首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
构建了含大肠杆菌磷酸果糖激酶(EC 2.7.1.11)基因pfkA的重组质粒pSDK1,利用大肠杆菌pfk缺陷株筛选含目的基因的重组质粒,通过接合转移的方式将其导入氧化硫硫杆菌TtZ2中,接合转移频率达2.6×10-6。重组质粒在TtZ2中有较好的稳定性,在无选择压力条件下传代50次基本保持稳定(重组质粒保留68%以上)。酶活性测定、SDSPAGE及RTPCR结果表明,pfkA基因在氧化硫硫杆菌中得到表达,但其表达水平低于大肠杆菌。葡萄糖可促进含pSDK1的氧化硫硫杆菌TtZ2的生长,而对照菌株的生长则未受明显影响,说明重组菌可部分利用葡萄糖作为碳源生长。  相似文献   

2.
通过RT-PCR从经ConA刺激诱导的奶牛脾脏淋巴细胞总RNA中扩增出牛γ干扰素 (BoIFN-γ) cDNA,克隆到真核载体pVAX1中,测序结果显示pVAX1中的插入序列BoIFN-γ基因与已报道序列一致。用重组质粒pVAX1-BoIFN-γ转染COS-7细胞并进行间接免疫荧光试验鉴定,结果显示BoIFN-γ在COS-7细胞中得到成功表达。将BoIFN-γ基因克隆到原核表达质粒pET-30a(+)、pGEX-6p-1后,分别转化重组表达菌BL21(DE3)、BL21后,通过对表达条件的优化,SDS-P  相似文献   

3.
Three different expression systems were constructed for the high-level production of TaqI restriction endonuclease in recombinant Escherichia colicells. In system [R], the TaqI endonuclease gene was cloned and expressed under the control of the strong T7 RNA polymerase promoter. To protect cellular DNA, methylase protection was provided by constitutive co-expression of TaqI methylase activity either by cloning the TaqI methylase gene on a second plasmid (system [R,M]) or by constructing a recombinant plasmid harboring both the endonuclease and methylase genes (system [R+M]). In batch shake flasks containing complex media, co-expression of the methylase gene in systems [R,M] and [R+M] resulted in a 2- and 3-fold increase in volumetric productivity over system [R], yielding activities of 250x10(6) U l(-1) and 350x10(6) U l(-1), which were 28 and 39 times higher than the data in the literature, respectively. Under controlled bioreactor conditions in chemically defined medium, co-expression of methylase activity greatly improved the yield and specific TaqI endonuclease productivity of the recombinant cells, and reduced acetic acid excretion levels. System [R,M] is preferable for high expression levels at longer operation periods, while system [R+M] is well-suited for high expression levels in short-term bioreactor operation.  相似文献   

4.
The human interferon alpha2b (hIFN-alpha2b) is the most widely used member of IFNalpha family, and it exerts many biological actions including broad-spectrum antiviral effects, inhibition of tumor cell proliferation and enhancement of immune functions. Herein, the cDNA coding for hIFN-alpha2b has been cloned into the secreting expression organism Pichia pastoris, and the high level expression of hIFN-alpha2b has been achieved. SDS-PAGE and Western blotting assays of culture broth from a methanol-induced expression strain demonstrated that recombinant hIFN-alpha2b, a 18.8 kDa protein, was secreted into the culture medium. The recombinant protein was purified to greater than 95% using Source Q ion exchange and Superdex 75 size-exclusion chromatography steps. Finally, 298 mg of the protein was obtained in high purity from 1l of the supernatant and its identity to hIFN-alpha2b was confirmed by NH(2)-terminal amino acid sequence analysis. The bioassay of the recombinant protein gave a specific activity of 1.9 x 10(9)IU/mg. Our results suggest that the P. pastoris expression system can be used to produce large quantities of fully functional hIFN-alpha2b for both research and industrial purpose.  相似文献   

5.
The gene of methylase M.SccL1I that protects DNA against hydrolysis with the nickase N.BspD6I was inserted into plasmid pRARE carrying genes of tRNA, which are rare in E. coli. The insertion of the gene sscML1I into pRARE was reasoned by incompatibility of pRARE and the plasmid carrying the gene sscML1I, because both plasmids contained the same ori-site. Upon transformation of E. coli TOP10F cells with both the recombinant plasmid pRARE/MSsc and the expression vector pET28b containing the nickase gene bspD6IN under the phage T7 promoter, a strain of E. coli was obtained which produced 7 x 10(5) units of the nickase N.BspD6I per 1 g wet biomass, and this yield was two orders of magnitude higher than the yield of the enzyme from the strain free of pRARE/MSsc.  相似文献   

