首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Boron Uptake by Excised Barley Roots   总被引:5,自引:0,他引:5  
Active uptake of boron (B) by excised barley roots is linear with time for at least 1.5 h. Although no evidence was found for accumulation of B against a concentration gradient. this component of B uptake does satisfy other criteria for an active transport process. Transport is inhibited by 0.05 mM 2,4-dinitrophenol, 0.05 mM azide, 5 mM arsenate and 5 mM dicoumarol. Also, uptake is temperature-sensitive, being nil at 2°C and maximal at 34 to 38°C. Boron uptake by barley roots increases with time when they are washed in aerated 0.5 mM CaSO4 solution. A double reciprocal plot of the B uptake data manifests a series of phases separated by sharp transitions or “jumps”, and is compatible with the concept of multiphasic uptake mechanisms. Kinetic constants and transition points for the various phases were calculated accordingly. The fit of these data was compared statistically to three other relevant models, viz, the dual model, the “single + diffusion” model (a Michaelis–Menten term and a diffusion term), and the negative cooperativity model. In each case, the data were better represented by the multiphasic model.  相似文献   

2.
In the range 10?6M - 5 × 10?2M uptake of K+ in excised roots of barley (Hordeum vulgare L. cv. Herta) with low and high K content could in both cases be represented by an isotherm with four phases. Uptake, especially in the range of the lower phases, was reduced in high K roots through decreases in Vmax and increases in Km. Similar data for other plants are also shown to be consistent with multiphasic kinetics. The concentrations at which transitions occurred were not affected by the K status, indicating the existence of separate uptake and transition sites. Uptake was markedly reduced in the presence of 10?5M 2,4-dinitrophenol, especially at low K+ concentrations, but the isotherms remained multiphasic. This contraindicates major contributions from a non-carrier-mediated, passive flux. A tentative hypothesis for multiphasic ion uptake envisions a structure which changes conformation as a result of all-or-none changes in a separate transition site. The structure is “tight” at low external ion concentrations (low Vmax. low Km. active uptake, allosteric regulation) and “loose” at high concentrations (high Vmax- high Km- facilitated diffusion, no regulation).  相似文献   

3.
The uptake of 10?1M–2.5 × 10?1M sulfate by roots and leaf slices of barley can be described by a single isotherm having, respectively, 8 and 5 phases with regularly increasing kinetic constants. Each phase covers a limited concentration range and obeys Michaelis-Menten kinetics. The uptake of sulfate is proposed to be rate-limited by a single mechanism or structure which is located in the plasmalemma (or cytoplasm) and which changes characteristics at certain discrete external concentrations (inflection points). Examination of published data indicates that the uptake of other inorganic ions by higher plant cells is also mediated by single, multi-phasic mechanisms.  相似文献   

4.
Multiphasic Uptake of Amino Acids by Barley Roots   总被引:10,自引:0,他引:10  
Concentration-dependence and other characteristics of uptake of 3H-labeled l -lysine, l -methionine and l -proline by excised roots of barley (Hordeum vulgare L.) were studied. Use of relatively short uptake and wash periods and low solute concentrations ensured good estimates of influx across the plasmalemma. Uptake in the range of 10?7M– 6.3 × 10?3M can be precisely represented by four or five phases of single, multiphasic mechanisms. The mechanisms appear to be relatively specific as judged from the competition by unlabeled analogues. Structural requirements for interaction of a compound with the uptake site for methionine are given, as are the effects of analogues on the phase pattern for this amino acid. There is no indication of separate uptake and transition sites for methionine or lysine. i.e. phase transitions seem in this case to be caused by binding of molecule(s) to the uptake site. Uptake, but not phase patterns, was highly pH-dependent. The optima were pH 5 for lysine, pH 3–5 (a broad peak) for methionine and about pH 5.5 for proline. Uptake of the three amino acids was strongly inhibited by 2,4-dinitrophenol. sulfhydryl reagents and deoxycholate.  相似文献   

