首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A voltage-gated, small, persistent Na+ current (INa) has been shown in mammalian cardiomyocytes. Hypoxia potentiates the persistent INa that may cause arrhythmias. In the present study, we investigated the effects of n-3 polyunsaturated fatty acids (PUFAs) on INa in HEK-293t cells transfected with an inactivation-deficient mutant (L409C/A410W) of the -subunit (hH1) of human cardiac Na+ channels (hNav1.5) plus 1-subunits. Extracellular application of 5 µM eicosapentaenoic acid (EPA; C20:5n-3) significantly inhibited INa. The late portion of INa (INa late, measured near the end of each pulse) was almost completely suppressed. INa returned to the pretreated level after washout of EPA. The inhibitory effect of EPA on INa was concentration dependent, with IC50 values of 4.0 ± 0.4 µM for INa peak (INa peak) and 0.9 ± 0.1 µM for INa late. EPA shifted the steady-state inactivation of INa peak by –19 mV in the hyperpolarizing direction. EPA accelerated the process of resting inactivation of the mutant channel and delayed the recovery of the mutated Na+ channel from resting inactivation. Other polyunsaturated fatty acids, docosahexaenoic acid, linolenic acid, arachidonic acid, and linoleic acid, all at 5 µM concentration, also significantly inhibited INa. In contrast, the monounsaturated fatty acid oleic acid or the saturated fatty acids stearic acid and palmitic acid at 5 µM concentration had no effect on INa. Our data demonstrate that the double mutations at the 409 and 410 sites in the D1–S6 region of hH1 induce inactivation-deficient INa and that n-3 PUFAs inhibit mutant INa. human cardiac sodium channel  相似文献   

2.
The interaction of FK-506 with KV1.3, stably expressed in Chinese hamster ovary cells, was investigated with the whole cell patch-clamp technique. FK-506 inhibited KV1.3 in a reversible, concentration-dependent manner with an IC50 of 5.6 µM. Rapamycin, another immunosuppressant, produced effects that were similar to those of FK-506 (IC50 = 6.7 µM). Other calcineurin inhibitors (cypermethrin or calcineurin autoinhibitory peptide) alone had no effect on the amplitude or kinetics of KV1.3. In addition, the inhibitory action of FK-506 continued, even after the inhibition of calcineurin activity. The inhibition produced by FK-506 was voltage dependent, increasing in the voltage range for channel activation. At potentials positive to 0 mV (where maximal conductance is reached), however, no voltage-dependent inhibition was found. FK-506 exhibited a strong use-dependent inhibition of KV1.3. FK-506 shifted the steady-state inactivation curves of KV1.3 in the hyperpolarizing direction in a concentration-dependent manner. The apparent dissociation constant for FK-506 to inhibit KV1.3 in the inactivated state was estimated from the concentration-dependent shift in the steady-state inactivation curve and was calculated to be 0.37 µM. Moreover, the rate of recovery from inactivation of KV1.3 was decreased. In inside-out patches, FK-506 not only reduced the current amplitude but also accelerated the rate of inactivation during depolarization. FK-506 also inhibited KV1.5 and KV4.3 in a concentration-dependent manner with IC50 of 4.6 and 53.9 µM, respectively. The present results indicate that FK-506 inhibits KV1.3 directly and that this effect is not mediated via the inhibition of the phosphatase activity of calcineurin. potassium channel; immunosuppressant; calcineurin inhibitor  相似文献   

3.
To study the effect of chronically elevated CO2 on the excitability and function of neurons, we exposed mice to 7.5–8% CO2 for 2 wk (starting at 2 days of age) and examined the properties of freshly dissociated hippocampal neurons. Neurons from control mice (CON) and from mice exposed to chronically elevated CO2 had similar resting membrane potentials and input resistances. CO2-exposed neurons, however, had a lower rheobase and a higher Na+ current density (580 ± 73 pA/pF; n = 27 neurons studied) than did CON neurons (280 ± 51 pA/pF, n = 34; P < 0.01). In addition, the conductance-voltage curve was shifted in a more negative direction in CO2-exposed than in CON neurons (midpoint of the curve was –46 ± 3 mV for CO2 exposed and –34 ± 3 mV for CON, P < 0.01), while the steady-state inactivation curve was shifted in a more positive direction in CO2-exposed than in CON neurons (midpoint of the curve was –59 ± 2 mV for CO2 exposed and –68 ± 3 mV for CON, P < 0.01). The time constant for deactivation at –100 mV was much smaller in CO2-exposed than in CON neurons (0.8 ± 0.1 ms for CO2 exposed and 1.9 ± 0.3 ms for CON, P < 0.01). Immunoblotting for Na+ channel proteins (subtypes I, II, and III) was performed on the hippocampus. Our data indicate that Na+ channel subtype I, rather than subtype II or III, was significantly increased (43%, n = 4; P < 0.05) in the hippocampi of CO2-exposed mice. We conclude that in mice exposed to elevated CO2, 1) increased neuronal excitability is due to alterations in Na+ current and Na+ channel characteristics, and 2) the upregulation of Na+ channel subtype I contributes, at least in part, to the increase in Na+ current density. sodium ion channels; oxygen deprivation  相似文献   

