首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Schistosoma mansoni soluble egg antigens (SEAs) are crucially involved in modulating the host immune response to infection by S. mansoni. We report that human dendritic cells bind SEAs through the C-type lectin dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN). Monoclonal antibodies against the carbohydrate antigens Lewisx (Lex) and GalNAcbeta1-4(Fucalpha1-3)GlcNAc (LDNF) inhibit binding of DC-SIGN to SEAs, suggesting that these glycan antigens may be critically involved in binding. In a solid-phase adhesion assay, DC-SIGN-Fc binds polyvalent neoglycoconjugates that contain the Lex antigen, whereas no binding was observed to Galbeta1-4GlcNAc, and binding to neoglycoconjugates containing only alpha-fucose or oligosaccharides with a terminal alpha1-2-linked fucose is low. These data indicate that binding of DC-SIGN to Lex antigen is fucose-dependent and that adjacent monosaccharides and/or the anomeric linkage of the fucose are important for binding activity. Previous studies have shown that DC-SIGN binds HIV gp120 that contains high-mannose-type N-glycans. Site-directed mutagenesis within the carbohydrate recognition domain (CRD) of DC-SIGN demonstrates that amino acids E324 and E347 are involved in binding to HIV gp120, Lex, and SEAs. By contrast, mutation of amino acid Val351 abrogates binding to SEAs and Lex but not HIV gp120. These data suggest that DC-SIGN recognizes these ligands through different (but overlapping) regions within its CRD. Our data imply that DC-SIGN not only is a pathogen receptor for HIV gp120 but may also function in pathogen recognition by interaction with the carbohydrate antigens Lex and possibly LDNF, which are found on important human pathogens, such as schistosomes and the bacterium Helicobacter pylori.  相似文献   

2.
Meyer S  Tefsen B  Imberty A  Geyer R  van Die I 《Glycobiology》2007,17(10):1104-1119
Recognition of pathogen-derived carbohydrate constituents by antigen presenting cells is an important step in the induction of protective immunity. Here we investigated the interaction of L-SIGN (liver/lymph node specific ICAM-3-grabbing nonintegrin), a C-type lectin that functions as antigen receptor on human liver sinusoidal endothelial cells, with egg-derived glycan antigens of the parasitic trematode Schistosoma mansoni. Our data demonstrate that L-SIGN binds both schistosomal soluble egg antigens (SEA) and egg glycosphingolipids, and can mediate internalization of SEA by L-SIGN expressing cells. Binding and internalization of SEA was strongly reduced after treatment of SEA with endoglycosidase H, whereas defucosylation affected neither binding nor internalization. These data indicate that L-SIGN predominantly interacts with oligomannosidic N-glycans of SEA. In contrast, binding to egg glycosphingolipids was completely abolished after defucosylation. Our data show that L-SIGN binds to a glycosphingolipid fraction containing fucosylated species with compositions of Hex(1)HexNAc(5-7)dHex(3-6)Cer, as evidenced by mass spectrometry. The L-SIGN "gain of function" mutant Ser363Val, which binds fucosylated Lewis antigens, did not bind to this fucosylated egg glycosphingolipid fraction, suggesting that L-SIGN displays different modes in binding fucoses of egg glycosphingolipids and Lewis antigens, respectively. Molecular modeling studies indicate that the preferred binding mode of L-SIGN to the respective fucosylated egg glycosphingolipid oligosaccharides involves a Fucalpha1-3GalNAcbeta1-4(Fucalpha1-3)GlcNAc tetrasaccharide at the nonreducing end. In conclusion, our data indicate that L-SIGN recognizes both oligomannosidic N-glycans and multiply fucosylated carbohydrate motifs within Schistosoma egg antigens, which demonstrates that L-SIGN has a broad but specific glycan recognition profile.  相似文献   