5.
Abstract Sulfate uptake by excised roots of barley (Hordeum vulgare L.) was maximal in the presence of about 3x10-3M CaCl2. Kinetic studies contraindicate a stoichiometric binding of calcium to the carrier for sulfate, in contrast to findings of Cuppoletti and Segel (Biochemistry 14: 471–4718, 1975) for the filamentous fungus Penicillium notatum. In barley, calcium affects the Km but not the Vmax for sulfate uptake, presumably by altering the conformation and, thereby, the affinity of the carrier. Calcium also affects the transition site for sulfate uptake.  相似文献   

6.
Summary The effects of zinc application on zinc uptake, distribution and translocation in maize and barley grown in zinc deficient soil with high pH and high calcium content were studied. Zn65 content and uptake in roots, sheaths and blades of maize and barley plants increased significantly with increased levels of zinc application. The sheaths contained highest Zn65 content followed by roots and blades. The distribution of total zinc, however, differed from that of radioactive zinc. The roots had the highest zinc content, followed by sheaths and blades. The two species differed very little in zinc distribution patterns. The autoradiographs of intact maize and barley plants showed that Zn65 was fairly evenly distributed in the main and auxiliary roots, but, there was a relatively higher concentration at the root-stem junction. The Zn65 concentration was higher in nodes than in internodes, and in young emerging leaves compared to older leaves. re]19730819 Institute of Soil Science and Isotope Laboratory Agricultural University of Norway  相似文献   

7.
Seedlings of barley (Hordeum vulgare L. cvs Salka and Zita), buckwheat (Fagopyrum esculentum Moench) and rape (Brassica napus L. ssp. napus cv. Line) were raised at 8 or 10 different extenral P concentrations in the range 0–2000 μM. Apart from P, the nutrient solutions were complete. Phosphate influx in roots of different P status was determined by use of a nutrient solution containing 0.1 mM32P-labelled phosphate. A double labelling technique was used for simultaneous determination of influx (33P) and efflux (32P) of phosphorus by roots of barley and rape with three selected P levels. Flux determinations were also done in presence of a metabolic uncoupler (2,4-dinitrophenol) and a protein synthesis inhibitor (cycloheximide). Influx of phosphate was maximal at a certin optimal P level of the roots and decreased at both lower and higher P levels. Maximum phosphate influex [μmol (g root)-?1 h?1] were: rape 4,4, buckwheat 2.2, barley cv. Salka 1.6, barley cv. Zita 1.5. Both Hill plots and plots of the untransformed decreasing phosphate influx vs root P concentrations above the optimal were linear and had high correlation coefficients. The Hill coefficient varied between -3.1 and -4.2. The decrease of phosphate influx from the maximum to the lowest value at the highest P concentration of the root was 60–70%. Hence, phosphate influex appeared to be regulated through negative feedback by the internal level of phosphorous in the roots. The regulation mechanism seems bascially similar for the three species and may be of an allosteric type. P efflux from roots of low and optimal (with regard to P influx) P status was 15–20% of the simultaneous P influx. Contary to P influx, P efflux increased at high P status and almost eliminated (barley) or halved (rape) net P uptake. 2,4-Dinitrophenol reduced both P influx and P efflux by low P roots and gave linearly increasing P efflux with increasing root P status. This indicates that P efflux partly occurred by counter transport and ion exchange at the uptake sites, partly by passive P efflux along an electrochemical potential gradient. Phosphate influx was not affected by inhibition of barley root growth with cycloheximide, but P efflux increased considerably.  相似文献   

