首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pectate lyase A (PelA) of Aspergillus nidulans was successfully expressed in Escherichia coli and effectively purified using a Ni2+-nitrilotriacetate-agarose column. Enzyme activity of the recombinant PelA could reach 360 U ml−1 medium. The expressed PelA exhibited its optimum level of activity over the range of pH 7.5–10 at 50°C. Mn2+, Ca2+, Fe2+, Mg2+ and Fe3+ ions stimulated the pectate lyase activity, but Cu2+ and Zn2+ inhibited it. The recombinant PelA had a V max of 77 μmol min−1 mg−1 and an apparent K m of 0.50 mg ml−1 for polygalacturonic acid. Low-esterified pectin was the optimum substrate for the PelA, whereas higher-esterified pectin was hardly cleaved by it. PelA efficiently macerated mung bean hypocotyls and potato tuber tissues into single cells.  相似文献   

2.
Of various metal ions (Ca2+, Cr3+, Cu2+, Fe2+, Mg2+, Mn2+, Ni2+ and Zn2+) added to the culture medium of Agrobacterium tumefaciens at 1 mM, only Ca2+ increased Coenzyme Q10 (CoQ10) content in cells without the inhibition of cell growth. In a pH-stat fed-batch culture, supplementation with 40 mM of CaCO3 increased the specific CoQ10 content and oxidative stress by 22.4 and 48%, respectively. Also, the effect of Ca2+ on the increase of CoQ10 content was successfully verified in a pilot-scale (300 L) fermentor. In this study, the increased oxidative stress in A. tumefaciens culture by the supplementation of Ca2+ is hypothesized to stimulate the increase of specific CoQ10 content in order to protect the membrane against lipid peroxidation. Our results improve the understanding of Ca2+ effect on CoQ10 biosynthesis in A. tumefaciens and should contribute to better industrial production of CoQ10 by biological processes.  相似文献   

3.
Effects of intracellular Mg2+ on a native Ca2+-and voltage-sensitive large-conductance K+ channel in cultured human renal proximal tubule cells were examined with the patch-clamp technique in the inside-out mode. At an intracellular concentration of Ca2+ ([Ca2+]i) of 10−5–10−4 M, addition of 1–10 mM Mg2+ increased the open probability (Po) of the channel, which shifted the Po –membrane potential (Vm) relationship to the negative voltage direction without causing an appreciable change in the gating charge (Boltzmann constant). However, the Mg2+-induced increase in Po was suppressed at a relatively low [Ca2+]i (10−5.5–10−6 M). Dwell-time histograms have revealed that addition of Mg2+ mainly increased Po by extending open times at 10−5 M Ca2+ and extending both open and closed times simultaneously at 10−5.5 M Ca2+. Since our data showed that raising the [Ca2+]i from 10−5 to 10−4 M increased Po mainly by shortening the closed time, extension of the closed time at 10−5.5 M Ca2+ would result from the Mg2+-inhibited Ca2+-dependent activation. At a constant Vm, adding Mg2+ enhanced the sigmoidicity of the Po–[Ca2+]i relationship with an increase in the Hill coefficient. These results suggest that the major action of Mg2+ on this channel is to elevate Po by lengthening the open time, while extension of the closed time at a relatively low [Ca2+]i results from a lowering of the sensitivity to Ca2+ of the channel by Mg2+, which causes the increase in the Hill coefficient. M. Kubokawa and Y. Sohma contributed equally to this work.  相似文献   