4.
Muchevidence supports the view that hypoxic/ischemic injury is largely dueto increased intracellular Ca concentration([Ca]i) resulting from 1) decreasedintracellular pH (pHi), 2) stimulated Na/H exchangethat increases Na uptake and thus intracellular Na (Nai),and 3) decreased Na gradient that decreases or reverses net Catransport via Na/Ca exchange. The Na/H exchanger (NHE) is alsostimulated by hypertonic solutions; however, hypertonic media mayinhibit NHE's response to changes in pHi (Cala PM and Maldonado HM. J Gen Physiol 103: 1035-1054, 1994). Thus wetested the hypothesis that hypertonic perfusion attenuates acid-induced increases in Nai in myocardium and, thereby, decreasesCai accumulation during hypoxia. Rabbit hearts wereLangendorff perfused with HEPES-buffered Krebs-Henseleit solutionequilibrated with 100% O2 or 100% N2. Hypertonic perfusion began 5 min before hypoxia or normoxicacidification (NH4Cl washout). Nai,[Ca]i, pHi, and high-energyphosphates were measured by NMR. Control solutions were 295 mosM, andhypertonic solutions were adjusted to 305, 325, or 345 mosM by additionof NaCl or sucrose. During 60 min of hypoxia (295 mosM),Nai rose from 22 ± 1 to 100 ± 10 meq/kg dry wt while[Ca]i rose from 347 ± 11 to 1,306 ± 89 nM.During hypertonic hypoxic perfusion (325 mosM), increases inNai and [Ca]i were reduced by 65 and 60%, respectively (P < 0.05). Hypertonicperfusion also diminished Na uptake after normoxic acidification by87% (P < 0.05). The data are consistent with the hypothesisthat mild hypertonic perfusion diminishes acid-induced Na accumulationand, thereby, decreases Na/Ca exchange-mediated Caiaccumulation during hypoxia.

  相似文献   

5.
Evidence suggests that 1) ischemia-reperfusion injury is due largely to cytosolic Ca2+ accumulation resulting from functional coupling of Na+/Ca2+ exchange (NCE) with stimulated Na+/H+ exchange (NHE1) and 2) 17-estradiol (E2) stimulates release of NO, which inhibits NHE1. Thus we tested the hypothesis that acute E2 limits myocardial Na+ and therefore Ca2+ accumulation, thereby limiting ischemia-reperfusion injury. NMR was used to measure cytosolic pH (pHi), Na+ (Na), and calcium concentration ([Ca2+]i) in Krebs-Henseleit (KH)-perfused hearts from ovariectomized rats (OVX). Left ventricular developed pressure (LVDP) and lactate dehydrogenase (LDH) release were also measured. Control ischemia-reperfusion was 20 min of baseline perfusion, 40 min of global ischemia, and 40 min of reperfusion. The E2 protocol was identical, except that 1 nM E2 was included in the perfusate before ischemia and during reperfusion. E2 significantly limited the changes in pHi, Na and [Ca2+]i during ischemia (P < 0.05). In control OVX vs. OVX+E2, pHi fell from 6.93 ± 0.03 to 5.98 ± 0.04 vs. 6.96 ± 0.04 to 6.68 ± 0.07; Na rose from 25 ± 6 to 109 ± 14 meq/kg dry wt vs. 25 ± 1 to 76 ± 3; [Ca2+]i changed from 365 ± 69 to 1,248 ± 180 nM vs. 293 ± 66 to 202 ± 64 nM. E2 also improved recovery of LVDP and diminished release of LDH during reperfusion. Effects of E2 were diminished by 1 µM N-nitro-L-arginine methyl ester. Thus the data are consistent with the hypothesis. However, E2 limitation of increases in [Ca2+]i is greater than can be accounted for by the thermodynamic effect of reduced Na accumulation on NCE. myocardial ischemia; Na+/H+ exchange; Na+/Ca2+ exchange; nuclear magnetic resonance; ischemic biology; ion channels/membrane transport; transplantation  相似文献   

