首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stitham J  Stojanovic A  Ross LA  Blount AC  Hwa J 《Biochemistry》2004,43(28):8974-8986
Relaxation of vascular smooth muscle and prevention of blood coagulation are mediated by ligand-induced activation of the human prostacyclin (hIP) receptor, a seven-transmembrane-domain G-protein-coupled receptor (GPCR). In this study, we elucidate the molecular requirements for receptor activation within the region of the ligand-binding pocket, identifying transmembrane residues affecting potency. Eleven of 30 mutated residues in the region of the ligand-binding domain exhibited defective activation (decreased potency). These critical residues localized to four distinct clusters (analysis via a rhodopsin-based human prostacyclin receptor homology model). Residues Y75(2.65) (TMII), F95(3.28) (TMIII), and R279(7.40) (TMVII) comprised the immediate binding-pocket cluster and were shown to be essential for proper receptor activation, compared to equivalent expression levels of the wild-type hIP (WT EC(50) = 1.2 +/- 0.1 nM; Y75(2.65)A EC(50) = 347.3 +/- 62.8 nM, p < 0.001; F95(3.28)A EC(50) = 8.0 +/- 0.6 nM, p < 0.001; R279(7.40)A EC(50) = 130 +/- 63.0 nM, p < 0.001). Residues S20(1.39) (TMI), F24(1.43) (TMI), and F72(2.62) (TMII) were localized to a cluster involving P17(1.36), a critical residue thought to facilitate transmembrane movement during changes in activation conformation. A third cluster formed around amino acid D60(2.50) (TMII), containing the highly conserved (100% of prostanoid receptors) D288(7.49)/P289(7.50) motif located in TMVII. Last, a large hydrophobic cluster composed of aromatic residues F146(4.52) (TMIV), F150(4.56) (TMIV), F184(5.40) (TMV), and Y188(5.44) (TMV) was observed away from the ligand-binding pocket, but still necessary for hIP activation. These results assist in delineating the potential molecular requirements for agonist-induced signaling through the transmembrane domain. Such observations may be generally applicable, as many of these clusters are highly conserved among the prostanoid receptors as well as other class A GPCRs.  相似文献   

2.
The conformation of a constrained peptide mimicking the putative first intracellular domain (iLP1) of thromboxane A(2) receptor (TP) was determined by (1)H 2D NMR spectroscopy. Through completed assignments of TOCSY, DQF-COSY, and NOESY spectra, a NMR structure of the peptide showed a beta-turn in residues 56-59 and a short helical structure in the residues 63-66. It suggests that residues 63-66 may be part of the second transmembrane domain (TM), and that Arg60, in an exposed position on the outer surface of the loop, may be involved in signaling through charge contact with Gq protein. The sequence alignment of Lys residue in the same position of other prostanoid receptors mediates different G protein couplings, suggesting that the chemical properties of Arg and Lys may also affect the receptor signaling activity. These hypotheses were supported by mutagenesis studies, in which the mutant of Arg60Leu completely lost activity in increasing intracellular calcium level through Gq coupling, and the mutant of Arg60Lys retained only about 35% signaling activity. The difference between the side chain functions of Lys and Arg in effecting the signaling was discussed.  相似文献   

3.
In previous studies, we have determined the solution structure of the second extracellular loop (eLP(2)) of the human thromboxane A(2) receptor (TP) and identified the residues in the eLP(2) domain involved in ligand recognition, by using a combination of approaches including a constrained synthetic peptide, 2D NMR spectroscopy, and recombinant proteins. These findings led us to hypothesize that the specific ligand recognition sites may be localized in the eLP(2) for all the prostanoid receptors. To test this hypothesis, we have investigated the ligand recognition site for another prostanoid receptor, the prostacyclin receptor (IP), which mediates an opposite biological function compared to that of the TP receptor. The identification of the interaction between the IP receptor and its agonist, iloprost, was achieved with a constrained synthetic peptide mimicking the eLP(2) region of the receptor. The IP eLP(2) segment was designed and synthesized to form a constrained loop, using a homocysteine disulfide bond connecting the ends of the peptide, based on the distance predicted from the IP receptor model created by homology modeling using the crystal structure of bovine rhodopsin as a template. The evidence of the constrained IP eLP(2) interaction with iloprost was found by the identification of the conformational changes of the eLP(2) induced by iloprost using fluorescence spectroscopy, and was further confirmed by 1D and 2D 1H NMR experiments. In addition, the IP eLP(2)-induced structure of iloprost in solution was elucidated through a complete assignment of the 2D 1H NMR spectra for iloprost in the presence of the IP eLP(2) segment. In contrast, no ordered structure was observed in the 2D 1H NMR experiments for iloprost alone in solution. These studies not only identified that the eLP(2) segment of the IP receptor is involved in ligand recognition, but also solved the 3D solution structure of the bound-form of iloprost, which could be used to study the receptor-ligand interaction in structural terms.  相似文献   