4.
An intracellular S-adenosylmethionine synthetase (SAM-s) was purified from the fermentation broth of Pichia pastoris GS115 by a sequence chromatography column. It was purified to apparent homogeneity by (NH4)2SO4 fractionation (30–60%), anion exchange, hydrophobic interaction, anion exchange and gel filtration chromatography. HPLC showed the purity of purified SAM-s was 91.2%. The enzyme was purified up to 49.5-fold with a final yield of 20.3%. The molecular weight of the homogeneous enzyme was 43.6 KDa, as determined by electro-spray ionization mass spectrometry (ESI-MS). Its isoelectric point was approximately 4.7, indicating an acidic character. The optimum pH and temperature for the enzyme reaction were 8.5 and 35 °C, respectively. The enzyme was stable at pH 7.0–9.0 and was easy to inactivate in acid solution (pH ≤ 5.0). The temperature stability was up to 45 °C. Metal ions, such as, Mn2+ and K+ at the concentration of 5 mM had a slight activation effect on the enzyme activity and the Mg2+ activated the enzyme significantly. The enzyme activity was strongly inhibited by heavy metal ions (Cu2+ and Ag2+) and EDTA. The purified enzyme from the transformed Pichia pastoris synthesized S-adenosylmethionine (SAM) from ATP and l-methionine in vitro with a K m of 120 and 330 μM and V max of 8.1 and 23.2 μmol/mg/min for l-methionine and ATP, respectively.  相似文献   

5.
6.
An N-acetylglucosaminidase produced by Streptomyces cerradoensis was partially purified giving, by SDS-PAGE analysis, two main protein bands with Mr of 58.9 and 56.4 kDa. The Km and Vmax values for the enzyme using p-nitrophenyl-β-N-acetylglucosaminide as substrate were of 0.13 mM and 1.95 U mg−1 protein, respectively. The enzyme was optimally activity at pH 5.5 and at 50 °C when assayed over 10 min. Enzyme activity was strongly inhibited by Cu2+ and Hg2+ at 10 mM, and was specific to substrates containing acetamide groups such as p-nitrophenyl-β-N-acetylglucosaminide and p-nitrophenyl-β-D-N,N′-diacetylchitobiose.  相似文献   

7.
Summary The mechanisms underlying the pacemaker current in cardiac tissues is not agreed upon. The pacemaker potential in Purkinje fibers has been attributed to the decay of the potassium current I Kdd. An alternative proposal is that the hyperpolarization-activated current I f underlies the pacemaker potential in all cardiac pacemakers. The aim of this review is to retrace the experimental development related to the pacemaker mechanism in Purkinje fibers with reference to findings about the pacemaker mechanism in the SAN as warranted. Experimental data and their interpretation are critically reviewed. Major findings were attributed to K+ depletion in narrow extracellular spaces which would result in a time dependent decay of the inward rectifier current I K1. In turn, this decay would be responsible for a “fake” reversal of the pacemaker current. In order to avoid such a postulated depletion, Ba2+ was used to block the decay of I K1. In the presence of Ba2+ the time-dependent current no longer reversed and instead increased with time and more so at potentials as negative as −120 mV. In this regard, the distinct possibility needs to be considered that Ba2+ had blocked I Kdd (and not only I K1). That indeed this was the case was demonstrated by studying single Purkinje cells in the absence and in the presence of Ba2+. In the absence of Ba2+, I Kdd was present in the pacemaker potential range and reversed at E K. In the presence of Ba2+, I Kdd was blocked and I f appeared at potentials negative to the pacemaker range. The pacemaker potential behaves in a manner consistent with the underlying I Kdd but not with I f. The fact that I f is activated on hyperpolarization at potential negative to the pacemaker range makes it suitable as a safety factor to prevent the inhibitory action of more negative potentials on pacemaker discharge. It is concluded that the large body of evidence reviewed proves the pacemaker role of I Kdd (but not of I f) in Purkinje fibers.  相似文献   