3.
Dendritic cells (DCs) are APCs that play an essential role by bridging innate and adaptive immunity. DC-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) is one of the major C-type lectins expressed on DCs and exhibits high affinity for nonsialylated Lewis (Le) glycans. Recently, we reported the characterization of oligosaccharide ligands expressed on SW1116, a typical human colorectal carcinoma recognized by mannan-binding protein, which is a serum C-type lectin and has similar carbohydrate-recognition specificities as DC-SIGN. These tumor-specific oligosaccharide ligands were shown to comprise clusters of tandem repeats of Lea/Leb epitopes. In this study, we show that DC-SIGN is involved in the interaction of DCs with SW1116 cells through the recognition of aberrantly glycosylated forms of Lea/Leb glycans on carcinoembryonic Ag (CEA) and CEA-related cell adhesion molecule 1 (CEACAM1). DC-SIGN ligands containing Lea/Leb glycans are also highly expressed on primary cancer colon epithelia but not on normal colon epithelia, and DC-SIGN is suggested to be involved in the association between DCs and colorectal cancer cells in situ by DC-SIGN recognizing these cancer-related Le glycan ligands. Furthermore, when monocyte-derived DCs (MoDCs) were cocultured with SW1116 cells, LPS-induced immunosuppressive cytokines such as IL-6 and IL-10 were increased. The effects were significantly suppressed by blocking Abs against DC-SIGN. Strikingly, LPS-induced MoDC maturation was inhibited by supernatants of cocultures with SW1116 cells. Our findings imply that colorectal carcinomas affecting DC function and differentiation through interactions between DC-SIGN and colorectal tumor-associated Le glycans may induce generalized failure of a host to mount an effective antitumor response.  相似文献   

4.
We examined the distribution of blood group-related antigens using an indirect immunoperoxidase method with monoclonal antibodies (MAb) directed to A, B, H, Lewis a (Lea), Lewis b (Leb), Lewis x (Lex), and Lewis y (Ley) antigens and Type 1 precursor chain in human pancreas. Effects of prior digestion with exoglycosidases on MAb stainings were simultaneously investigated. A, B, H, Leb, and Ley antigens were detected in acinar cells and interlobular duct cells but not in centroacinar cells, intercalated duct cells, and islet of Langerhans cells. The expression of these antigens in acinar cells was not dependent on Lewis type and secretor status of the tissue donors, whereas that in interlobular duct cells was strictly dependent on secretor status. The distribution pattern of these antigens in acinar cells was not homogeneous, i.e., cells producing H antigens expressed both Leb and Ley antigens but not A or B antigens, whereas those producing A or B antigens did not secrete Leb and Ley as well as H antigens. Digestion with alpha-N-acetylgalactosaminidase or alpha-galactosidase resulted in the appearance of Leb and Ley antigens as well as H antigen in acinar cells producing A and/or B antigens. Type 1 precursor chain was not detected in pancreatic tissues from secretors but appeared in acinar cells producing H antigen after alpha-L-fucosidase digestion, which also disclosed Lex but not Lea antigen in acinar cells expressing both Leb and Ley. In some non-secretors, MAb against Type 1 precursor chain reacted with acinar cells without enzyme digestion. Although Lea antigen was not detected in acinar cells, it was found in centroacinar cells, intercalated duct cells, and interlobular duct cells from all individuals examined except two Le(a-b-) secretors. After sialidase digestion, Lex antigen appeared in centroacinar and intercalated duct cells from some individuals. Sialidase digestion also elicited reactivity with MAb against Type 1 precursor chain in islet of Langerhans cells from some individuals. These results demonstrate the complexity in the pattern of expression and regulation of blood group-related antigens in different cell types of human pancreas. Such complexity may largely be ascribed to differences in individual genotypes and in gene expression patterns of different cell types.  相似文献   