4.
Schofield CM  Trudell JR  Harrison NL 《Biochemistry》2004,43(31):10058-10063
The glycine receptor enables the generation of inhibitory postsynaptic currents at synapses via neurotransmitter-dependent activation. These receptors belong to the ligand-gated ion channel gene superfamily, in which all members are comprised of five subunits, each of which possesses a signature 13-residue disulfide loop (Cys loop) in the extracellular domain. In this study, we used alanine-scanning mutagenesis of the residues between C138 and C152 of the Cys loop of the glycine receptor alpha1 subunit to identify residues critical for receptor activation and allosteric modulation. Mutation of L142, F145, or P146 to alanine produced decreases in the potency, maximal amplitude, and Hill coefficient for currents elicited by glycine and impaired receptor activation by the agonist taurine. These residues, along with D148, are positionally conserved in the family of LGIC subunits. Mutation at several other positions had little or no effect. The inhaled anesthetics halothane and isoflurane potentiate submaximal agonist responses at wild-type receptors, via an allosteric site. The mutations L142A, F145A, P146A, and D148A abolished positive modulation by these anesthetics, in some cases revealing a small inhibitory effect. A molecular model of the glycine receptor alpha1 subunit suggests that the Cys loop is positioned in a region of the receptor at the interface between the extracellular and transmembrane domains and that the critical functional residues identified here lie along the face of a predominantly hydrophobic surface. The present data implicate the Cys loop as an important functional moiety in the process of glycine receptor activation and allosteric regulation by anesthetics.  相似文献   

5.
The second extracellular loop (eLP2) of the thromboxane A(2) receptor (TP) had been proposed to be involved in ligand binding. Through two-dimensional (1)H NMR experiments, the overall three-dimensional structure of a constrained synthetic peptide mimicking the eLP2 had been determined by our group (Ruan, K.-H., So, S.-P., Wu, J., Li, D., Huang, A., and Kung, J. (2001) Biochemistry 40, 275-280). To further identify the residues involved in ligand binding, a TP receptor antagonist, SQ29,548 was used to interact with the synthetic peptide. High resolution two-dimensional (1)H NMR experiments, NOESY, and TOCSY were performed for the peptide, SQ29,548, and peptide with SQ29,548, respectively. Through completed (1)H NMR assignment and by comparing the different spectra, extra peaks were observed on the NOESY spectrum of the peptide with SQ29,548, which implied the contacts between residues of eLP2 at Val(176), Leu(185), Thr(186), and Leu(187) with SQ29,548 at position H2, H7, and H8. Site-directed mutagenesis was used to confirm the possible ligand-binding sites on native human TP receptor. Each of the four residues was mutated to the residues either in the same group, with different structure or different charged. The mutated receptors were then tested for their ligand binding activity. The receptor with V176L mutant retained binding activity to SQ29,548. All other mutations resulted in decreased or lost binding activity to SQ29,548. These mutagenesis results supported the prediction from NMR experiments in which Val(176), Leu(185), Thr(186), and Leu(187) are the possible residues involved in ligand binding. This information facilitates the understanding of the molecular mechanism of thromboxane A(2) binding to the important receptor and its signal transduction.  相似文献   

