in 1-series prostaglandin synthesis induced by ascorbic acid. This study attempted to examine this possible relationship. The effects of ascorbic acid, prostaglandin E1 and the essential fatty acid precursors of the prostaglandins, linoleic acid and gamma-linolenic acid on the in vitro growth of transformed BL6 murine melanoma cells and untransformed monkey kidney (LLCMK) cells was determined. The effects of ascorbic acid addition on the growth inhibitory effect of the essential fatty acids and on the activity of delta-6-desaturase, a key enzyme in 1-series prostaglandin synthesis were also examined. Addition of ascorbic acid, prostaglandin E1 and both essential fatty acids was found to reduce BL6 growth while PGE1 and to a lesser extent the essential fatty acids reduced LLCMK cell growth. The growth inhibitory effect of the essential fatty acids was enhanced by ascorbic acid which was also found to stimulate delta-6-desaturase activity in BL6 cells. The growth inhibitory effect of ascorbic acid on BL6 cells may thus be mediated by changes in prostaglandin synthesis through an association with the metabolism of the essential fatty acid precursors of the prostaglandins.  相似文献   

9.
The growth and metabolism of the live vaccine strain of Pasteurella tularensis in different media were investigated. Maximal growth was observed in a medium containing a sulfuric acid digest of casein as amino acid source. Amino acid metabolism produced considerable ammonia, and the rate of ammonia evolution was directly proportional to the growth rate. The most likely route for amino acid breakdown is nonspecific oxidative deamination.  相似文献   

10.
The effect of cytokinin, kinetin, on abscisic acid (dormin) inhibition of α-amylase synthesis and growth in intact barley seed was investigated. Abscisic acid at 5 × 10?5M nearly completely inhibited growth response and α-amylase synthesis in barley seed. Kinetin reversed to a large extent abscisic acid inhibition of α-aniylase synthesis and coleoptile growth. The response curves of α-amylase synthesis and coleoptile growth in presence of a fixed amount of abscisic acid (6 × l0?6M) and increasing concentrations of kinetin (from 5 × l0?7M to 5 × 10?5 M) showed remarkable similarity. Kinetin and abscisic acid caused synergistic inhibition of root growth. Gibberellic acid was far less effective than kinetin in reversing abscisic acid inhibition of α-amylase synthesis and coleoptile growth. A combination of kinetin and gibberellic acid caused nearly complete reversal of abscisic acid inhibition of α-amylase synthesis but not the abscisic acid inhibition of growth. The results suggest that factors controlling α-amylase synthesis may not have a dominant role in all growth responses of the seed. Kinetin possibly acts by removing the abscisic acid inhibition of enzyme specific sites thereby allowing gibberellic acid to function to produce α-amylase.  相似文献   

11.
Summary Continuous and batch cultures of Lactobacillus helveticus operated under different conditions were studied with respect to the limitation of growth and lactic acid production by increasing undissociated lactic acid and hydrogen ion concentrations, respectively. In a single-stage continuous culture without pH control a final pH of 3.8 and 65 mm undissociated lactic acid was obtained. In two-stage continuous cultures provided with different growth media and run at different pH values, 65–70 mm free acid was obtained in the second stage. Further batch-culture experiments showed growth limitation at 60–70 mm lactic acid. After growth ceased, production of lactate continued until a lactic acid concentration of about 100 mm was reached; obviously an uncoupling of growth and acid production had occurred. Examining the effect of different concentrations of either lactic acid or hydrochloric acid, added to growing batch cultures of L. helveticus, it was shown that the undissociated lactic acid concentration was responsible for growth limitation and lactic acid production in this organism, whereas the pH value had only an indirect effect.  相似文献   

12.
Gibberellic acid was found to cause elongation in Avena sativa (oat) stem segments whether it was applied continuously or as a short pulse. The shorter the pulse time became, the higher was the gibberellic acid concentration needed to cause elongation; the segmental growth apparently depends upon the amount of gibberellic acid taken up by the segments. Avena segments showed a decreased growth response to gibberellic acid if the treatments were initiated at increasingly later times after excision from the plant. This decreased responsiveness to gibberellic acid was inhibited by low temperature (0-4 C), but accelerated by anaerobiosis. On the other hand, growth stimulation by a gibberellic acid pulse at the start of incubation was not altered by cold treatment but was nullified by a nitrogen atmosphere. Both the readiness of the segments for growth stimulation by gibberellic acid and its action in promoting growth clearly involve temperature-dependent, aerobic metabolism.  相似文献   