6.
The expression of human leucocyte interferon alpha F gene in plasmid pLM-IFN alpha F-273 is controlled by a hybrid tac (trp-lac) promoter. A structural gene for interferon alpha F is a component of the hybrid operon lacZ'-IFN alpha F-TcR, that contains an E. coli trp-operon intercystronic region. Plasmid pLM IFN alpha F-273--directed interferon synthesis allows to obtain about 10(7) IU/l. This plasmid was cloned in broad-host-range vector plasmid pAYC31. The hybrid bi-repliconed plasmid containing interferon gene as well as its single-repliconed deletion derivatives obtained by the in vivo recombination, were introduced into obligate methylotroph Methylobacillus flagellatum KT and Pseudomonas putida PpG6. Methylotrophic strain and Pseudomonas were able to transcribe the interferon gene from E. coli tac promoter, the yield of interferon being 2-4-fold higher as compared with the one in the initial host.  相似文献   

7.
D Pulido  J A Vara  A Jiménez 《Gene》1986,45(2):167-174
A fragment of human DNA encoding the mature form of interferon alpha 2 (hIFN-alpha 2), and carrying both an in-phase ATG initiation codon and the ribosome binding site (RBS) of the Escherichia coli membrane lipoprotein gene (lpp), was fused to the aminoglycoside phosphotransferase gene (aph) promoter (aphP) from Streptomyces fradiae. When this construction was inserted, in the two possible orientations, in the Streptomyces plasmid pIJ702, plasmids pNIS19 and pNIS91 were obtained. A 20-kDa polypeptide that immunoreacted with an hIFN-alpha 2 monoclonal antibody was expressed in S. lividans clones carrying these plasmids. Moreover, these clones contained an intracellular antiviral activity similar to that of hIFN-alpha 2. When plasmids pNIS19 and pNIS91 were deprived of the aphP no expression of activity was found. Therefore, it is concluded that the hIFN gene can be efficiently expressed in Streptomyces as directed by the aph gene promoter.  相似文献   

8.
腈水合酶由α亚基和β亚基组成,活化元件对其功能表达至关重要,研究腈水合酶基因簇中各元件的表达比例对酶重组表达的影响具有重要意义。以来源于Klebsiella oxytoca KCTC 1686的腈水合酶(NHaseK)为研究对象,构建了多种表达策略,以期实现α亚基、β亚基和活化元件17k差异表达。利用pETDuet-1质粒具有双T7启动子的特点,将上述基因以八种不同的组合方式分别插入于两个启动子之后。当将三段基因同时插入于第一个启动子之后时,亚基表达量均衡,比活力为0.78 U/mg蛋白,是亚基表达量比例为5:3时的124%。在此基础上,在第二个启动子之后插入活化元件基因,活化元件表达水平提升2倍,比活提升5%,为0.82 U/mg蛋白。当将α亚基和β亚基插入于不同启动子之后时,酶活仅为对照组的10%,说明NHaseK的亚基必须同时转录才可形成成熟蛋白。进一步考察质粒拷贝数对大肠杆菌表达NHaseK的影响,确定15~20的质粒拷贝数足够实现NHaseK的功能表达。结果表明,亚基的均衡表达以及活化元件的充分表达对NHaseK的重组表达具有积极作用。  相似文献   