6.
Eicosanoid receptors exhibit a highly conserved ERY(C)XXV(I)XXPL sequence in the second intracellular loop. The carboxyl end of this motif contains a bulky hydrophobic amino acid (L,I,V, or F). In human thromboxane A2 receptor (TXA(2)R), phenylalanine 138 is located at the carboxyl end of this highly conserved motif. This study examined the function of the F138 in G protein coupling. F138 was mutated to aspartic acid (D) and tyrosine (Y), respectively. Both mutants F138D and F138Y showed similar ligand binding activity to that of the wild type TXA(2)R. The Kd and Bmax values of either mutant were comparable to those of the wild type receptor. However, both mutants showed significant impairment of agonist induced Ca(2+) signaling and phospholipase C activation. These results suggest that the F138 plays a key role in G protein coupling.  相似文献   

7.
The human dopamine (DA) transporter (hDAT) contains multiple tryptophans and acidic residues that are completely or highly conserved among Na(+)/Cl(-)-dependent transporters. We have explored the roles of these residues using non-conservative substitution. Four of 17 mutants (E117Q, W132L, W177L and W184L) lacked plasma membrane immunostaining and were not functional. Both DA uptake and cocaine analog (i.e. 2beta-carbomethoxy-3beta-(4-fluorophenyl)tropane, CFT) binding were abolished in W63L and severely damaged in W311L. Four of five aspartate mutations (D68N, D313N, D345N and D436N) shifted the relative selectivity of the hDAT for cocaine analogs and DA by 10-24-fold. In particular, mutation of D345 in the third intracellular loop still allowed considerable [(3)H]DA uptake, but caused undetectable [(3)H]CFT binding. Upon anti-C-terminal-hDAT immunoblotting, D345N appeared as broad bands of 66-97 kDa, but this band could not be photoaffinity labeled with cocaine analog [(125)I]-3beta-(p-chlorophenyl)tropane-2beta-carboxylic acid ([(125)I]RTI-82). Unexpectedly, in this mutant, cocaine-like drugs remained potent inhibitors of [(3)H]DA uptake. CFT solely raised the K(m) of [(3)H]DA uptake in wild-type hDAT, but increased K(m) and decreased V(max) in D345N, suggesting different mechanisms of inhibition. The data taken together indicate that mutation of conserved tryptophans or acidic residues in the hDAT greatly impacts ligand recognition and substrate transport. Additionally, binding of cocaine to the transporter may not be the only way by which cocaine analogs inhibit DA uptake.  相似文献   

8.
Melanin-concentrating hormone (MCH) receptor 1 (MCH1R) belongs to the class A G protein-coupled receptors (GPCRs). The MCH-MCH1R system plays a central role in energy metabolism, and thus the regulation of signaling pathways activated by this receptor is of particular interest. Regulator of G protein signaling (RGS) proteins work by increasing the GTPase activity of G protein alpha subunits and attenuate cellular responses coupled with G proteins. Recent evidence has shown that RGS proteins are not simple G protein regulators but equally inhibit the signaling from various GPCRs. Here, we demonstrate that RGS8, which is highly expressed in the brain, functions as a negative modulator of MCH1R signaling. By using biochemical approaches, RGS8 was found to selectively and directly bind to the third intracellular (i3) loop of MCH1R in vitro. When expressed in HEK293T cells, RGS8 and MCH1R colocalized to the plasma membrane and RGS8 potently inhibited the calcium mobilization induced by MCH. The N-terminal 9 amino acids of RGS8 were required for the optimal capacity to downregulate the receptor signaling. Furthermore, Arg(253) and Arg(256) at the distal end of the i3 loop were found to comprise a structurally important site for the functional interaction with RGS8, since coexpression of RGS8 with R253Q/R256Q mutant receptors resulted in a loss of induction of MCH-stimulated calcium mobilization. This functional association suggests that RGS8 may represent a new therapeutic target for the development of novel pharmaceutical agents.  相似文献   

9.