8.
In experiments with rapeseed (Brassica napus L., cv. Westar) plants, it was confirmed that copper was considerably more toxic than zinc. The toxic effects of 50 and 150 μM CuSO4 were comparable to those of 1000 and 2500 μM ZnSO4. The analysis of the effects of these concentrations of copper and zinc on photosynthetic pigment contents and on the rate of lipid peroxidation did not reveal any reasons for different toxicities of these heavy metals (HM). Among biological effects studied, significant differences were found in the organ distribution of these metals in plants grown on both the standard medium and the medium with high concentrations of copper or zinc. Copper retained in the roots in relatively small amounts and was poorly transported over the aboveground part of the plants. It stayed mainly in the lower leaves, and its distribution changed only a little during the recovery of plants following the HM treatment. In contrast, zinc proved to be highly mobile, it was concentrated in the upper leaves and actively transported when the plants were transferred to a medium with the optimal HM concentrations. High copper concentrations slowed strongly zinc uptake by the roots but practically did not change its movement over the plant. In contrast, high zinc concentrations facilitated copper uptake by the roots but reduced its transfer to the aboveground organs. The data presented here allow us to hypothesize that biological peculiarities of organ and cellular distribution of copper and zinc in plants and interaction of these HM play an important role in the toxic effects of high concentrations of these HM and the mechanisms of adaptation to them at industrial environmental pollution used by rapeseed plants.  相似文献   

9.
Abstract

A high copper accumulation is induced in the yeast Saccharomyces cerevisiae either by menadione at the level of 200 μM in the growth medium, or by elevated concentrations of copper. While the uptake, as well as the toxicity of copper, strongly depend on the zinc concentration in the medium, there is no influence of zinc on copper intake induced by menadione. The copper binding ligand d-penicillamine suppresses the accumulation of copper in the menadione systen, whereas it has virtually no effect in the copper system. Within the range of non-toxic concentrations, copper is predominantly taken up by an energy-dependent mechanism. In contrast, the accumulation in the menadione system is clearly energy-independent. Thus there exist at least two different mechanisms for the uptake of copper in the yeast Saccharomyces cerevisiae.  相似文献   

10.
The aim of this research was to investigate the capability of Brassica napus to bioaccumulate zinc and copper from artificially contaminated soil at the flowering and maturation phenological stage. The trial was set up in a greenhouse and the plants were cultivated in pots. The agricultural soil utilized was contaminated with zinc and copper sulfate (300 and 600 mg/kg, respectively). The soil and plant samples were simultaneously collected during the flowering (8 weeks after seeding) and maturation (harvest time, 13 weeks after seeding) stages, and the heavy metal concentrations were then analyzed. The production of vegetable biomass and the length of the roots were measured. The results showed that B. napus accumulated zinc and copper and translocated these elements in different ways in the harvestable parts of the plants. The zinc bioaccumulation was higher than that of copper. At flowering, zinc was mainly accumulated in the shoots (stems + leaves). Copper was particularly accumulated in the roots, during the entire life cycle. Taking into account the biomass production, the highest heavy metal removal by the shoots (above‐ground parts) occurred at the flowering stage for both zinc and copper. The high bioavailability of zinc and copper in the soil did not severely affect the root length and the biomass production.  相似文献   

11.
Biosorption of copper by Pseudomonas cepacia was found to be dependent on added copper concentration. Copper uptake by the cells was rapid over the range of copper concentrations tested and complete within the first 10 min of incubation time. The effect of pH on copper uptake by P. cepacia was determined using overlapping buffers over the pH range 3–8, and copper biosorption from a 10 mM copper solution was greatest at pH 7. Copper uptake (measured by analysis of cell digests) was unaffected by cyanide and azide (up to 30 mM) and by incubation of cells with a 10 mM copper solution at 4 °C. Evidence from these results suggested that copper uptake by P. cepacia cells involves surface binding and not intracellular accumulation by active transport. Biosorption of copper by various Pseudomonas isolates from metal-contaminated environments agreed well with copper biosorption by Pseudomonas strains from the National Collection of Type Cultures (NCTC).  相似文献   