5.
Adults of the human parasitic trematode Schistosoma mansoni, which causes hepatosplenic/intestinal complications in humans, synthesize glycoconjugates containing the Lewis x (Lex) Galbeta1-->4(Fucalpha1-- >3)GlcNAcbeta1-->R, but not sialyl Lewis x (sLex), antigen. We now report on our analyses of Lexand sLexexpression in S.haematobium and S.japonicum, which are two other major species of human schistosomes that cause disease, and the possible autoimmunity to these antigens in infected individuals. Antigen expression was evaluated by both ELISA and Western blot analyses of detergent extracts of parasites using monoclonal antibodies. Several high molecular weight glycoproteins in both S. haematobium and S. japonicum contain the Lexantigen, but no sialyl Lexantigen was detected. In addition, sera from humans and rodents infected with S.haematobium and S.japonicum contain antibodies reactive with Lex. These results led us to investigate whether Lexantigens are expressed in other helminths, including the parasitic trematode Fasciola hepatica , the parasitic nematode Dirofilaria immitis (dog heartworm), the ruminant nematode Haemonchus contortus , and the free-living nematode Caenorhabditis elegans . Neither Lexnor sialyl-Lexis detectable in these other helminths. Furthermore, none of the helminths, including schistosomes, express Lea, Leb, Ley, or the H- type 1 antigen. However, several glycoproteins from all helminths analyzed are bound by Lotus tetragonolobus agglutinin , which binds Fucalpha1-->3GlcNAc, and Wisteria floribunda agglutinin, which binds GalNAcbeta1-->4GlcNAc (lacdiNAc or LDN). Thus, schistosomes may be unique among helminths in expressing the Lexantigen, whereas many different helminths may express alpha1,3-fucosylated glycans and the LDN motif.   相似文献   

6.
DC-SIGN is an immune C-type lectin that is expressed on both immature and mature dendritic cells associated with peripheral and lymphoid tissues in humans. It is a pattern recognition receptor that binds to several pathogens including HIV-1, Ebola virus, Mycobacterium tuberculosis, Candida albicans, Helicobacter pylori, and Schistosoma mansoni. Evidence is now mounting that DC-SIGN also recognizes endogenous glycoproteins, and that such interactions play a major role in maintaining immune homeostasis in humans and mice. Autoantigens (neoantigens) are produced for the first time in the human testes and other organs of the male urogenital tract under androgenic stimulus during puberty. Such antigens trigger autoimmune orchitis if the immune response is not tightly regulated within this system. Endogenous ligands for DC-SIGN could play a role in modulating such responses. Human seminal plasma glycoproteins express a high level of terminal Lewis(x) and Lewis(y) carbohydrate antigens. These epitopes react specifically with the lectin domains of DC-SIGN. However, because the expression of these sequences is necessary but not sufficient for interaction with DC-SIGN, this study was undertaken to determine if any seminal plasma glycoproteins are also endogenous ligands for DC-SIGN. Glycoproteins bearing terminal Lewis(x) and Lewis(y) sequences were initially isolated by lectin affinity chromatography. Protein sequencing established that three tumor biomarker glycoproteins (clusterin, galectin-3 binding glycoprotein, prostatic acid phosphatase) and protein C inhibitor were purified by using this affinity method. The binding of DC-SIGN to these seminal plasma glycoproteins was demonstrated in both Western blot and immunoprecipitation studies. These findings have confirmed that human seminal plasma contains endogenous glycoprotein ligands for DC-SIGN that could play a role in maintaining immune homeostasis both in the male urogenital tract and the vagina after coitus.  相似文献   

7.
We studied interaction of the lectin from the bark of Golden Rain shrub (Laburnum anagyroides, LABA) with a number of basic fucose-containing carbohydrate antigens by changes in its tryptophan fluorescence. The strongest LABA binding was observed for the trisaccharide H of type 6 [alpha-L-Fucp-(1-2)-beta-D-Galp-(1-4)-D-Glc, Ka= 4.2 x 10(3) M(-1)]. The following antigens were bound with a weaker affinity: H-disaccharide alpha-L-Fucp-(1-2)-D-Gal, a glucoanalogue of tetrasaccharide Ley alpha-L-Fucp-(1-2)-beta-D-Galp-(1-4)-[alpha-L-Fucp-(1-3)]-D-Glc, and 6-fucosyl-N-acetylglucosamine, a fragment of core of the N-glycans family (Ka 1.1-1.7 x 10(3) M(-1)). The lowest binding was observed for L-fucose (Ka = 2.7 x 10(2) M-1) and trisaccharide Lea, (3-Galp-(1-3)-[a-L-Fucp-(1-4)]-GlcNAc (Ka = 6.4 x 10(2) M(-1)). The Lea, Lea, and Lex pentasaccharides and Leb hexasaccharide were not bound to LABA.  相似文献   