Background  

Protein-protein interactions play essential roles in protein function determination and drug design. Numerous methods have been proposed to recognize their interaction sites, however, only a small proportion of protein complexes have been successfully resolved due to the high cost. Therefore, it is important to improve the performance for predicting protein interaction sites based on primary sequence alone.  相似文献   

10.
The Fas/tumor necrosis factor (TNF)/TRAIL receptors signal death through a cytoplasmic death domain (DD) containing six alpha-helices with positively charged helix 2 interacting with negatively charged helix 3 of another DD. DD mutation occurs in head/neck and lung cancer (TRAIL receptor KILLER/DR5) and in lpr mice (Fas). We examined the apoptotic potential of known KILLER/DR5 lung tumor-derived mutants (n = 6) and DD mutants (n = 18) generated based on conservation with DR4, Fas, Fas-associated death domain (FADD), and tumor necrosis factor receptor 1 (TNFR1). With the exception of Arg-330 required in Fas or FADD for aggregation or for TNFR1 cytotoxicity, surprisingly major loss-of-function KILLER/DR5 alleles (W325A, L334A (lpr-like), I339A, and W360A) contained hydrophobic residues. Loss-of-function of I339A (highly conserved) has not been reported in DDs. Charged residue mutagenesis revealed the following points. 1) E326A, conserved in DR4, is dispensable for death; the homologous residue is positively charged in Fas, TNFR1, and FADD and is critical for DD interactions. 2) K331A, D336A, E338A, K340A, K343A, and D351A have partial loss-of-function suggesting multiple charges stabilize receptor-adapter interactions. Analysis of the tumor-derived KILLER/DR5 mutants revealed the following. 1) L334F has partial loss-of-function versus L334A, whereas E338K has major loss-of-function versus E338A, examples where alanine and tumor-specific substitutions have divergent phenotypes. 2) Unexpectedly, S324F, E326K, K386N, and D407Y have no loss-of-function with tumor-specific or alanine substitutions. Loss-of-function KILLER/DR5 mutants were deficient in recruitment of FADD and caspase 8 to TRAIL death-inducing signaling complexes. The results reveal determinants within KILLER/DR5 for death signaling and drug design.  相似文献   

11.
Prokineticin receptors (PROKR) are G protein-coupled receptors (GPCR) that regulate diverse biological processes, including olfactory bulb neurogenesis and GnRH neuronal migration. Mutations in PROKR2 have been described in patients with varying degrees of GnRH deficiency and are located in diverse functional domains of the receptor. Our goal was to determine whether variants in the first intracellular loop (ICL1) of PROKR2 (R80C, R85C, and R85H) identified in patients with hypogonadotropic hypogonadism interfere with receptor function and to elucidate the mechanisms of these effects. Because of structural homology among GPCR, clarification of the role of ICL1 in PROKR2 activity may contribute to a better understanding of this domain across other GPCR. The effects of the ICL1 PROKR2 mutations on activation of signal transduction pathways, ligand binding, and receptor expression were evaluated. Our results indicated that the R85C and R85H PROKR2 mutations interfere only modestly with receptor function, whereas the R80C PROKR2 mutation leads to a marked reduction in receptor activity. Cotransfection of wild-type (WT) and R80C PROKR2 showed that the R80C mutant could exert a dominant negative effect on WT PROKR2 in vitro by interfering with WT receptor expression. In summary, we have shown the importance of Arg80 in ICL1 for PROKR2 expression and demonstrate that R80C PROKR2 exerts a dominant negative effect on WT PROKR2.  相似文献   

12.
The human prostacyclin receptor is a seven-transmembrane alpha-helical G-protein coupled receptor, which plays important roles in both vascular smooth muscle relaxation as well as prevention of blood coagulation. The position of the native ligand-binding pocket for prostacyclin as well as other derivatives of the 20-carbon eicosanoid, arachidonic acid, has yet to be determined. Through the use of prostanoid receptor sequence alignments, site-directed mutagenesis, and the 2.8-A x-ray crystallographic structure of bovine rhodopsin, we have developed a three-dimensional model of the agonist-binding pocket within the seven-transmembrane (TM) domains of the human prostacyclin receptor. Upon mutation to alanine, 11 of 29 candidate residues within TM domains II, III, IV, V, and VII exhibited a marked decrease in agonist binding. Of this group, four amino acids, Arg-279 (TMVII), Phe-278 (TMVII), Tyr-75 (TMII), and Phe-95 (TMIII), were identified (via receptor amino acid sequence alignment, ligand structural comparison, and computer-assisted homology modeling) as having direct molecular interactions with ligand side-chain constituents. This binding pocket is distinct from that of the biogenic amine receptors and rhodopsin where the native ligands (also composed of a carbon ring and a carbon chain) are accommodated in an opposing direction. These findings should assist in the development of novel and highly specific ligands including selective antagonists for further molecular pharmacogenetic studies of the human prostacyclin receptor.  相似文献   