6.
Cerebral vasomotor reactivity at high altitude in humans   总被引:3,自引:0,他引:3  
The purpose of this study was twofold:1) to determine whether at highaltitude cerebral blood flow (CBF) as assessed during CO2 inhalation and duringhyperventilation in subjects with acute mountain sickness (AMS) wasdifferent from that in subjects without AMS and2) to compare the CBF as assessedunder similar conditions in Sherpas at high altitude and in subjects atsea level. Resting control values of blood flow velocity in themiddle cerebral artery (VMCA), pulseoxygen saturation (SaO2), andtranscutaneous PCO2 were measured at4,243 m in 43 subjects without AMS, 17 subjects with AMS, 20 Sherpas,and 13 subjects at sea level. Responses ofCO2 inhalation andhyperventilation onVMCA,SaO2, and transcutaneous PCO2 were measured, and the cerebralvasomotor reactivity (VMR = VMCA/PCO2)was calculated as the fractional change ofVMCA per Torrchange of PCO2, yielding ahypercapnic VMR and a hypocapnic VMR. AMS subjects showeda significantly higher resting controlVMCA than didno-AMS subjects (74 ± 22 and 56 ± 14 cm/s, respectively;P < 0.001), andSaO2 was significantly lower (80 ± 8 and 88 ± 3%, respectively; P < 0.001). Resting control VMCA values inthe sea-level group (60 ± 15 cm/s), in the no-AMS group, and inSherpas (59 ± 13 cm/s) were not different. Hypercapnic VMR valuesin AMS subjects were 4.0 ± 4.4, in no-AMS subjects were 5.5 ± 4.3, in Sherpas were 5.6 ± 4.1, and in sea-level subjects were 5.6 ± 2.5 (not significant). Hypocapnic VMR values were significantly higher in AMS subjects (5.9 ± 1.5) compared with no-AMS subjects (4.8 ± 1.4; P < 0.005) but werenot significantly different between Sherpas (3.8 ± 1.1) and thesea-level group (2.8 ± 0.7). We conclude that AMS subjects havegreater cerebral hemodynamic responses to hyperventilation, higherVMCAresting control values, and lower SaO2 compared with no-AMSsubjects. Sherpas showed a cerebral hemodynamic patternsimilar to that of normal subjects at sea level.  相似文献   

7.
The action of cytochalasins, actin-disrupting agents on human Kv1.5 channel (hKv1.5) stably expressed in Ltk cells was investigated using the whole cell patch-clamp technique. Cytochalasin B inhibited hKv1.5 currents rapidly and reversibly at +60 mV in a concentration-dependent manner with an IC50 of 4.2 µM. Cytochalasin A, which has a structure very similar to cytochalasin B, inhibited hKv1.5 (IC50 of 1.4 µM at +60 mV). Pretreatment with other actin filament disruptors cytochalasin D and cytochalasin J, and an actin filament stabilizing agent phalloidin had no effect on the cytochalasin B-induced inhibition of hKv1.5 currents. Cytochalasin B accelerated the decay rate of inactivation for the hKv1.5 currents. Cytochalasin B-induced inhibition of the hKv1.5 channels was voltage dependent with a steep increase over the voltage range of the channel's opening. However, the inhibition exhibited voltage independence over the voltage range in which channels are fully activated. Cytochalasin B produced no significant effect on the steady-state activation or inactivation curves. The rate constants for association and dissociation of cytochalasin B were 3.7 µM/s and 7.5 s–1, respectively. Cytochalasin B produced a use-dependent inhibition of hKv1.5 current that was consistent with the slow recovery from inactivation in the presence of the drug. Cytochalasin B (10 µM) also inhibited an ultrarapid delayed rectifier K+ current (IK,ur) in human atrial myocytes. These results indicate that cytochalasin B primarily blocks activated hKv1.5 channels and endogenous IK,ur in a cytoskeleton-independent manner as an open-channel blocker. voltage-gated K+ channel; heart; open channel block  相似文献   