8.
During schistosomiasis, parasite-derived glycoconjugates play a key role in manipulation of the host immune response, associated with persistence of the parasite. Among the candidate host receptors that are triggered by glycoconjugates are C-type lectins (CLRs) on dendritic cells (DCs), which in concerted action with Toll-like receptors determine the balance in DCs between induction of immunity versus tolerance. Here we report that the CLR DC-SIGN mediates adhesion of DCs to authentic glycolipids derived from Schistosoma mansoni cercariae and their excretory/secretory products. Structural characterization of the glycolipids, in combination with solid phase and cellular binding studies revealed that DC-SIGN binds to the carbohydrate moieties of both glycosphingolipid species with Galbeta1-4(Fucalpha1-3)GlcNAc (Lewis(X)) and Fucalpha1-3Galbeta1-4(Fucalpha1-3)GlcNAc (pseudo-Lewis(Y)) determinants. Importantly, these data indicate that surveying DCs in the skin may encounter schistosome-derived glycolipids immediately after infection. Recent analysis of crystals of the carbohydrate binding domain of DC-SIGN bound to Lewis(X) provided insight into the ability of DC-SIGN to bind fucosylated ligands. Using molecular modeling we showed that the observed binding of the schistosome-specific pseudo-Lewis(Y) to DC-SIGN is not directly compatible with the model described. To fit pseudo-Lewis(Y) into the model, the orientation of the side chain of Phe(313) in the secondary binding site of DC-SIGN was slightly changed, which results in a perfect stacking of Phe(313) with the hydrophobic side of the galactose-linked fucose of pseudo-Lewis(Y). We propose that pathogens such as S. mansoni may use the observed flexibility in the secondary binding site of DC-SIGN to target DCs, which may contribute to immune escape.  相似文献   

9.
The molecular mechanisms involved in the hepatic tropism of hepatitis C virus (HCV) have not been identified. We have shown previously that liver-expressed C-type lectins L-SIGN and DC-SIGN bind the HCV E2 glycoprotein with high affinity (Lozach, P. Y., Lortat-Jacob, H., de Lacroix de Lavalette, A., Staropoli, I., Foung, S., Amara, A., Houles, C., Fieschi, F., Schwartz, O., Virelizier, J. L., Arenzana-Seisdedos, F., and Altmeyer, R. (2003) J. Biol. Chem. 278, 20358-20366). To analyze the functional relevance of this interaction, we generated pseudotyped lentivirus particles presenting HCV glycoproteins E1 and E2 at the virion surface (HCV-pp). High mannose N-glycans are present on E1 and, to a lesser extent, on E2 proteins of mature infectious HCV-pp. Such particles bind to both L-SIGN and DC-SIGN, but they cannot use these receptors for entry into cells. However, infectious virus is transmitted efficiently when permissive Huh-7 cells are cocultured with HCV-pp bound to L-SIGN or to DC-SIGN-positive cell lines. HCV-pp transmission via L-SIGN or DC-SIGN is inhibited by characteristic inhibitors such as the calcium chelator EGTA and monoclonal antibodies directed against lectin carbohydrate recognition domains of both lectins. In support of the biological relevance of this phenomenon, dendritic cells expressing endogenous DC-SIGN transmitted HCV-pp with high efficiency in a DC-SIGN-dependent manner. Our results support the hypothesis that C-type lectins such as the liver sinusoidal endothelial cell-expressed L-SIGN could act as a capture receptor for HCV in the liver and transmit infectious virions to neighboring hepatocytes.  相似文献   

10.
11.
Hepatitis C virus (HCV) is a major health problem. However, the mechanism of hepatocyte infection is largely unknown. We demonstrate that the dendritic cell (DC)-specific C-type lectin DC-SIGN and its liver-expressed homologue L-SIGN/DC-SIGNR are important receptors for HCV envelope glycoproteins E1 and E2. Mutagenesis analyses demonstrated that both HCV E1 and E2 bind the same binding site on DC-SIGN as the pathogens human immunodeficiency virus type 1 (HIV-1) and mycobacteria, which is distinct from the cellular ligand ICAM-3. HCV virus-like particles are efficiently captured and internalized by DCs through binding of DC-SIGN. Antibodies against DC-SIGN specifically block HCV capture by both immature and mature DCs, demonstrating that DC-SIGN is the major receptor on DCs. Interestingly, internalized HCV virus-like particles were targeted to nonlysosomal compartments within immature DCs, where they are protected from lysosomal degradation in a manner similar to that demonstrated for HIV-1. Lewis X antigen, another ligand of DC-SIGN, was internalized to lysosomes, demonstrating that the internalization pathway of DC-SIGN-captured ligands may depend on the structure of the ligand. Our results suggest that HCV may target DC-SIGN to "hide" within DCs and facilitate viral dissemination. L-SIGN, expressed by THP-1 cells, internalized HCV particles into similar nonlysosomal compartments, suggesting that L-SIGN on liver sinusoidal endothelial cells may capture HCV from blood and transmit it to hepatocytes, the primary target for HCV. We therefore conclude that both DCs and liver sinusoidal endothelial cells may act as reservoirs for HCV and that the C-type lectins DC-SIGN and L-SIGN, as important HCV receptors, may represent a molecular target for clinical intervention in HCV infection.  相似文献   