13.
Zhang L  Wu J  Ruan KH 《Biochemistry》2006,45(6):1734-1744
The amino acids (residues 39-51) responsible for the interaction between the first intracellular loop (iLP1) of the human prostacyclin receptor (IP) and G alpha s protein have been identified [Zhang, L., Huang, G., Wu, J., and Ruan, K. H. (2005) Biochemistry 44, 11389-11401]. To further characterize the structural/functional relationship of the iLP1 in coupling with the G alpha s protein, the solution structures of a constrained peptide (IP iLP1) that mimicked the iLP1 of the IP receptor in the absence and presence of a synthetic peptide, corresponding to the C-terminal 11 residues (Q384-L394 in the protein sequence) of the G alpha s protein (G alpha s-Ct), were determined by 2D 1H NMR spectroscopy. The NMR solution structural model of the iLP1 domain showed two turn structures in residues Arg41-Ala44 and Arg45-Phe49 with the conserved Arg45 at the center. The conformational change of the side chain of the Arg45 was observed upon the addition of the G alpha s-Ct peptide. On the other hand, the solution structural models of the G alpha s-Ct peptide in the absence and presence of the IP iLP1 peptide were also determined. The N-terminal domain (Q384-Q390 in the G alpha s protein) of the peptide adopted an alpha-helical conformation. However, the helical structure of the C-terminal domain (Q390-E392 in the G alpha s protein) of the peptide was destabilized upon addition of the IP iLP1 peptide. These structural studies have implied that there are direct or indirect contacts between the IP iLP1 domain and the C-terminal residues of the G alpha s protein in the receptor/G protein coupling. The possible charge and hydrophobic interactions between the two peptides were also discussed. These data prompted intriguing speculations on the IP/G alpha s coupling which mediates vasodilatation and inhibition of platelet aggregation.  相似文献   

14.
Regulators of G-protein signaling (RGS) proteins act directly on Galpha subunits to increase the rate of GTP hydrolysis and to terminate signaling. However, the mechanisms involved in determining their specificities of action in cells remain unclear. Recent evidence has raised the possibility that RGS proteins may interact directly with G-protein-coupled receptors to modulate their activity. By using biochemical, fluorescent imaging, and functional approaches, we found that RGS2 binds directly and selectively to the third intracellular loop of the alpha1A-adrenergic receptor (AR) in vitro, and is recruited by the unstimulated alpha1A-AR to the plasma membrane in cells to inhibit receptor and Gq/11 signaling. This interaction was specific, because RGS2 did not interact with the highly homologous alpha1B- or alpha1D-ARs, and the closely related RGS16 did not interact with any alpha1-ARs. The N terminus of RGS2 was required for association with alpha1A-ARs and inhibition of signaling, and amino acids Lys219, Ser220, and Arg238 within the alpha1A-AR i3 loop were found to be essential for this interaction. These findings demonstrate that certain RGS proteins can directly interact with preferred G-protein-coupled receptors to modulate their signaling with a high degree of specificity.  相似文献   

15.
Recent studies suggest that the second extracellular loop (o2 loop) of bovine rhodopsin and other class I G protein-coupled receptors (GPCRs) targeted by biogenic amine ligands folds deeply into the transmembrane receptor core where the binding of cis-retinal and biogenic amine ligands is known to occur. In the past, the potential role of the o2 loop in agonist-dependent activation of biogenic amine GPCRs has not been studied systematically. To address this issue, we used the M(3) muscarinic acetylcholine receptor (M3R), a prototypic class I GPCR, as a model system. Specifically, we subjected the o2 loop of the M3R to random mutagenesis and subsequently applied a novel yeast genetic screen to identity single amino acid substitutions that interfered with M3R function. This screen led to the recovery of about 20 mutant M3Rs containing single amino acid changes in the o2 loop that were inactive in yeast. In contrast, application of the same strategy to the extracellular N-terminal domain of the M3R did not yield any single point mutations that disrupted M3R function. Pharmacological characterization of many of the recovered mutant M3Rs in mammalian cells, complemented by site-directed mutagenesis studies, indicated that the presence of several o2 loop residues is important for efficient agonist-induced M3R activation. Besides the highly conserved Cys(220) residue, Gln(207), Gly(211), Arg(213), Gly(218), Ile(222), Phe(224), Leu(225), and Pro(228) were found to be of particular functional importance. In general, mutational modification of these residues had little effect on agonist binding affinities. Our findings are therefore consistent with a model in which multiple o2 loop residues are involved in stabilizing the active state of the M3R. Given the high degree of structural homology found among all biogenic amine GPCRs, our findings should be of considerable general relevance.  相似文献   