8.
The endochitinase DNA and cDNA from Trichoderma sp. were cloned, sequenced and expressed. The cloned DNA and cDNA sequences were 1,476 and 1,275 bp in length, respectively. There were three introns in DNA sequence in comparison with the cDNA sequence. The endochitinase protein contained three regions: the signal peptide, the prepro-region and the mature protein region. The gene fragment encoding the mature endochitinase was ligated into the expression vector pET-28a+, yielding pET-1. The plasmid pET-1 was transformed into the Escherichia coli BL21 (DE3). The clone bearing pET-1 was picked and cultured at 30°C for the expression of endochitinase. SDS-PAGE analysis showed that the endochitinase was expressed in the periplasmic space and the purified protein showed a single band. The activity of 70.2 U/mg was obtained from the cellular extract of the recombinant strain. The activity of endochitinase was 2.5-fold higher at 24 h than at 16 h in the periplasmic space. The optimal pH and temperature of the recombinant endochitinase were determined to be 7.0 and 35°C, respectively. It was relatively stable within the pH range of 5–8. Significant activity stimulation by 1 mM Mg2+ and 5 mM Fe2+ and inhibition by 5 mM Co2+ and 5 mM Hg2+ were observed. The kinetic constants Km, Vmax and Kcat for the hydrolysis of the colloidal chitin were 1.5 mM, 1.37 μmol min−1 and 6.23 min−1, respectively.  相似文献   

9.
Sodium concentrations as low as 2 mM exerted a significant protective effect on the high-pressure inactivation (160–210 MPa) of Rhodotorula rubra at pH 6.5, but not on two other yeasts tested (Shizosaccharomyces pombe and Saccharomyces cerevisiae). A piezoprotective effect of similar magnitude was observed with Li+ (2 and 10 mM), and at elevated pH (8.0–9.0), but no effect was seen with K+, Ca2+, Mg2+, Mn2+, or NH4 +. Intracellular Na+ levels in cells exposed to low concentrations of Na+ or to pH 8.0–9.0 provided evidence for the involvement of a plasma membrane Na+/H+ antiporter and a correlation between intracellular Na+ levels and pressure resistance. The results support the hypothesis that moderate high pressure causes indirect cell death in R. rubra by inducing cytosolic acidification.Communicated by K. Horikoshi  相似文献   

10.
The class II fructose-1,6-bisphosphatase gene of Corynebacterium glutamicum, fbp, was cloned and expressed with a N-terminal His-tag in Escherichia coli. Purified, His-tagged fructose-1,6-bisphosphatase from C. glutamicum was shown to be tetrameric, with a molecular mass of about 140 kDa for the homotetramer. The enzyme displayed Michaelis-Menten kinetics for the substrate fructose 1,6-bisphosphate with a Km value of about 14 µM and a Vmax of about 5.4 µmol min–1 mg–1 and kcat of about 3.2 s–1. Fructose-1,6-bisphosphatase activity was dependent on the divalent cations Mg2+ or Mn2+ and was inhibited by the monovalent cation Li+ with an inhibition constant of 140 µM. Fructose 6-phosphate, glycerol 3-phosphate, ribulose 1,5-bisphosphate and myo-inositol-monophosphate were not significant substrates of fructose-1,6-bisphosphatase from C. glutamicum. The enzymatic activity was inhibited by AMP and phosphoenolpyruvate and to a lesser extent by phosphate, fructose 6-phosphate, fructose 2,6-bisphosphate, and UDP. Fructose-1,6-bisphosphatase activities and protein levels varied little with respect to the carbon source. Deletion of the chromosomal fbp gene led to the absence of any detectable fructose-1,6-bisphosphatase activity in crude extracts of C. glutamicum WTfbp and to an inability of this strain to grow on the carbon sources acetate, citrate, glutamate, and lactate. Thus, fbp is essential for growth on gluconeogenic carbon sources and likely codes for the only fructose-1,6-bisphosphatase in C. glutamicum.  相似文献   