9.
We describe the heterologous expression of a recombinant Saccharomyces cerevisiae isoleucyl-tRNA synthetase (IRS) gene in Escherichia coli, as well as the purification and characterization of the recombinant gene product. High level expression of the yeast isoleucyl-tRNA synthetase gene was facilitated by site-specific mutagenesis. The putative ribosome-binding site of the yeast IRS gene was made to be the consensus of many highly expressed genes of E. coli. Mutagenesis simultaneously created a unique BclI restriction site such that the gene coding region could be conveniently subcloned as a "cassette." The variant gene was cloned into the expression vector pKK223-3 (Brosius, J., and Holy, A. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 6929-6933) thereby creating the plasmid pKR4 in which yeast IRS expression is under the control of the isopropyl-thio-beta-galactopyranoside (IPTG)-inducible tac promoter. Recombinant yeast IRS, on the order of 10 mg/liter of cell culture, was purified from pKR4-infected and IPTG-induced E. coli strain TG2. Yeast IRS was purified to homogeneity by a combination of anion-exchange and hydroxyapatite gel chromatography. Inhibition of yeast IRS activity by the antibiotic pseudomonic acid A was tested. The yeast IRS enzyme was found to be 10(4) times less sensitive to inhibition by pseudomonic acid A (Ki = 1.5 x 10(-5) M) than the E. coli enzyme. E. coli strain TG2 infected with pKR4, and induced with IPTG, had a plating efficiency of 100% at inhibitor concentrations in excess of 25 micrograms/ml. At the same concentration of pseudomonic acid A, E. coli strain TG2 infected with pKK223-3 had a plating efficiency less than 1%. The ability of yeast IRS to rescue E. coli from pseudomonic acid A suggests that the eukaryotic synthetase has full activity in its prokaryotic host and has specificity for E. coli tRNA(ile).  相似文献   

10.
11.
The plasmid DNAs isolated from E. coli AP1 were studied by electron microscopy. Two plasmid DNA forms (FB1-1 and FB1--2) with the mol wt of 35.9 +/- 0.5 x x 10(6) and 51.5 +/- 0.6 x 10(6) daltons, respectively, were revealed.  相似文献   

12.
Engineering of hyaluronic acid (HA) biosynthetic pathway in recombinant Escherichia coli as production host is reported in this work. A hyaluronic acid synthase (HAS) gene, sphasA, from Sreptococcus pyogenes with the start codon gtg to atg mutant, was expressed in recombinant E. coli with or without the genes ugd, galF and glmU, which are analogs of hasB, hasC and hasD from Streptococcus, respectively, encoding UDP-glucose 6-dehygrogenase, Glucose-1-P uridyltransferase, and N-acetyl glucosamine uridyltransferase enzymes in the HA biosynthetic pathway. The single, double and triple organized artificial operons of sphasA, ugd, galF and glmU were designed and constructed using the inducible plasmid backbone of pMBAD. Only the triple expression recombinant, Top10/pMBAD-spABC, generated a relatively high titer of HA (approximately 48 mg/l at 48 h), indicating that both of the enzymes encoded by ugd and galF are essential for HA biosynthesis. A new gene of ssehasA with identical protein sequence of seHAS from Streptococcus equisimilis, was artificially synthesized after substituting all of the rare codons in the natural sehasA. The HA titer at 24 h flask culture increased to approximately 190 mg/l in sseAB and 160 mg/l in sseABC, respectively. Sorbitol could be used as another carbon source for HA accumulation, and the metabolic pathway for HA synthesis in a recombinant E. coli was presented. The concentration of Mg(2+) cofactor of HA synthase was optimized and a cell growth inhibition phenomenon was observed during HA accumulation. Molecular weight (MW) measurements revealed that the mean MW of HA produced from the recombinant E. coli under different conditions ranges from approximately 3.5x10(5) to 1.9x10(6)Da, indicating that the recombinant E. coli can be used as a potential host candidate for industrial production of HA.  相似文献   

13.
Artificial control of phage specificity may contribute to practical applications, such as the therapeutic use of phages and the detection of bacteria by their specific phages. To change the specificity of phage infection, gene products (gp) 37 and 38, expressed at the tip of the long tail fiber of T2 phage, were exchanged with those of PP01 phage, an Escherichia coli O157:H7 specific phage. Homologous recombination between the T2 phage genome and a plasmid encoding the region around genes 37-38 of PP01 occurred in transformant E. coli K12 cells. The recombinant T2 phage, named T2ppD1, carried PP01 gp37 and 38 and infected the heterogeneous host cell E. coli O157:H7 and related species. On the other hand, T2ppD1 could not infect E. coli K12, the original host of T2, or its derivatives. The host range of T2ppD1 was the same as that of PP01. Infection of T2ppD1 produced turbid plaques on a lawn of E. coli O157:H7 cells. The binding affinity of T2ppD1 to E. coli O157:H7 was weaker than that of PP01. The adsorption rate constant (ka) of T2ppD1 (0.17 x 10(-9)(ml CFU(-1) min(-1)) was almost 1/6 that of PP01 (1.10 x 10(-9)(ml CFU(-1) min(-1))). In addition to the tip of the long tail fiber, exchange of gene products expressed in the short tail fiber may be necessary for tight binding of recombinant phage.  相似文献   