12.
Wu AM  Wu JH  Singh T  Liu JH  Herp A 《Life sciences》2004,75(9):1085-1103
Anguilla anguilla agglutinin (AAA) is a fucose-specific lectin found in the serum of the fresh water eel. It is suggested to be associated with innate immunity by recognizing disease-associated cell surface glycans, and has been widely used as a reagent in hematology and glycobiology. In order to gain a better understanding of AAA for further applications, it is necessary to elucidate its binding profile with mammalian glycotopes. We, therefore, analyzed the detailed carbohydrate specificity of AAA by enzyme-linked lectinosorbent assay (ELLSA) with our extended glycan/ligand collection and lectin-glycan inhibition assay. Among the glycans tested, AAA reacted well with nearly all human blood group Ah (GalNAcalpha1-->3[LFucalpha1-->2]Gal), Bh (Galalpha1-->3[LFucalpha1-->2]Gal), H LFucalpha1-->2Gal) and Leb (Fucalpha1-->2Galbeta1-->3[Fucalpha1-->4]GlcNAc) active glycoproteins (gps), but not with blood group Lea (Galbeta1-->3[Fucalpha1-->4]GlcNAc) substances, suggesting that residues and optimal density of alpha1-2 linked LFuc to Gal at the non-reducing end of glycoprotein ligands are essential for lectin-carbohydrate interactions. Blood group precursors, Galbeta1-3GalNAc (T), GalNAcalpha1-Ser/Thr (Tn) containing glycoproteins and N-linked plasma gps, gave only negligible affinity. Among the mammalian glycotopes tested, Ah, Bh and H determinants were the best, being about 5 to 6.7 times more active than LFuc, but were weaker than p-nitrophenylalphaFuc indicating that hydrophobic environment surrounding the LFuc moiety enhance the reactivity. The hierarchy of potency of oligo- and monosaccharides can be ranked as follows: p-nitrophenyl-alphaFuc > Ah, Bh and H > LFuc > LFucalpha1-->2Galbeta1-->4Glc (2'-FL) and Galbeta1-->4[LFucalpha1-->3]Glc (3'-FL), while LNDFH I (Leb hexa-), Lea, Lex (Galbeta1-->4[Fucalpha1-->3]GlcNAc), and LDFT (gluco-analogue of Ley) were inactive. From the present observations, it can be concluded that the combining site of AAA should be a small cavity-type capable of recognizing mainly H/crypto H and of binding to specific polyvalent ABH and Leb glycotopes.  相似文献   

13.
Filoviruses cause lethal hemorrhagic disease in humans and nonhuman primates. An initial target of filovirus infection is the mononuclear phagocytic cell. Calcium-dependent (C-type) lectins such as dendritic cell- or liver/lymph node-specific ICAM-3 grabbing nonintegrin (DC-SIGN or L-SIGN, respectively), as well as the hepatic asialoglycoprotein receptor, bind to Ebola or Marburg virus glycoprotein (GP) and enhance the infectivity of these viruses in vitro. Here, we demonstrate that a recently identified human macrophage galactose- and N-acetylgalactosamine-specific C-type lectin (hMGL), whose ligand specificity differs from DC-SIGN and L-SIGN, also enhances the infectivity of filoviruses. This enhancement was substantially weaker for the Reston and Marburg viruses than for the highly pathogenic Zaire virus. We also show that the heavily glycosylated, mucin-like domain on the filovirus GP is required for efficient interaction with this lectin. Furthermore, hMGL, like DC-SIGN and L-SIGN, is present on cells known to be major targets of filoviruses (i.e., macrophages and dendritic cells), suggesting a role for these C-type lectins in viral replication in vivo. We propose that filoviruses use different C-type lectins to gain cellular entry, depending on the cell type, and promote efficient viral replication.  相似文献   