11.
A thermoalkaliphilic T1 lipase gene of Geobacillus sp. strain T1 was overexpressed in pGEX vector in the prokaryotic system. Removal of the signal peptide improved protein solubility and promoted the binding of GST moiety to the glutathione-Sepharose column. High-yield purification of T1 lipase was achieved through two-step affinity chromatography with a final specific activity and yield of 958.2 U/mg and 51.5%, respectively. The molecular mass of T1 lipase was determined to be approximately 43 kDa by gel filtration chromatography. T1 lipase had an optimum temperature and pH of 70°C and pH 9, respectively. It was stable up to 65°C with a half-life of 5 h 15 min at pH 9. It was stable in the presence of 1 mM metal ions Na+, Ca2+, Mn2+, K+ and Mg2+ , but inhibited by Cu2+, Fe3+ and Zn2+. Tween 80 significantly enhanced T1 lipase activity. T1 lipase was active towards medium to long chain triacylglycerols (C10–C14) and various natural oils with a marked preference for trilaurin (C12) (triacylglycerol) and sunflower oil (natural oil). Serine and aspartate residues were involved in catalysis, as its activity was strongly inhibited by 5 mM PMSF and 1 mM Pepstatin. The T m for T1 lipase was around 72.2°C, as revealed by denatured protein analysis of CD spectra.  相似文献   

12.
The hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324 has been shown to degrade starch via glucose using a modified Embden-Meyerhof pathway. The first enzyme of this pathway, ADP-dependent glucokinase, was purified 600-fold to homogeneity. The enzyme is a monomeric protein with an apparent molecular mass of 50 kDa. It had a temperature optimum at 83 °C and showed a significant thermostability up to 100 °C. The enzyme was highly specific for ADP and glucose as substrates; it did not use ATP, CDP, UDP, or GDP as phosphoryl donors, or mannose, fructose and fructose 6-phosphate as phosphoryl acceptors (at 80 °C). Only glucosamine was phosphorylated at significant rates. The apparent Km values for ADP and glucose (at 50 °C) were 0.07 mM and 0.78 mM, respectively; the apparent Vmax value was about 50 U/mg at 50 °C and 350 U/mg at 80 °C. Divalent cations were required for maximal activity; Mn2+, Mg2+ and Ca2+, which were most effective, could be replaced partially by Cu2+, Ni2+, Co2+ and Zn2+. The N-terminal amino acid sequence (42 amino acids) of ADP-dependent glucokinase was almost identical to that of ADP-dependent glucokinase from Thermococcus litoralis. In the genome of the closely related Archaeoglobus fulgidus strain VC16 a homologous gene for ADP-dependent glucokinase could not be identified.  相似文献   

13.
The degradation of fluoroacetate by microorganisms has been established for some time, although only a handful of dehalogenases capable of hydrolyzing the stable C–F bond have been studied. Pseudomonas fluorescens DSM 8341 was originally isolated from soil and readily degrades fluoroacetate, thus it was thought that its dehalogenase might have some desirable properties. The enzyme was purified from cell-free extracts and characterised: it is a monomer of 32,500 Da, with a pH optimum of 8 and is stable between pH 4 and 10; its activity is stimulated by some metal ions (Mg2+, Mn2+ and Fe3+), but inhibited by others (Hg2+, Ag2+). The enzyme is specific for fluoroacetate, and the K m for this substrate (0.68 mM) is the lowest determined for enzymes of this type that have been investigated to date.  相似文献   

14.
Trehalose synthase (TSII) from Corynebacterium nitrilophilus NRC was successively purified by ammonium sulphate precipitation, ion exchange chromatography on DEAE-cellulose and gel filtration chromatography on Sephadex G-100 columns. The specific activity of the trehalose synthase was increased ~200-fold, from 0.14 U mg−1 protein to 28.3 U mg−1 protein. TSII was found to be a monomeric protein with a molecular weight of 67–69 kDa. Characterization of the enzyme exhibited optimum pH and temperature were 7.5 and 35°C, respectively. The purified enzyme was stable from pH 6.6 to 7.8 and able to prolong its thermal stability up to 35°C. The enzyme activity was inhibited strongly by Zn2+, Hg2+ and Cu2+ and moderately by Ba2+, Fe2+, Pb2+ and Ni2+. Other metal ions Ca2+, Mg2+, Co2+, Mn2+ and EDTA had almost no effect.  相似文献   