12.
For sulfate uptake by barley roots, competition studies reveal that uptake and phase transitions are caused by interaction of ions with separate sites on or in the plasmalemma. Uptake is competitively, and unequally, inhibited by sulfate analogues but not by other divalent anions. In contrast, divalent phosphate and di- and trivalent pyrophosphate are equally effective in causing transitions. Phosphate is taken up mainly or entirely as H2PO4? by a similar but separate multiphasic mechanism. At pH 8, sulfate uptake is mediated by fewer phases than at low and intermediate pH.  相似文献   

13.
Summary The uptake of trace metals by two plant species (French bean and maize) has been measured on two soils subjected to various waterlogging regimes. Uptake of both manganese and iron was increased due to soil waterlogging, although reoxidation of the soil affected iron more than manganese. Zinc and copper uptake was influenced by a species factor; French bean (Phaseolus vulgaris) showed preferential uptake of zinc, whereas maize (Zea mays) took up copper preferentially. Uptake of cobalt by both species was increased due to waterlogging, following the pattern of manganese.The abilities of these species to take up trace metals from soil followed the pattern predicted by selective extraction of soil for manganese, iron and cobalt, but not for zinc and copper.  相似文献   

14.
Interaction of zinc with other micronutrient cations   总被引:1,自引:0,他引:1  
Summary Effect of copper on zinc absorption by wheat (Triticum aestivum L. variety WG 357) seedlings and its translocation within the plant was studied in a nutrient solution culture using Zn65.Zinc absorption was increased linearly with time within the limits studied (upto 80 minutes). It decreased, however, with increasing concentration of copper in nutrient solution. Plotting of the reciprocals of rates of zinc absorption vs zinc concentration showed that copper concentration in the nutrient solution inhibited zinc absorption, and this inhibition was competitive. Copper decreased only the absorption of zinc but not its translocation from roots to shoots. re]19750219  相似文献   

15.
Characterization of cadmium uptake by plant tissue   总被引:20,自引:6,他引:14       下载免费PDF全文
The uptake of cadmium by excised root tissue of barley (Hordeum vulgare L. cv. Arivat) was investigated with respect to kinetics, concentration, and interactions with various cations. The role of metabolism in Cd absorption was examined using a range of temperatures, anaerobic treatments, and chemical inhibitors. The uptake and distribution of Cd in intact barley plants was also determined. A large fraction of the Cd taken up by excised barley roots was apparently the result of exchange adsorption and was displaced by subsequent desorption with unlabeled Cd, Zn, Cu, or Hg. Another fraction of Cd which could not be displaced by desorption in unlabeled Cd was thought to result from strong irreversible binding of Cd, perhaps on sites of the cell wall. The fraction of the Cd taken up beyond that by exchange adsorption by fresh roots was a linear function of temperature, and inhibited by conditions of low oxygen and by the presence of 2,4-dinitrophenol. It was concluded that this fraction of Cd entered excised barley roots by diffusion. Diffusion, when followed by sequestering, probably accounts for the accumulation of Cd observed in intact barley plants.  相似文献   

16.
Callus tissue was induced from shoot meristematic tissue and root tips of a clone of the grass Agrostis stolonifera tolerant to both zinc and copper, and from a control clone tolerant to neither metal. Growth of the callus tissue on media containing zinc and copper showed that tolerance to both metals was maintained in tissue culture. The pattern of metal uptake in tissue culture resembled uptake by whole plants in that tolerant tissue took up more metal than nontolerant tissue. Plants regenerated from callus had the same copper and zinc tolerance as the original parental clones regardless of time of growth in tissue culture and shoot or root origin of the tissue. The results support previous evidence that metal tolerance is genetically determined and acts at the cellular level.  相似文献   

17.
Dimethyl sulfoxide (DMSO) in concentrations of up to 10% by volume stimulates the uptake of zinc by excised barley roots. In the same concentration it severely depresses uptake of sodium and of rubidium. It does not seem to affect the permeability of the membrane since roots treated with desorption solutions which were 10% in DMSO did not lose more of the preferred ion than did roots desorbed in solutions not containing DMSO. Oxygen utilization (measured in the Warburg respirometer) was reduced when DMSO was present. It is suggested that DMSO is a poisoning agent which interferes with cation transport by attacking some aspect of metabolism and not by influencing the permeability of the membrane.  相似文献   

