首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 144 毫秒
1.
Cell-cycle defect of DNA repair in progeria skin fibroblasts   总被引:1,自引:0,他引:1  
We examined the temporal regulation of DNA repair during synchronous cell proliferation in normal and progeroid human fibroblasts. Ultraviolet light-induced (254 nm, 20 J/m2) unscheduled DNA synthesis was measured at 4-h intervals after serum stimulation, for up to 32 h. Normal cells regulated DNA repair in a defined temporal sequence, showing a peak in the induction of DNA repair just before DNA synthesis. Progeroid skin fibroblasts failed to show an increase in nucleotide excision repair before scheduled DNA synthesis, but the background level of DNA repair was not significantly different from that in controls. Regulation of repair in progeroid human fibroblasts appeared similar, but not identical to that previously reported by Gupta and Sirover (1984b) for xeroderma pigmentosum complementation group C. Our results suggest that patients with Hutchinson-Gilford progeria may have a defect in DNA repair; the results offer nominal evidence that the average level of UV-induced DNA is decreased, and that individuals with this disease lack both the normal enhancement of DNA repair before scheduled DNA synthesis and the temporal control of DNA repair.  相似文献   

2.
Mitochondrial DNA Repair Pathways   总被引:5,自引:0,他引:5  
It has long been held that there is no DNA repair in mitochondria. Early observations suggestedthat the reason for the observed accumulation of DNA damage in mitochondrial DNA is thatDNA lesions are not removed. This is in contrast to the very efficient repair that is seen inthe nuclear DNA. Mitochondrial DNA does not code for any DNA repair proteins, but it hasbeen observed that a number of repair factors can be found in mitochondrial extracts. Mostof these participate in the base excision DNA repair pathway which is responsible for theremoval of simple lesions in DNA. Recent work has shown that there is efficient base excisionrepair in mammalian mitochondria and there are also indications of the presence of morecomplex repair processes. Thus, an active field of mitochondrial DNA repair is emerging. Anunderstanding of the DNA repair processes in mammalian mitochondria is an important currentchallenge and it is likely to lead to clarification of the etiology of the common mutations anddeletions that are found in mitochondria, and which are thought to cause various humandisorders and to play a role in the aging phenotype.  相似文献   

3.
4.
DNA repair mechanisms are fairly well characterized for nuclear DNA while knowledge regarding the repair mechanisms operable in mitochondria is limited. Several lines of evidence suggest that mitochondria contain DNA repair mechanisms. DNA lesions are removed from mtDNA in cells exposed to various chemicals. Protein activities that process damaged DNA have been detected in mitochondria. As will be discussed, there is evidence for base excision repair (BER), direct damage reversal, mismatch repair, and recombinational repair mechanisms in mitochondria, while nucleotide excision repair (NER), as we know it from nuclear repair, is not present.  相似文献   

5.
6.
We have studied the ability of yeast DNA polymerases to carry out repair of lesions caused by UV irradiation in Saccharomyces cerevisiae. By the analysis of postirradiation relative molecular mass changes in cellular DNA of different DNA polymerases mutant strains, it was established that mutations in DNA polymerases delta and epsilon showed accumulation of single-strand breaks indicating defective repair. Mutations in other DNA polymerase genes exhibited no defects in DNA repair. Thus, the data obtained suggest that DNA polymerases delta and epsilon are both necessary for DNA replication and for repair of lesions caused by UV irradiation. The results are discussed in the light of current concepts concerning the specificity of DNA polymerases in DNA repair.  相似文献   

7.
Bendtsen KM  Juul J  Trusina A 《PloS one》2012,7(5):e36018
DNA damages, as well as mutations, increase with age. It is believed that these result from increased genotoxic stress and decreased capacity for DNA repair. The two causes are not independent, DNA damage can, for example, through mutations, compromise the capacity for DNA repair, which in turn increases the amount of unrepaired DNA damage. Despite this vicious circle, we ask, can cells maintain a high DNA repair capacity for some time or is repair capacity bound to continuously decline with age? We here present a simple mathematical model for ageing in multicellular systems where cells subjected to DNA damage can undergo full repair, go apoptotic, or accumulate mutations thus reducing DNA repair capacity. Our model predicts that at the tissue level repair rate does not continuously decline with age, but instead has a characteristic extended period of high and non-declining DNA repair capacity, followed by a rapid decline. Furthermore, the time of high functionality increases, and consequently slows down the ageing process, if the DNA repair mechanism itself is vulnerable to DNA damages. Although counterintuitive at first glance, a fragile repair mechanism allows for a faster removal of compromised cells, thus freeing the space for healthy peers. This finding might be a first step toward understanding why a mutation in single DNA repair protein (e.g. Wrn or Blm) is not buffered by other repair proteins and therefore, leads to severe ageing disorders.  相似文献   