14.
Much is known about the physical properties of the Cu,Zn- and Mn-superoxide dismutases (SODs). However, the biochemical characteristics and pharmacological properties of extracellular (EC)-SOD have been severely limited due to difficulties in obtaining and purifying the enzyme. The EC-SOD cDNA was inserted into the Escherichia coli expression plasmid pET-28a(+) which contains the T7 promoter and transformed into the E. coli BL21(DE3). After induction with 1 mmol/L isopropyl beta-D-thiogalactoside, the recombinant human EC-SOD was highly expressed as inclusion bodies. SDS-PAGE analysis revealed that recombinant EC-SOD accumulated up to 26% of the total soluble protein of E. coli cells. The expression product was purified by a Ni(2+)-IDA-Sepharose 6B column. After the denaturing and refolding processes, the recombinant human EC-SOD retains the specific enzymatic activity of 920 U/mg of the purified product. The gene encoding human EC-SOD mature peptide was also inserted into the donor plasmid pFastBacHTb. After transposition, transfection, and amplification were performed, the recombinant baculoviruses infected the Tn-5B1-4 cells and EC-SOD was highly expressed in Tn-5B1-4 cells. SDS-PAGE and Western blot analysis revealed that the subunit molecular weight of the expression product is 28 kDa. Furthermore, recombinant human EC-SOD retains the enzymatic specific activity of 200 U/mg of the Tn-5B1-4 cell lysates.  相似文献   

15.
一株高效抗砷喜温硫杆菌工程菌的构建   总被引:6,自引:0,他引:6  
利用DNA体外重组技术,将大肠杆菌质粒载体pUM3上的抗砷基因簇片段亚克隆到含有强启动子(tac启动子)并具有广泛寄主范围特性的IncQ族质粒pMMB24上,删除调节基因片段,构建了含有强启动子、可在tra基因诱动下转移的组成型表达的抗砷质粒pSDRA4。通过接合转移的方式将其导入专性自养极端嗜酸性喜温硫杆菌Acidithiobacillus caldus中,构建了冶金工程菌Acidithiobacillus caldus (pSDRA4),接合转移频率为(1.444±0.797)×10-4。表明在大肠杆菌和喜温硫杆菌之间成功地建立了一个遗传转移系统。经检测,重组质粒在喜温硫杆菌中具有较好的稳定性,在无选择压力条件下传代50次基本保持稳定(重组质粒保留76% 以上)。经抗砷性能检测,与野生菌相比,构建的喜温硫杆菌工程菌抗砷能力明显提高,从10mmol/L提高到45mmol/L。  相似文献   

16.
乙酰乳酸合成酶基因的克隆与高效表达   总被引:1,自引:0,他引:1  
【目的】乙酰乳酸合成酶(ALS)是异丁醇生物合成中的关键酶,实现ALS的高效表达对调控异丁醇代谢途径有重要意义。【方法】根据GenBank中ALS的基因序列(alsS)设计引物,以枯草芽孢杆菌168基因组DNA为模板通过PCR扩增技术得到目标酶基因,目的片段全长为1 713 bp。将alsS连接到pET-30a(+)上,得到重组质粒pET-30a(+)-alsS,并在Escherichia coli BL2l(DE3)中实现表达。【结果】对表达条件进行了优化,获得最佳表达条件为:诱导温度30°C,诱导起始菌体OD600为0.6 0.8,诱导剂IPTG浓度为1 mmol/L,诱导时间为6 h。表达的乙酰乳酸合成酶大部分以可溶性形式存在于菌体内,优化后酶活可达到24.4 U/mL,比优化前提高了7.13倍。经HisTrapTMFF亲和层析后获得电泳纯的ALS,比活为95.2 U/mg。【结论】ALS的有效表达为在大肠杆菌体内构建异丁醇代谢途径打下了基础。  相似文献   