16.
Ligand recognition has been extensively explored in G protein-coupled A(1), A(2A), and A(2B) adenosine receptors but not in the A(3) receptor, which is cerebroprotective and cardioprotective. We mutated several residues of the human A(3) adenosine receptor within transmembrane domains 3 and 6 and the second extracellular loop, which have been predicted by previous molecular modeling to be involved in the ligand recognition, including His(95), Trp(243), Leu(244), Ser(247), Asn(250), and Lys(152). The N250A mutant receptor lost the ability to bind both radiolabeled agonist and antagonist. The H95A mutation significantly reduced affinity of both agonists and antagonists. In contrast, the K152A (EL2), W243A (6.48), and W243F (6.48) mutations did not significantly affect the agonist binding but decreased antagonist affinity by approximately 3-38-fold, suggesting that these residues were critical for the high affinity of A(3) adenosine receptor antagonists. Activation of phospholipase C by wild type (WT) and mutant receptors was measured. The A(3) agonist 2-chloro-N(6)-(3-iodobenzyl)-5'-N-methylcarbamoyladenosine stimulated phosphoinositide turnover in the WT but failed to evoke a response in cells expressing W243A and W243F mutant receptors, in which agonist binding was less sensitive to guanosine 5'-gamma-thiotriphosphate than in WT. Thus, although not important for agonist binding, Trp(243) was critical for receptor activation. The results were interpreted using a rhodopsin-based model of ligand-A(3) receptor interactions.  相似文献   

17.
Kang Y  Taddeo B  Varai G  Varga J  Fiore S 《Biochemistry》2000,39(44):13551-13557
Lipoxin A(4) (LXA(4)) is a potent negative modulator of the inflammatory response. The antiinflammatory activities of LXA(4), such as inhibition of agonist-induced polymorphonuclear cell (PMN) chemotaxis and upregulation of beta-2 integrins, require the expression of a G-protein-coupled, high-affinity LXA(4) receptor (LXA(4)R). We now report that stimulation of PMN with proinflammatory agonist N-formyl peptides (FMLP), calcium ionophore A(23187), or phorbol mirystate acetate (PMA) is followed by marked downregulation of LXA(4) binding (B(max) decrease of approximately 45%) and decreased activation of phospholipases A(2) (PLA(2)) and D (PLD). Elucidation of the mechanisms underlying these effects was addressed by structure-function analyses of the intracellular domains of LXA(4)R. Mutant molecule, S236/S237 --> A/G (LXA(4)R(pk)) and Y302 --> F (LXA(4)R(tk)) were obtained by site-directed mutagenesis to yield receptors lacking the putative targets for serine/threonine kinase- or tyrosine kinase-dependent phosphorylation. Expression of wild-type and mutated LXA(4)R sequences in CHO and HL-60 cells was used to examine LXA(4) ligand-receptor interactions and signal transduction events. Results indicated that cells expressing LXA(4)R(pk) or LXA(4)R(tk) displayed sustained activation of PLA(2) and PLD in contrast to the transient ones obtained with LXA(4)R(wt) (peak activation at 2-3 min). Moreover, inhibition of LXA(4)-dependent PLA(2) activity by PMA in LXA(4)R(wt) transfected CHO cells was not observed in cells expressing LXA(4)R(pk). Phosphopeptide immunoblotting revealed that the functional differences between wild-type and mutant LXA(4) receptors are accompanied by distinct changes in the receptor protein phosphorylation pattern. Further characterization of these and related LXA(4)R intracellular domains will help to better understand specific events that regulate the antiinflammatory activities of LXA(4).  相似文献   