8.
A Cl current activated by extracellular acidification, ICl(pHac), has been characterized in various mammalian cell types. Many of the properties of ICl(pHac) are similar to those of the cell swelling-activated Cl current ICl(swell): ion selectivity (I > Br > Cl > F), pharmacology [ICl(pHac) is inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), 1,9-dideoxyforskolin (DDFSK), diphenylamine-2-carboxylic acid (DPC), and niflumic acid], lack of dependence on intra- or extracellular Ca2+, and presence in all cell types tested. ICl(pHac) differs from ICl(swell) in three aspects: 1) its rate of activation and inactivation is very much more rapid, currents reaching a maximum in seconds rather than minutes; 2) it exhibits a slow voltage-dependent activation in contrast to the fast voltage-dependent activation and time- and voltage-dependent inactivation observed for ICl(swell); and 3) it shows a more pronounced outward rectification. Despite these differences, study of the transition between the two currents strongly suggests that ICl(swell) and ICl(pHac) are related and that extracellular acidification reflects a novel stimulus for activating ICl(swell) that, additionally, alters the biophysical properties of the channel. cell swelling-activated chloride current; patch clamp; pH  相似文献   

9.
Gustatory receptor cells, isolated from the lingual epitheliumof larval tiger salamanders (Ambystoma tigrinum), possess avariety of voltage- and ion-dependent conductances, includinga transient Na+ -current (INa), a voltage-gated Ca2+ -current(IA). a transient K+ -current (IA), a delayed rectifier K+ -current(IK), and a Ca2+ -activated K+ -current (IK(Ca))- By use ofwhole-cell and excised-patch tight-seal recording techniques,we examined the effects of taste stimuli on the conductancesof taste cells from the tiger salamander. Depolarizing receptorpotentials elicited by NaCl were associated with slow, gradedinward currents which were composed of amiloride-sensitive andtetrodoxin-(TTX)-sensitive components. Potassium chloride producedmaintained inward currents, which usually showed both phasicand tonic components and were only partially blocked by tetraethylammoniumchloride (TEA). Citric and acetic acids elicited slow depolarizationsin taste cells. Under voltage-clamp, acids produced graded inwardcurrents which were composed of two components: one attributableto a transient block of voltage-dependent K+ -channels and asmaller component which may have resulted from an increasedconductance to cations. Quinine hydrochloride elicited slowdepolarization of taste cells which was associated with a slowlydeveloping maintained inward current under voltage-clamp. Quininesuppressed both voltage-dependent inward and outward currents.In some taste cells, L-arginine elicited small outward currentswhich were attributable to an increase in K+ conductance. Inother cells, L-arginine produced a decrease in voltage-dependentoutward currents and generated depolarizations associated withinward currents. These results indicate that several independentmechanisms, including amiloride-sensitive Na+ -channels, andstimulus modulation of voltage-dependent K+ -channels, are involvedin taste cell responses to chemical stimuli. More than one mechanismis typically present in a single cell. 3Present address: Department of Physiology, Tokyo Medical andDental University, 5-45 Yushima 1-chome, Bunkyo-ku, Tokyo 113,Japan  相似文献   

10.
Twenty-eighthealthy women (ages 27.2 ± 6.4 yr) with widely varying fitnesslevels [maximal O2consumption (O2 max),31-70 ml · kg1 · min1]first completed a progressive incremental treadmill test to O2 max (totalduration, 13.3 ± 1.4 min; 97 ± 37 s at maximal workload), rested for 20 min, and then completed a constant-load treadmill test at maximal workload (total duration, 143 ± 31 s). Atthe termination of the progressive test, 6 subjects had maintained arterial PO2(PaO2) near resting levels, whereas 22 subjects showed a >10 Torr decrease inPaO2 [78.0 ± 7.2 Torr, arterial O2 saturation(SaO2), 91.6 ± 2.4%], andalveolar-arterial O2 difference (A-aDO2,39.2 ± 7.4 Torr). During the subsequent constant-load test, allsubjects, regardless of their degree of exercise-induced arterialhypoxemia (EIAH) during the progressive test, showed a nearly identicaleffect of a narrowed A-aDO2(4.8 ± 3.8 Torr) and an increase inPaO2 (+5.9 ± 4.3 Torr) andSaO2 (+1.6 ± 1.7%) compared with atthe end point of the progressive test. Therefore, EIAH during maximalexercise was lessened, not enhanced, by prior exercise, consistent withthe hypothesis that EIAH is not caused by a mechanismwhich persists after the initial exercise period and is aggravated bysubsequent exercise, as might be expected of exercise-inducedstructural alterations at the alveolar-capillary interface. Rather,these findings in habitually active young women point to a functionallybased mechanism for EIAH that is present only during the exerciseperiod.