8.
In UV-irradiated E. coli WP2 uvrA, deficient in excision repair of DNA with pyrimidine dimers, gamma-irradiation in low doses (radioadaptation) before UV-irradiation leads to the intensification of postreplication repair of DNA. This process in WP2 uvrA polA and uvrA lexA mutants is less than in WP2 uvrA cells, but in WP2 uvrA recA both postreplication repair and its radioadaptive intensification are absent. In E. coli AB1157 excising pyrimidine dimers the radioadaptive intensification of postreplication repair of DNA is expressed almost to the same extent as in WP2 uvrA. In GW2100 umuC mutant, deficient in DNA polymerase V, postreplication repair of DNA is expressed, but its radioadaptive intensification is absent, while in AB2463 recA13 both postreplication repair of DNA and radioadaptive intensification of postreplication repair of DNA are absent. The above data suggest that DNA polymerase I and LexA protein are needed for radioadaptive intensification of postreplication repair of DNA in uvrA strain, and DNA polymerase V is needed for radioadaptive intensification in E. coli AB1157, and that RecA protein is required for postreplication repair and radioadaptive intensification of postreplication repair of DNA.  相似文献   

9.
A temperature-sensitive mutation in gene 32 was used to study the role of gene 32 protein in the repair of UV-damaged DNA of bacteriophage T4. It was possible to distinguish between repair and replication of DNA at 33 C. At this temperature, DNA replication continued, and the intracellular DNA was stable. In contrast, no significant repair of UV-damaged DNA was observed even 40 min after the irradiation. Therefore, it was concluded that the defect in the repair mechanism at this temperature is not a simple consequence of the defect in DNA replication but that gene 32 apparently has an independent role for DNA repair. It was reported previously that gene 32 product is required for both T4 DNA replication and genetic recombination. In addition to these findings, this study has given direct evidence that, in vivo, this protein is also essential for the UV repair mechanism.  相似文献   

10.
R.J. Roberts  P. Strike 《Plasmid》1981,5(2):213-220
A comparison has been made of the efficiencies with which the dark repair processes of Escherichia coli act on ultraviolet irradiated bacterial chromosomal DNA and ultraviolet damaged transforming plasmid DNA. It is shown that postreplicational repair pathways act very inefficiently on transforming plasmid DNA, and that the majority of repair is carried out by excision repair pathways. However, even excision repair pathways act less efficiently on damaged plasmid DNA than they do on chromosomal DNA. The large effect of mutations in recB on plasmid survival suggests that the product of this gene may be essential for the excision repair pathways which act on plasmid DNA, but not for those which act on chromosomal DNA.  相似文献   

11.
Opossum lymphocytes were used for studies of DNA repair. Several compounds were assessed for their capacity to induce repair. Specially interesting was the fact that some intercalators (proflavin, ICR-170, quinacrine and acridine orange) did induce repair, as determined by [3H]thymidine incorporation in the presence of hydroxyurea, CsCl density gradient centrifugation of bromodeoxyuridine-containing DNA and autoradiographically detected unscheduled DNA synthesis.A comparison of the inhibitory effect of several chemicals on DNA replication and DNA repair was also carried out. In this study, repair synthesis was induced by UV irradiation. For most of the compounds, the concentration necessary to inhibit 50% of DNA replication or DNA repair was similar. The most notable exception was cycloheximide which inhibited replication much more effectively than repair. None of the compounds used in this study was found to specifically inhibit repair synthesis.Inhibition of DNA replication and DNA repair was a general effect exhibited by the compounds which bind to DNA. However, only some of these compounds were able to induce repair. As most of these compounds were mutagens it was concluded that the inhibitory effect could be more relevant to mutagenesis that the repair-induction effect.  相似文献   