13.
Two strains of Ruminococcus flavefaciens were studied. Each grew in a chemically defined minimal medium containing: minerals; ammonium sulfate as a nitrogen source; amino acids as a nitrogen source, a growth promotant(s) or as both; cellobiose as an energy and carbon source; isobutyric acid, isovaleric acid, carbonic acid, and bicarbonate as additional carbon sources; and biotin, thiamine, and tetrahydrofolic acid as vitamins. Tetrahydrofolic acid (5 ng/ml) served as a replacement for rumen fluid that was required in previous media tested for the growth of these bacteria. The present bacteria differ from many of the ruminococci previously studied in that they do not require either p-amino-benzoic acid or folic acid but do require tetrahydrofolic acid for maximum growth. Dihydrofolic acid and 5-methyltetrahydrofolic acid can substitute for tetrahydrofolic acid in minimal chemically defined medium. Thus, there must be extensive metabolic interaction between the microbes inhabitating the rumen, because the R. flavefaciens isolated had complex requirements for growth and yet was among the predominant bacteria in the rumen of cattle fed a simple vitamin B-deficient, nonprotein nitrogen, high-fiber, purified diet.  相似文献   

14.
微量热法研究传统中药板蓝根中四种有机酸对大肠杆菌、金黄色葡萄球菌和痢疾杆菌生长代谢的影响。得到加药与不加药时大肠杆菌、金黄色葡萄球菌和痢疾杆菌生长代谢的“效-时”曲线, 以生长速率常数(k1, k2)、最大产热功率(Pm)和最大达峰时间(tm)等热力学参数来评价四种有机酸对微生物生长代谢抑制的强度和程度。四种有机酸抗微生物活性作用的顺序为: 丁香酸>邻氨基苯甲酸>水杨酸>苯甲酸, 其中苯甲酸对金黄色葡萄球菌和痢疾杆菌的生长代谢具有促进作用。本研究对板蓝根的进一步研究提供了基础和依据。  相似文献   

15.
Nie L  Ren Y  Janakiraman A  Smith S  Schulz H 《Biochemistry》2008,47(36):9618-9626
An alternative pathway of beta-oxidation for unsaturated fatty acids was studied in Escherichia coli. 9- cis,11- trans-Octadecadienoic acid (conjugated linoleic acid), a potential substrate of this pathway, was shown to support growth of E. coli in the absence of any other carbon source. The identification of 3,5-dodecadienoic acid in the growth medium revealed the partial beta-oxidation of conjugated linoleic acid to 3,5-dodecadienoyl-CoA, which was hydrolyzed to 3,5-dodecadienoic acid and released from cells. The involvement of acyl-CoA thioesterases in this process was evaluated by determining the substrate specificity of thioesterase II and comparing it with that of a novel thioesterase (thioesterase III) and by assessing mutant strains devoid of one or both of these thioesterases for growth on conjugated linoleic acid. Both thioesterases were highly active with 3,5-dodecadienoyl-CoA as substrate. A deficiency of either thioesterase decreased the growth rate of cells on conjugated linoleic acid but not on palmitic acid. The absence of both thioesterases reduced the cellular growth in a cumulative manner but did not abolish it. It is concluded that thioesterases II and III and at least one other thioesterase function in the partial degradation of conjugated linoleic acid via the thioesterase-dependent pathway of beta-oxidation, which provides all energy and carbon precursors required for the growth of E. coli.  相似文献   

16.
刘玮  谢冰  倪国平  邓光华 《植物研究》2011,31(2):218-226
采用正交设计,研究了不同浓度氨基酸和赤霉素混合喷施对三叶赤楠枝条、叶片生长的影响。结果表明:三叶赤楠的生长曲线呈现双峰状,春秋季各有一生长高峰。氨基酸和赤霉素两者间交互作用显著,对三叶赤楠枝条和叶片生长均有一定的促进作用。但氨基酸对于三叶赤楠生长的促进作用有限,在观察到的生长差异中,绝大部分是由赤霉素浓度差异造成的。对于枝条及叶片生长来说,100 mg·L-1的赤霉素浓度比较合适。新梢长、新梢分枝数及叶面积受混合喷施影响较大,不同处理间差异显著或极显著,而成熟枝条及叶片厚度受其影响较小,差异不显著。经主成分分析发现新梢月平均生长量和分枝数可作为快速评价混合喷施效果的描述指标;而叶片厚度和叶面积,即第二主成分可作为潜在评价氨基酸和赤霉素混合喷施长期效果的描述指标。在生产中可以以新梢长度、生长量和分枝数作为评价氨基酸与赤霉素喷施效果的快速指标。  相似文献   