14.
The CEA-related cell adhesion molecule 1, CEACAM1, is a glycoprotein expressed on the surface of human granulocytes and lymphocytes, endothelia, and many epithelia. CEACAM1 is involved in the regulation of important biological processes, such as tumor growth, angiogenesis, and modulation of the immune response. CEACAM1, a member of the immunoglobulin superfamily carries several Lewis x (Lex) structures as we recently demonstrated by mass spectrometry of native CEACAM1 from human granulocytes. Since Lex residues of pathogens bind to the C-type lectin dendritic cell-specific ICAM-3 grabbing nonintegrin (DC-SIGN) expressed on human DCs, we hypothesized that Lex glycans of CEACAM1 are recognized by DC-SIGN. Here, we demonstrate that CEACAM1, the major carrier of Lex residues in human granulocytes, is specifically recognized by DC-SIGN via Lex residues mediating the internalization of CEACAM1 into immature DCs. Expression studies with CEACAM1 in combination with different fucosyltransferases (FUTs) revealed that FUTIX plays a key role in the synthesis of Lex groups of CEACAM1. As Lex groups on CEACAM1 are selectively attached and specifically interact with DC-SIGN, our findings suggest that CEACAM1 participates in immune regulation in physiological conditions and in pathological conditions, such as inflammation, autoimmune disease, and cancer.  相似文献   

15.
The major humoral immune responses in animals infected with Schistosoma mansoni are directed toward carbohydrate antigens. Among these antigens are complex-type N-glycans expressing LDN [GalNAcbeta1-4GlcNAc-R], LDNF [GalNAcbeta1-4(Fucalpha1-3)GlcNAc-R], and polymeric Lewis x (Lex) [Galbeta1-4(Fucalpha1-3)GlcNAc]n-R epitopes. We have now evaluated the potential of the three glycan antigens as targets for immune-mediated intervention of infections and serodiagnosis. A variety of approaches were employed, including ELISA, Western blot, immunohistology, and in vitro complement lysis assays, to determine the immunogenicity of the glycans in infected humans, their localization on the parasites and their efficacy as targets for parasite lysis. Our results show that S. mansoni-infected patients, with either intestinal or hepatosplenic disease, generate predominantly IgM, but also IgG and IgA, antibodies to LDN, LDNF, and Lex. However, immune responses to Lex are generally lower than responses to LDN and LDNF and less specific to schistosome infections. Western blot analysis with monoclonal antibodies (mAb) to LDN, LDNF, and Lex determinants show that the glycan antigens occur on multiple glycoproteins from cercariae, 3-h, 48-h, and lung stage schistosomula, as well as adults and eggs. Immunohistological studies demonstrate that LDN, LDNF, and Lex are expressed on the parasite surface at all stages of development in the vertebrate host. Importantly, a mAb to LDN in the presence of complement efficiently kills schistosomula in vitro, as demonstrated by flow-cytometric assays that quantify cytolysis by propidium iodide uptake into damaged parasites. These findings raise the possibility that LDN and LDNF may be targets for vaccination and/or serodiagnosis of chronic schistosomiasis in humans.  相似文献   

16.
The identification of Helicobacter pylori isolates that expresses exclusively type I Lewis antigens is necessary to determine the biosynthetic pathway of these antigens. Fast-atom bombardment MS provides evidence that the H. pylori isolate UA1111 expresses predominantly Leb, with H type I and Lea in lesser amounts. Cloning and expression of the H. pylori fucosyltransferases (FucTs) allow comparisons with previously identified H. pylori enzymes and determination of the enzyme specificities. Although all FucTs, one alpha(1,2) FucT and two alpha(1,3/4) FucTs, appear to be functional in this isolate, their activities are lower and enzyme specificities are different to other H. pylori FucTs previously characterized. Studies of the cloned enzyme activities and mutational analysis indicate that Lea acts as the substrate for the synthesis of Leb. This is different from the human Leb biosynthetic pathway, but analogous to the biosynthetic pathway utilized by H. pylori for the production of Ley.  相似文献   