12.
Trzeciak, A. R., Barnes, J. and Evans, M. K. A Modified Alkaline Comet Assay for Measuring DNA Repair Capacity in Human Populations. Radiat. Res. 169, 110-121 (2008). Use of the alkaline comet assay to assess DNA repair capacity in human populations has been limited by several factors, including lack of methodology for use of unstimulated cryopreserved peripheral blood mononuclear cells (PBMCs), insufficient control of interexperimental variability, and limited analysis of DNA repair kinetics. We show that unstimulated cryopreserved PBMCs can be used in DNA repair studies performed using the comet assay. We have applied data standardization for the analysis of DNA repair capacity using negative and positive internal standards as controls for interexperimental variability. Our standardization procedure also uses negative controls, which provides a way to minimize the interference of interindividual variation in baseline DNA damage levels on DNA repair capacity measurements in populations. DNA repair capacity was assessed in a small human cohort using the parameters described in the literature including initial DNA damage, half-time of DNA repair, and residual DNA damage after 30 and 60 min. We have also introduced new DNA repair capacity parameter, initial rate of DNA repair. There was no difference in DNA repair capacity between fresh and cryopreserved PBMCs when measured by the Olive tail moment and tail DNA. The use of DNA repair capacity parameters in assessment of fast and slow single-strand break repair components is discussed.  相似文献   

13.
Archaeal DNA repair pathways are not well defined; in particular, there are no convincing candidate proteins for detection of DNA mismatches or the bulky lesions removed by excision repair pathways. Single-stranded DNA-binding proteins (SSBs) play a central role in DNA replication, recombination and repair. The crenarchaeal SSB is a monomer with a single oligonucleotide-binding fold for single-stranded DNA binding coupled to a flexible C-terminal tail reminiscent of bacterial SSB that mediates interactions with other proteins. We demonstrate that Sulfolobus solfataricus SSB can melt DNA containing a mismatch or DNA lesion specifically in vitro. We suggest that a potential role for SSB in archaea is the detection of DNA damage due to local destabilisation of the DNA double helix, followed by recruitment of specific repair proteins. Proteins interacting specifically with a single-stranded DNA:SSB complex include several known or putative DNA repair proteins and DNA helicases.  相似文献   

14.
The human single-stranded DNA binding protein (HSSB/RPA) is involved in several processes that maintain the integrity of the genome including DNA replication, homologous recombination, and nucleotide excision repair of damaged DNA. We report studies that analyze the role of HSSB in DNA repair. Specific protein-protein interactions appear to be involved in the repair function of HSSB, since it cannot be replaced by heterologous single-stranded DNA binding proteins. Anti-HSSB antibodies that inhibit the ability of HSSB to stimulate DNA polymerase alpha also inhibit repair synthesis mediated by human cell-free extracts. However, antibodies that neutralize DNA polymerase alpha do not inhibit repair synthesis. Repair is sensitive to aphidicolin, suggesting that DNA polymerase epsilon or delta participates in nucleotide excision repair by cell extracts. HSSB has a role other than generally stimulating synthesis by DNA polymerases, as it does not enhance the residual damage-dependent background synthesis displayed by repair-deficient extracts from xeroderma pigmentosum cells. Significantly, when damaged DNA is incised by the Escherichia coli UvrABC repair enzyme, human cell extracts can carry out repair synthesis even when HSSB has been neutralized with antibodies. This suggests that HSSB functions in an early stage of repair, rather than exclusively in repair synthesis. A model for the role of HSSB in repair is presented.  相似文献   

15.
The endogenous nuclease sensitivity of repaired DNA in human fibroblasts   总被引:2,自引:0,他引:2  
The limited DNA excision repair that occurs in the chromatin of UV-irradiated growth arrested cells isolated from a xeroderma pigmentosum (XP) complementation group C patient is clustered in localized regions. The repaired DNA was found to be more sensitive to nicking by endogenous nucleases than the bulk of the DNA. The extra-sensitivity does not change with increasing amounts of DNA damage or repair activity in the locally-repaired regions and is retained through a 24-h chase period. We suggest that these results are due to the occurrence of DNA repair limited to pre-existing, non-transient chromatin fractions that contain actively transcribed DNA. A similar extra-sensitivity of repaired DNA was not detected in cells of normal or XP complementation group A strains that exhibit either normal or limited repair located randomly throughout their genomes. The association between endogenous nuclease sensitivity and clustered repair probably defines a normal excision repair pathway that is specific for selected chromatin domains. The repair defect in XP-C strains may be one in pathways targeted for other endogenous nuclease-resistant domains.  相似文献   