  相似文献   

11.
With the use of voltage clamp and current clamp techniques thesupposition was proved that during the hyperpolarizing response(HR) N. obtusa cells generate active electromotive force (emf)at the expense of metabolic energy. Threshold inward currentsent through the plasmalemma of the cell which was depolarizedwith 100 mol m–3 KG resulted in the HR with the transferof the membrane's excitable units from the high-conductive stateto the low-conductive state. During the HR the membrane potentialVm increased from –135±10 mV to –290±15mV, the membrane resistance increased from 3.3±1.5 kOhmcm2 to 5.8±1.2 kOhm cm2 and the membrane emf Em increasedfrom –20±4 mV to –93± 15 mV. Changesin the external concentration of K, Na+, Cl andH did not affect the patterns of HR. Cells which weredepolarized by light also generated HR (in normal medium) whichwas accompanied with the increase of Vm, Rm and Em. The highvalue of Em generated during the HR can be explained only withthe involvement of active electrogenic charge transfer acrossthe membrane. 0.05 mol m–3 DCCD added to the externalmedium inhibited the HR in both cases. Key words: Active ion transport, Hyperpolarizing response, Nitellopsis obtusa  相似文献   

12.
In this study, we test the hypothesisthat in newborn hearts (as in adults) hypoxia and acidificationstimulate increased Na+ uptake, in part via pH-regulatoryNa+/H+ exchange. Resulting increases inintracellular Na+ (Nai) alter the force drivingthe Na+/Ca2+ exchanger and lead to increasedintracellular Ca2+. NMR spectroscopy measuredNai and cytosolic Ca2+ concentration([Ca2+]i) and pH (pHi) inisolated, Langendorff-perfused 4- to 7-day-old rabbit hearts. AfterNa+/K+ ATPase inhibition, hypoxic hearts gainedNa+, whereas normoxic controls did not [19 ± 3.4 to139 ± 14.6 vs. 22 ± 1.9 to 22 ± 2.5 (SE) meq/kg drywt, respectively]. In normoxic hearts acidified using theNH4Cl prepulse, pHi fell rapidly and recovered,whereas Nai rose from 31 ± 18.2 to 117.7 ± 20.5 meq/kg dry wt. Both protocols caused increases in [Ca]i;however, [Ca]i increased less in newborn hearts than inadults (P < 0.05). Increases in Nai and[Ca]i were inhibited by theNa+/H+ exchange inhibitormethylisobutylamiloride (MIA, 40 µM; P < 0.05), aswell as by increasing perfusate osmolarity (+30 mosM) immediately before and during hypoxia (P < 0.05). The data supportthe hypothesis that in newborn hearts, like adults, increases inNai and [Ca]i during hypoxia and afternormoxic acidification are in large part the result of increased uptakevia Na+/H+ and Na+/Ca2+exchange, respectively. However, for similar hypoxia and acidification protocols, this increase in [Ca]i is less in newborn thanadult hearts.

  相似文献   

13.
Resting or basal intracellular pH (pHi) measured in cultured human syncytiotrophoblast cells was 7.26 ± 0.04 (without HCO3) or 7.24 ± 0.03 (with HCO3). Ion substitution and inhibitor experiments were performed to determine whether common H+-transporting species were operating to maintain basal pHi. Removal of extracellular Na+ or Cl or addition of amiloride or dihydro-4,4'-diisothiocyanatostilbene-2,2'-disulfonate (H2DIDS) had no effect. Acidification with the K+/H+ exchanger nigericin reduced pHi to 6.25 ± 0.15 (without HCO3) or 6.53 ± 0.10 (with HCO3). In the presence of extracellular Na+, recovery to basal pHi was prompt and occurred at similar rates in the absence and presence of HCO3. Ion substitution and inhibition experiments were also used to identify the species mediating the return to basal pHi after acidification. Recovery was inhibited by removal of Na+ or addition of amiloride, whereas removal of Cl and addition of H2DIDS were ineffective. Addition of the Na+/H+ exchanger monensin to cells that had returned to basal pHi elicited a further increase in pHi to 7.48 ± 0.07. Analysis of recovery data showed that there was a progressive decrease in pH per minute as pHi approached the basal level, despite the continued presence of a driving force for H+ extrusion. These data show that in cultured syncytial cells, in the absence of perturbation, basal pHi is preserved despite the absence of active, mediated pH maintenance. They also demonstrate that an Na+/H+ antiporter acts to defend the cells against acidification and that it is the sole transporter necessary for recovery from an intracellular acid load. sodium/hydrogen antiporter; pH regulation; fluorescence; 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein  相似文献   