15.
The ba 3-type cytochrome c oxidase from Thermus thermophilus is phylogenetically very distant from the aa 3–type cytochrome c oxidases. Nevertheless, both types of oxidases have the same number of redox-active metal sites and the reduction of O2 to water is catalysed at a haem a 3-CuB catalytic site. The three-dimensional structure of the ba 3 oxidase reveals three possible proton-conducting pathways showing very low homology compared to those of the mitochondrial, Rhodobacter sphaeroides and Paracoccus denitrificans aa 3 oxidases. In this study we investigated the oxidative part of the catalytic cycle of the ba 3 -cytochrome c oxidase using the flow-flash method. After flash-induced dissociation of CO from the fully reduced enzyme in the presence of oxygen we observed rapid oxidation of cytochrome b (k ≅ 6.8 × 104 s−1) and formation of the peroxy (PR) intermediate. In the next step a proton was taken up from solution with a rate constant of ~1.7 × 104 s−1, associated with formation of the ferryl (F) intermediate, simultaneous with transient reduction of haem b. Finally, the enzyme was oxidized with a rate constant of ~1,100 s−1, accompanied by additional proton uptake. The total proton uptake stoichiometry in the oxidative part of the catalytic cycle was ~1.5 protons per enzyme molecule. The results support the earlier proposal that the PR and F intermediate spectra are similar (Siletsky et al. Biochim Biophys Acta 1767:138, 2007) and show that even though the architecture of the proton-conducting pathways is different in the ba 3 oxidases, the proton-uptake reactions occur over the same time scales as in the aa 3-type oxidases. Smirnova and Zaslavsky contributed equally to the work described in this paper.  相似文献   

16.
Two extracellular tannin acyl hydrolases (TAH I and TAH II) produced by an Antarctic filamentous fungus Verticillium sp. P9 were purified to homogeneity (7.9- and 10.5-fold with a yield of 1.6 and 0.9%, respectively) and characterized. TAH I and TAH II are multimeric (each consisting of approximately 40 and 46 kDa sub-units) glycoproteins containing 11 and 26% carbohydrates, respectively, and their molecular mass is approximately 155 kDa. TAH I and TAH II are optimally active at pH of 5.5 and 25 and 20°C, respectively. Both the enzymes were activated by Mg2+and Br ions and 0.5–2.0 M urea and inhibited by other metal ions (Zn2+, Cu2+, K+, Cd2+, Ag+, Fe3+, Mn2+, Co2+, Hg2+, Pb2+ and Sn2+), anions, Tween 20, Tween 60, Tween 80, Triton X-100, sodium dodecyl sulphate, β-mercaptoethanol, α-glutathione and 4-chloromercuribenzoate. Both tannases more efficiently hydrolyzed tannic acid than methyl gallate. E a of these reactions and temperature dependence (at 0–30°C) of k cat, k cat/K m, ΔG*, ΔH* and ΔS* for both the enzymes and substrates were determined. The k cat and k cat/K m values (for both the substrates) were considerably higher for the combined preparation of TAH I and TAH II.  相似文献   

17.
l-arabinose isomerase (EC5.3.1.4. AI) mediates the isomerization of d-galactose into d-tagatose as well as the conversion of l-arabinose into l-ribulose. The AI from Lactobacillus plantarum SK-2 was purified to an apparent homogeneity giving a single band on SDS–PAGE with a molecular mass of 59.6 kDa. Optimum activity was observed at 50°C and pH 7.0. The enzyme was stable at 50°C for 2 h and held between pH 4.5 and 8.5 for 1 h. AI activity was stimulated by Mn2+, Fe3+, Fe2+, Ca2+ and inhibited by Cu2+, Ag+, Hg2+, Pb2+. d-galactose and l-arabinose as substrates were isomerized with high activity. l-arabitol was the strongest competitive inhibitor of AI. The apparent Michaelis–Menten constant (K m), for galactose, was 119 mM. The first ten N-terminal amino acids of the enzyme were determined as MLSVPDYEFW, which is identical to L. plantarum (Q88S84). Using the purified AI, 390 mg tagatose could be converted from 1,000 mg galactose in 96 h, and this production corresponds to a 39% equilibrium.  相似文献   