16.
17.
Malfunction of enzymes that detoxify reactive oxygen species leads to oxidative attack on biomolecules including DNA and consequently activates various DNA repair pathways. The nature of DNA damage and the cell cycle stage at which DNA damage occurs determine the appropriate repair pathway to rectify the damage. Oxidized DNA bases are primarily repaired by base excision repair and nucleotide incision repair. Nucleotide excision repair acts on lesions that distort DNA helix, mismatch repair on mispaired bases, and homologous recombination and non-homologous end joining on double stranded breaks. Post-replication repair that overcomes replication blocks caused by DNA damage also plays a crucial role in protecting the cell from the deleterious effects of oxidative DNA damage. Mitochondrial DNA is also prone to oxidative damage and is efficiently repaired by the cellular DNA repair machinery. In this review, we discuss the DNA repair pathways in relation to the nature of oxidative DNA damage in Saccharomyces cerevisiae.  相似文献   

18.
MRE11-RAD50-NBS1 Complex Dictates DNA Repair Independent of H2AX   总被引:1,自引:0,他引:1  
DNA double-strand breaks (DSBs) represent one of the most serious forms of DNA damage that can occur in the genome. Here, we show that the DSB-induced signaling cascade and homologous recombination (HR)-mediated DSB repair pathway can be genetically separated. We demonstrate that the MRE11-RAD50-NBS1 (MRN) complex acts to promote DNA end resection and the generation of single-stranded DNA, which is critically important for HR repair. These functions of the MRN complex can occur independently of the H2AX-mediated DNA damage signaling cascade, which promotes stable accumulation of other signaling and repair proteins such as 53BP1 and BRCA1 to sites of DNA damage. Nevertheless, mild defects in HR repair are observed in H2AX-deficient cells, suggesting that the H2AX-dependent DNA damage-signaling cascade assists DNA repair. We propose that the MRN complex is responsible for the initial recognition of DSBs and works together with both CtIP and the H2AX-dependent DNA damage-signaling cascade to facilitate repair by HR and regulate DNA damage checkpoints.  相似文献   

19.
DNA repair synthesis following UV irradiation of confluent human fibroblasts has a biphasic time course with an early phase of rapid nucleotide incorporation and a late phase of much slower nucleotide incorporation. The biphasic nature of this curve suggests that two distinct DNA repair systems may be operative. Previous studies have specifically implicated DNA polymerase delta as the enzyme involved in DNA repair synthesis occurring immediately after UV damage. In this paper, we describe studies of DNA polymerase involvement in DNA repair synthesis in confluent human fibroblasts at late times after UV irradiation. Late UV-induced DNA repair synthesis in both intact and permeable cells was found to be inhibited by aphidicolin, indicating the involvement of one of the aphidicolin-sensitive DNA polymerases, alpha or delta. In permeable cells, the process was further analyzed by using the nucleotide analogue (butylphenyl)-2'-deoxyguanosine 5'-triphosphate, which inhibits DNA polymerase alpha several hundred times more strongly than it inhibits DNA polymerase delta. The (butylphenyl)-2'-deoxyguanosine 5'-triphosphate inhibition curve for late UV-induced repair synthesis was very similar to that for polymerase delta. It appears that repair synthesis at late times after UV irradiation, like repair synthesis at early times, is mediated by DNA polymerase delta.  相似文献   

20.
There is a large body of evidence that stress-induced DNA damage may be responsible for cell lethality, cancer proneness and/or immune reaction. However, statistical features of their repair rate remain poorly documented. In order to interpret the shape of the radiation-induced DNA damage repair curves with a minimum of biological assumptions, we introduced the concept of repair probability, specific to any individual radiation-induced DNA damage, whatever its biochemical type. We strengthened the apparent paradox that the repair rate of a population of DNA damage is time-dependent even if the repair rate of the individual DNA damage is constant. Hence, the existing models, based on a dual approach of the DNA repair may be insufficient for describing the DNA repair rate over a large range of repair times. Since the repair probability of DNA damage cannot be assessed individually, the measurement of the DNA repair rate is assumed to consist in determining the instantaneous mean of all repair probabilities. The relevance of this model was examined with different endpoints: cell species, genotypes, radiation type and chromatin condensation. The Euler's Gamma function was shown to provide the distribution the most consistent with such hypotheses. Furthermore, formulas, deduced from the Gamma distribution, were found to be compatible with our previous model, empirically defined but based on a variable repair half-time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号