14.
This investigation examined the effects ofNaHCO3 loading on lactateconcentration ([La]), acid-base balance, and performance for a 603.5-m sprint task. Ten greyhounds completed aNaHCO3 (300 mg/kg body weight) andcontrol trial in a crossover design. Results are expressed as means ± SE. Presprint differences (P < 0.05) were found for NaHCO3 vs.control, respectively, for blood pH (7.47 ± 0.01 vs. 7.42 ± 0.01), HCO3 (28.4 ± 0.4 vs. 23.5 ± 0.3 meq/l), and base excess (5.0 ± 0.3 vs. 0.2 ± 0.3 meq/l). Peak blood [La] increased(P < 0.05) inNaHCO3 vs. control (20.4 ± 1.6 vs. 16.9 ± 1.3 mM, respectively). Relative to control,NaHCO3 produced a greater(P < 0.05) reduction in blood baseexcess (18.5 ± 1.4 vs. 14.1 ± 0.8 meq/l) andHCO3 (17.4 ± 1.2 vs.12.8 ± 0.7 meq/l) from presprint to postexercise. Postexercise peak muscle H+concentration ([H+])was higher (P < 0.05) inNaHCO3 vs. control (158.8 ± 8.8 vs. 137.0 ± 5.3 nM, respectively). Muscle[H+] recoveryhalf-time (7.2 ± 1.6 vs. 11.3 ± 1.6 min) and time to predosevalues (22.2 ± 2.4 vs. 32.9 ± 4.0 min) were reduced(P < 0.05) inNaHCO3 vs. control, respectively.No differences were found in blood[H+] or blood[La] recovery curves or performance times.NaHCO3 increased postexerciseblood [La] but did not reduce the muscle or blood acid-basedisturbance associated with a 603.5-m sprint or significantly affectperformance.

  相似文献   

15.

Background

Although fibroblast-to-myocyte electrical coupling is experimentally suggested, electrophysiology of cardiac fibroblasts is not as well established as contractile cardiac myocytes. The present study was therefore designed to characterize ion channels in cultured human cardiac fibroblasts.

Methods and Findings

A whole-cell patch voltage clamp technique and RT-PCR were employed to determine ion channels expression and their molecular identities. We found that multiple ion channels were heterogeneously expressed in human cardiac fibroblasts. These include a big conductance Ca2+-activated K+ current (BKCa) in most (88%) human cardiac fibroblasts, a delayed rectifier K+ current (IKDR) and a transient outward K+ current (Ito) in a small population (15 and 14%, respectively) of cells, an inwardly-rectifying K+ current (IKir) in 24% of cells, and a chloride current (ICl) in 7% of cells under isotonic conditions. In addition, two types of voltage-gated Na+ currents (INa) with distinct properties were present in most (61%) human cardiac fibroblasts. One was a slowly inactivated current with a persistent component, sensitive to tetrodotoxin (TTX) inhibition (INa.TTX, IC50 = 7.8 nM), the other was a rapidly inactivated current, relatively resistant to TTX (INa.TTXR, IC50 = 1.8 µM). RT-PCR revealed the molecular identities (mRNAs) of these ion channels in human cardiac fibroblasts, including KCa.1.1 (responsible for BKCa), Kv1.5, Kv1.6 (responsible for IKDR), Kv4.2, Kv4.3 (responsible for Ito), Kir2.1, Kir2.3 (for IKir), Clnc3 (for ICl), NaV1.2, NaV1.3, NaV1.6, NaV1.7 (for INa.TTX), and NaV1.5 (for INa.TTXR).