17.
微量热法研究传统中药板蓝根中四种有机酸对大肠杆菌、金黄色葡萄球菌和痢疾杆菌生长代谢的影响。得到加药与不加药时大肠杆菌、金黄色葡萄球菌和痢疾杆菌生长代谢的“效-时”曲线, 以生长速率常数(k1, k2)、最大产热功率(Pm)和最大达峰时间(tm)等热力学参数来评价四种有机酸对微生物生长代谢抑制的强度和程度。四种有机酸抗微生物活性作用的顺序为: 丁香酸>邻氨基苯甲酸>水杨酸>苯甲酸, 其中苯甲酸对金黄色葡萄球菌和痢疾杆菌的生长代谢具有促进作用。本研究对板蓝根的进一步研究提供了基础和依据。  相似文献   

18.
Vitamin A (retinol) and five retinoids were tested for their ability to enhance epidermal growth factor (EGF) stimulation of adult human skin fibroblast growth in vitro. The retinoids utilized in this study were RO-1-5488 (all-trans-retinoic acid), RO-4-3780 (13-cis-retinoic acid), RO-10-9359, RO-10-1670, and RO-21-6583. Retinol and each retinoid were capable of stimulating fibroblast growth alone (0-86%), while 13-cis and all-trans-retinoic acid were the most potent in potentiating the EGF promotion of fibroblast growth. Other growth factors tested in addition to EGF were nerve growth factor (NGF), fibroblast growth factor (FGF), and thrombin. While EGF and FGF stimulated fibroblast growth to the same degree (2.3-fold), only growth stimulated by EGF was potentiated by retinoic acid. Since retinoic acid might enhance the EGF stimulation of cell growth by increasing either EGF receptor number or binding affinity, the binding of 125I-labeled EGF was carried out in the presence of retinoic acid and the data were subjected to a Scatchard-type analysis. No change in EGF receptor number or affinity was seen in the presence of retinoic acid. The data indicate a specific interaction between retinoid acid and EGF which results in the potentiation of the EGF-stimulated cell growth. Furthermore, the mechanism of this interaction does not seem to involve the initial binding of EGF to its plasma membrane receptor or the available number of EGF receptors located on the cell surface.  相似文献   

19.
Cell walls were isolated from cells of Bacillus subtilis strain Marburg during synchronous outgrowth of spores, during the two synchronous cell divisions which followed, and at various times during exponential and early stationary growth. The amounts of teichoic acid and peptidoglycan components were determined in each cell wall preparation. The peptidoglycan is composed of hexosamine, alanine, diaminopimelic acid, and glutamic acid. The ratio of these was relatively constant in the cell walls at each stage of growth. The teichoic acid is composed of glycerol, phosphate, glucose, and ester-linked alanine. With the exception of glucose and ester-linked alanine, the ratios of these components were relatively constant throughout the growth cycle. There was a slight increase in the glucose content of the teichoic acid as the cells aged. There was no correlation between the amount of ester-linked alanine and the stage of growth. The ratio of teichoic acid (based upon phosphate content) to peptidoglycan (based upon diaminopimelic acid content) remained at nearly a constant level throughout the growth cycle. The conclusion is presented that these two cell wall polymers are coordinately synthesized during spore outgrowth and throughout the vegetative growth cycle.  相似文献   

20.
Summary Colletotrichum gloeosporioides could grow and sporulate on a wide range of pH (viz., from 3.0 to 8.5). The best growth was obtained at pH 6.0. Mannitol proved to be the best carbon source. Good growth and sporulation were also observed on maltose, glucose, galactose and sucrose. Nitrates supported better growth than ammonium compounds. Glutamic acid was found to be the best amino acid. Nitrites inhibited the growth completely at acid pH values but they supported growth at alkaline pH. Mannitol-glutamic acid was most suitable carbon-nitrogen combination for growth. Magnesium sulphate was the only sulphur source which was good both for growth and sporulation. The organism could not grow on media lacking carbon, nitrogen or sulphur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号