18.
Prostacyclin plays important roles in vascular homeostasis, promoting vasodilatation and inhibiting platelet thrombus formation. Previous studies have shown that three of six cytoplasmic cysteines, particularly those within the C-terminal tail, serve as important lipidation sites and are differentially conjugated to palmitoyl and isoprenyl groups (Miggin, S. M., Lawler, O. A., and Kinsella, B. T. (2003) J. Biol. Chem. 278, 6947-6958). Here we report distinctive roles for extracellular- and transmembrane-located cysteine residues in human prostacyclin receptor structure-function. Within the extracellular domain, all cysteines (4 of 4) appear to be involved in disulfide bonding interactions (i.e. a highly conserved Cys-92-Cys-170 bond and a putative non-conserved Cys-5-Cys-165 bond), and within the transmembrane (TM) region there are several cysteines (3 of 8) that maintain critical hydrogen bonding interactions (Cys-118 (TMIII), Cys-251 (TMVI), and Cys-202 (TMV)). This study highlights the necessity of sulfhydryl (SH) groups in maintaining the structural integrity of the human prostacyclin receptor, as 7 of 12 extracellular and transmembrane cysteines studied were found to be differentially indispensable for receptor binding, activation, and/or trafficking. Moreover, these results also demonstrate the versatility and reactivity of these cysteine residues within different receptor environments, that is, extracellular (disulfide bonds), transmembrane (H-bonds), and cytoplasmic (lipid conjugation).  相似文献   

19.
G protein-coupled receptors are one of the largest protein families in nature; however, the mechanisms by which they activate G proteins are still poorly understood. To identify residues on the intracellular face of the human C5a receptor that are involved in G protein activation, we performed a genetic analysis of each of the three intracellular loops and the carboxyl-terminal tail of the receptor. Amino acid substitutions were randomly incorporated into each loop, and functional receptors were identified in yeast. The third intracellular loop contains the largest number of preserved residues (positions resistant to amino acid substitutions), followed by the second loop, the first loop, and lastly the carboxyl terminus. Surprisingly, complete removal of the carboxyl-terminal tail did not impair C5a receptor signaling. When mapped onto a three-dimensional structural model of the inactive state of the C5a receptor, the preserved residues reside on one half of the intracellular surface of the receptor, creating a potential activation face. Together these data provide one of the most comprehensive functional maps of the intracellular surface of any G protein-coupled receptor to date.  相似文献   

20.
Ulfers AL  McMurry JL  Kendall DA  Mierke DF 《Biochemistry》2002,41(38):11344-11350
The third cytoplasmic loop (IC3) is a determinant in the dynamic life cycle of G protein-coupled receptors, including the activation, internalization, desensitization, and resensitization processes. Here, we characterize the structural features of the IC3 of the cannabinoid 1 receptor (CB1) in micelle solution using heteronuclear, (1)H,(15)N-high-resolution NMR methods. The IC3 construct was designed to contain one-third of each of the transmembrane helices (TMs 5 and 6) to tether the protein to the hydrophobic portion of the micelle. Indeed, the NMR analysis illustrates prominent alpha-helices at the N-terminus (G1-R10) and C-terminus (Q37-T47) of the IC3 receptor domain, corresponding to the cytoplasmic termini of TM5 and TM6. The structural features of the central portion of the IC3 consist of a small alpha-helix, adjacent to the terminus of TM5. The remainder is mostly unstructured as indicated by the NMR-based observables (NOEs and chemical shifts). Despite the lack of secondary structure, the hydrophobic triplet of isoleucine residues in the center of the IC3 is found in molecular dynamics simulations to associate with the lipid environment, producing two smaller loops out of the IC3. Previous studies examining mastoparan and related peptides and their ability to activate G proteins have concluded an alpha-helix is required for efficient binding and activation. Our structural results for the IC3 of CB1 would then suggest that in the intact receptor the G protein is activated by the alpha-helices of the cytoplasmic ends of TM5 or TM6 and not the unstructured central region of the IC3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号