17.
Pseudomonas cepacia 4G9 utilizes 2-tridecanone as its sole carbon source and has been shown to be resistant to a variety of antibiotics. To ascertain whether any of these characteristics were plasmid mediated, Escherichia coli HB101 was transformed with plasmid DNA isolated from Pseudomonas cepacia 4G9. No 2-tridecanone-utilizing transformants were obtained. Tetracycline (Tc)- and ampicillin (Ap)- resistant transformants were obtained at a low frequency. Plasmid deoxyribonucleic acid from antibiotic-resistant E. coli HB101 transformants had molecular weights of 2.9 x 10(6) for pJW2 Tcr and 5.4 x 10(6) for pJW3 Apr as determined by electron microscopy. Electron microscopy of plasmid deoxyribonucleic acid from P. cepacia 4G9 revealed a single plasmid species, pJW1 of 1.78 x 10(6). Tetracycline resistance in both P. cepacia 4G9 and E. coli HB101(pJW2) was inducible, whereas ampicillin resistance in P. cepacia 4G9 was constitutive. The level of ampicillin resistance coded by pJW3 was lower in P. cepacia 4G9 than in the transformant E. coli HB101(pJW3).  相似文献   

18.
Overexpression of rhIFN-alpha2b was obtained by synthesizing a codon optimized gene for IFN-alpha2b and expressing it in the form of inclusion bodies (IBs) in Escherichia coli. The recombinant plasmid pRSET-IFNalpha, which had the IFN-alpha2b gene under the T7 promoter, was coexpressed with plasmid pGP1-2, which carried the gene for T7 RNA polymerase under the heat inducible lambdaP(L) promoter. This two plasmid expression system was optimized with respect to heat shock time, media, and time of induction in shake flask cultures. This was then scaled up into a bioreactor to get a maximum volumetric product yield of 5.2g/L at a final OD(600) of 67. At this point, the IBs represented approximately 40% of the total cellular protein. This high specific product yields eased the further downstream processing steps and improved product recoveries. The IBs were isolated and purified through ion exchange followed by step refolding to give a final product yield of approximately 3g/L, which is maximum reported in the literature. The bioassay of the refolded protein gave a specific activity of approximately 3 x 10(9)IU/mg protein.  相似文献   

19.
Of the bacterial topoisomerases, the gyrase A subunit (GyrA) of Staphylococcus aureus is particularly difficult to purify because of its tendency to form inclusion bodies. Previous attempts at purification yielded low concentrations of protein with reduced specific activity. To overcome this problem, we modified the commercially available plasmid expression vector, pBAD/Thio-TOPO, via the addition of DNA sequences encoding a hexahistidine tag upstream and a cleavage site for tobacco etch virus protease downstream of the gene encoding thioredoxin. The resulting expression system consisting of the modified plasmid, pSAGA7, and the recommended host strain, Escherichia coli TOP 10, facilitated high level expression of soluble GyrA and its affinity purification to over 95% homogeneity. Purified GyrA had high biological activity as evidenced by a specific activity of 4.3x10(5)U/mg. The pSAGA7/TOP10 expression system also facilitated the expression and purification of a subunit of S. aureus topoisomerase IV, ParE, and a recently discovered protein unrelated to topoisomerases, QnrB, two "hard to purify" proteins. We conclude that pSAGA7 might be useful for high-level soluble expression and purification of diverse microbial proteins.  相似文献   

20.
A synthetic gene of 268 bp encoding the 82 amino acid spinach acyl carrier protein (ACP)-I was constructed based on the known amino acid sequence. Two gene fragments, one encoding the amino-terminal portion and the other the carboxy-terminal portion of the protein, were assembled from synthetic oligonucleotides and inserted into the phage M13mp19. These partial gene constructions were joined and inserted into the plasmid pTZ19R. DNA sequencing confirmed the accuracy of the constructions. The synthetic gene was then subcloned into the Escherichia coli expression vector pKK233-2, under the control of the trc promoter. Western blot analysis and radioimmunoassay indicated that E. coli cells carrying this plasmid produced up to 6 mg/liter of a protein which was immunologically cross-reactive and similar in electrophoretic mobility to authentic spinach acyl carrier protein. The bacterial cells were able to attach the phosphopantetheine prosthetic group to the synthetic plant gene product allowing it to be acylated in vitro by acyl-ACP synthetase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号