18.
The influence of flow velocity on the uptake of cadmium, copper, lead, and zinc by hydroponically grown soft stem bulrush (Scirpus validus) was investigated. The roots of the plants were exposed to a continually recycled, nutrient enriched, synthetic stormwater. Plants were divided into groups and the roots of each group exposed to different but constant water velocities. The metal concentrations in the roots and stems were compared after three weeks. Metal accumulation in roots was increased for water velocities between 1.3 and 4.0 cm s?1. In a second experiment, the roots of all plants were exposed to a single velocity and the root and stem metal concentrations were determined as a function of time. Metal concentrations in the roots approached a constant value after three weeks. After this time, accumulation of metals depends upon root growth. The results suggest that long-term accumulation by the roots of hydroponic Scirpus validus can be increased by increasing water velocity, which implies that floating islands with movement will retain more metals from the water column.  相似文献   

19.
Cultures of Polymyxa graminis were maintained in roots of barley plants grown in sand at different temperatures using Wisconsin soil temperature tanks. At 17 – 20°C, the minimum time from inoculation with cystosori to the production of zoospores from the inoculated roots was 2 – 3 wk. At 11 – 20°C many zoospores were produced but the incubation period was longer at the lower temperatures. Above 20°C little fungal development occurred. The duration of motility of zoospores ranged from c. 1 h to > 24 h. Bovine serum albumen (BSA) prolonged motility but glycine and glucose had no effect or, at higher concentrations, were toxic. Zoospores were rapidly immobilised by zinc ions in solution at or above 10μg/ml. In some experiments BSA added to the zoospore suspension greatly increased transmission of barley yellow mosaic virus (BaYMV) while glucose, glycine and ovalbumen decreased it. When seedlings were incubated with zoospore suspensions for 24 h at different temperatures, BaYMV transmission was high (> 60%) at 10, 15 and 20°C but there was little at 5 or 25°C. In experiments to determine the time taken for zoospore penetration, seedlings were incubated in suspension for different periods of time and then rinsed in zinc sulphate solution to kill free zoospores. Between 3 and 3·5 h was needed for zoospores to establish infection. Transmission occurred equally to plants of various ages between 3 days and 7·5 wk.  相似文献   

20.
Phenylalanine ammonia-lyase (PAL) activity was determined from leaves and roots of two barley (Hordeum vulgare L.) cultivars after infection with a necrotrophic pathogen, Bipolaris sorokiniana (Sacc.) Shoem., and treatment with its purified xylanase. PAL activity increased in leaves of both cultivars 16 h after fungal inoculation but two phases, with activity peaks at 24–32 h and 40 h, were recorded only for the more resistant cultivar, Agneta. Attempts to use a PAL inhibitor, χ-amin, ooxyacetic acid, to increase susceptibility to B. sorokiniana in barley leaves were unsuccessful. Treatments of leaves with purified xylanase resulted in more rapid (4–12 h after injection), although reduced, induction of PAL compared with fungal injection. The higher the concentration of xylanase applied the earlier the activity peaks were detected. Fungal inoculation only slightly increased PAL activity in barley roots while xylanase treatment had no effect. The basal level of PAL was however much higher in roots than in leaves. In wheat, Triticum aestivum L. resistant to B. sorokiniana, the time-course of PAL induction after fungal infection and xylanase treatment resembled that for cv. Agneta, while in oats, Avena sativa L. (non-host) PAL activity did not change after the treatments. The results suggest that the second phase of PAL induction, associated only with responses of barley cv. Agneta and wheat, is linked with their resistance to B. sorokiniana infection. The possible role of xylanase as an elicitor of PAL is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号