17.
Specificity of DC-SIGN for mannose- and fucose-containing glycans   总被引:1,自引:0,他引:1  
The dendritic cell specific C-type lectin dendritic cell specific ICAM-3 grabbing non-integrin (DC-SIGN) binds to "self" glycan ligands found on human cells and to "foreign" glycans of bacterial or parasitic pathogens. Here, we investigated the binding properties of DC-SIGN to a large array of potential ligands in a glycan array format. Our data indicate that DC-SIGN binds with K(d)<2muM to a neoglycoconjugate in which Galbeta1-4(Fucalpha1-3)GlcNAc (Le(x)) trisaccharides are expressed multivalently. A lower selective binding was observed to oligomannose-type N-glycans, diantennary N-glycans expressing Le(x) and GalNAcbeta1-4(Fucalpha1-3)GlcNAc (LacdiNAc-fucose), whereas no binding was observed to N-glycans expressing core-fucose linked either alpha1-6 or alpha1-3 to the Asn-linked GlcNAc of N-glycans. These results demonstrate that DC-SIGN is selective in its recognition of specific types of fucosylated glycans and subsets of oligomannose- and complex-type N-glycans.  相似文献   

18.
树突细胞特异性细胞间黏附分子-3结合非整合素分子(dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin,DC-SIGN)和肝/淋巴结特异性细胞间黏附分子-3结合非整合素分子(liver/lymph node-specific intercellular adhesion molecules-3-grabbing non-integrin,L-SIGN)是钙离子依赖的C型凝集素受体,通过识别病毒粒子表面含甘露聚糖或果糖寡聚糖的分子介导病毒进入细胞,但其在调节病毒复制中的作用较少被关注。本研究通过建立稳定表达DC-SIGN和L-SIGN及其功能域嵌合体的细胞系,分析两者过表达对鼠冠状病毒复制的影响。结果显示,L-SIGN比DC-SIGN更能显著抑制病毒复制,这种差异与两者胞内区序列和基序组成不同有关;鼠冠状病毒感染导致细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)信号通路分子磷酸化下调,过表达DC-SIGN和L-SIGN可抑制这种下调趋势。在没有鼠癌胚抗原相关细胞黏附分子1(mouse carcinoembryonic antigen-related cell adhesion molecule 1,mCEACAM1)存在时,DC-SIGN不能介导病毒感染。这些结果提示,DC-SIGN通过与mCEACAM1a分子相互作用和调节细胞信号通路分子功能以调控鼠冠状病毒复制。  相似文献   

19.
20.
Lewis b (Leb) antigens are gradiently expressed from the proximal to the distal colon, i.e., they are abundantly expressed in the proximal colon, but only faintly in the distal colon. In the distal colon, they begin to increase at the adenoma stage of cancer development and then increase with cancer progression. We aimed to clarify the molecular basis of Leb antigen expression in correlation with the expression of other type I Lewis antigens, such as Lewis a (Lea) and sialylated Lewis a (sLea), in colon cancer cells. Considering the Se genotype and the relative activities of the H and Se enzymes, the amounts of Leb antigens were proved to be determined by both the H and Se enzymes in noncancerous and cancerous colon tissues. But the Se enzyme made a much greater contribution to determining the Lebamounts than the H enzyme. In noncancerous colons, the Se enzyme were gradiently expressed in good correlation with the Leb expression, while the H enzyme was constantly expressed throughout the whole colon. In distal colon cancers, the H and Se enzymes were both significantly upregulated in comparison with in adjacent noncancerous tissues. In proximal colon cancers, expression of the H enzyme alone was highly augmented. The augmented expression of Leb antigens in distal colon cancers is caused mainly by upregulation of the Se enzyme and partly by the H enzymes, while it is caused by upregulation of the H enzyme alone in proximal colon cancers. The Se gene dosage profoundly influences the amounts of the Leb, Lea, and sLea antigens in whole colon tissues, regardless of whether they are noncancerous or cancerous tissues. It suggests that the Se enzyme competes with alpha2,3 sialyltransferase(s) and the Le enzyme for the type I acceptor substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号