18.
Summary Catenaria anguillulae parasitized and killed the eggs and second stage juveniles (J2) of Meloidogyne graminicola under natural conditions. The percentage of infection in eggs was higher than J2 of M.␣graminicola, which ranged between 0–50.3% and 0–18.9% in 2004 and 0–46.6% and 0–21.7% in 2005, respectively. The higher parasitism of eggs and J2 was recorded from those fields in which plants were severely infected with M. graminicola. The degree of parasitism of eggs and J2 by C. anguillulae varied with severity of root knot disease. The fields with a higher root gall index recorded a higher percentage of infection in eggs and J2 of M. graminicola. In general, old galls when teased and incubated, recorded higher parasitism of eggs and juveniles than young galls.  相似文献   

19.
Many bacteria adapt to microoxic conditions by synthesizing a particular cytochrome c oxidase (cbb 3) complex with a high affinity for O2, encoded by the ccoNOQP operon. A survey of genome databases indicates that ccoNOQP sequences are widespread in all sub-branches of Proteobacteria but otherwise are found only in bacteria of the CFB group (Cytophaga, Flexibacter, Bacteroides). Our analysis of available genome sequences suggests four major strategies of regulating ccoNOQP expression in response to O2. The most widespread strategy involves direct regulation by the O2-responsive protein Fnr. The second strategy involves an O2-insensitive paralogue of Fnr, FixK, whose expression is regulated by the O2-responding FixLJ two-component system. A third strategy of mixed regulation operates in bacteria carrying both fnr and fixLJ-fixK genes. Another, not yet identified, strategy is likely to operate in the -Proteobacteria Helicobacter pylori and Campylobacter jejuni which lack fnr and fixLJ-fixK genes. The FixLJ strategy appears specific for the -subclass of Proteobacteria but is not restricted to rhizobia in which it was originally discovered.  相似文献   

20.
Biological reduction of nitric oxide (NO) chelated by ferrous ethylenediaminetetraacetate (Fe(II)EDTA) to N2 is one of the core processes in a chemical absorption–biological reduction integrated technique for nitrogen oxide (NO x ) removal from flue gases. A new isolate, identified as Pseudomonas sp. DN-2 by 16S rRNA sequence analysis, was able to reduce Fe(II)EDTA-NO. The specific reduction capacity as measured by NO was up to 4.17 mmol g DCW−1 h−1. Strain DN-2 can simultaneously use glucose and Fe(II)EDTA as electron donors for Fe(II)EDTA-NO reduction. Fe(III)EDTA, the oxidation of Fe(II)EDTA by oxygen, can also serve as electron acceptor by strain DN-2. The interdependency between various chemical species, e.g., Fe(II)EDTA-NO, Fe(II)EDTA, or Fe (III)EDTA, was investigated. Though each complex, e.g., Fe(II)EDTA-NO or Fe(III)EDTA, can be reduced by its own dedicated bacterial strain, strain DN-2 capable of reducing Fe(III)EDTA can enhance the regeneration of Fe(II)EDTA, hence can enlarge NO elimination capacity. Additionally, the inhibition of Fe(II)EDTA-NO on the Fe(III)EDTA reduction has been explored previously. Strain DN-2 is probably one of the major contributors for the continual removal of NO x due to the high Fe(II)EDTA-NO reduction rate and the ability of Fe(III)EDTA reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号