Conclusions

These results provide the first information that multiple ion channels are present in cultured human cardiac fibroblasts, and suggest the potential contribution of these ion channels to fibroblast-myocytes electrical coupling.  相似文献   

16.
The voltage-gated Na+ channels (Nav) form a family composed of 10 genes. The COOH termini of Nav contain a cluster of amino acids that are nearly identical among 7 of the 10 members. This COOH-terminal sequence, PPSYDSV, is a PY motif known to bind to WW domains of E3 protein-ubiquitin ligases of the Nedd4 family. We recently reported that cardiac Nav1.5 is regulated by Nedd4-2. In this study, we further investigated the molecular determinants of regulation of Nav proteins. When expressed in HEK-293 cells and studied using whole cell voltage clamping, the neuronal Nav1.2 and Nav1.3 were also downregulated by Nedd4-2. Pull-down experiments using fusion proteins bearing the PY motif of Nav1.2, Nav1.3, and Nav1.5 indicated that mouse brain Nedd4-2 binds to the Nav PY motif. Using intrinsic tryptophan fluorescence imaging of WW domains, we found that Nav1.5 PY motif binds preferentially to the fourth WW domain of Nedd4-2 with a Kd of 55 µM. We tested the binding properties and the ability to ubiquitinate and downregulate Nav1.5 of three Nedd4-like E3s: Nedd4-1, Nedd4-2, and WWP2. Despite the fact that along with Nedd4-2, Nedd4-1 and WWP2 bind to Nav1.5 PY motif, only Nedd4-2 robustly ubiquitinated and downregulated Nav1.5. Interestingly, coexpression of WWP2 competed with the effect of Nedd4-2. Finally, using brefeldin A, we found that Nedd4-2 accelerated internalization of Nav1.5 stably expressed in HEK-293 cells. This study shows that Nedd4-dependent ubiquitination of Nav channels may represent a general mechanism regulating the excitability of neurons and myocytes via modulation of channel density at the plasma membrane. ubiquitin; Nedd4-2; PY motif; Nav1.5; human ether-à-go-go-related gene  相似文献   

17.
Van Etten, Ludo M. L. A., Klaas R. Westerterp, Frans T. J. Verstappen, Bart J. B. Boon, and Wim H. M. Saris. Effect of an18-wk weight-training program on energy expenditure and physicalactivity. J. Appl. Physiol. 82(1):298-304, 1997.The purpose of this study was to examine theeffect of an 18-wk weight-training program on average daily metabolicrate (ADMR). Before the intervention and in weeks8 and 18 (T0,T8, andT18, respectively) data on bodycomposition, sleeping metabolic rate (SMR), food intake, energy cost ofthe weight-training program(EEex), and nontraining physicalactivity (accelerometer) were collected in the exercise group (EXER,n = 18 males). ADMR was determined ina subgroup (EX12, n = 12) by usingdoubly labeled water. At T0 andT18, data (except ADMR) were alsocollected in a control group (Con, n = 8). Body mass did not change in EXER or Con. Fat-free mass increased only in EXER with 2.1 ± 1.2 kg, whereas fat mass decreased in EXERas well as Con (2.0 ± 1.8 and 1.4 ± 1.0 kg, respectively). Initial ADMR (12.4 ± 1.2 MJ/day) increased atT8 (13.5 ± 1.3 MJ/day, P < 0.001) with no further increaseat T18 (13.5 ± 1.9 MJ/day). SMR did not change in EXER (4.8 ± 0.5, 4.9 ± 0.5, 4.8 ± 0.5 kJ/min) or Con (4.7 ± 0.4, 4.8 ± 0.4 kJ/min). Energy intake didnot change in EXER (10.1 ± 1.8, 9.7 ± 1.8, 9.2 ± 1.9 MJ/day) or Con (10.2 ± 2.6, 9.4 ± 1.8, 10.1 ± 1.5 MJ/day)and was systematically underreported in EX12 (21 ± 14, 28 ± 18, 34 ± 14%,P < 0.001).EEex (0.47 ± 0.20, 0.50 ± 0.18 MJ/day) could only explain 40% of the increase in ADMR.Nontraining physical activity did not change in both groups. Inconclusion, although of modest energy cost, weight-training induces asignificant increase in ADMR.

  相似文献   

18.
Albert, T. S. E., V. L. Tucker, and E. M. Renkin. Acutealveolar hypoxia increases blood-to-tissue albumin transport: role ofatrial natriuretic peptide. J. Appl.Physiol. 82(1): 111-117, 1997.Plasmaimmunoreactive atrial natriuretic peptide (irANP) and blood-to-tissueclearance of 131I-labeled ratserum albumin (CRSA) wereexamined in anesthetized rats during hypoxic ventilation(n = 5-7/group). Hypoxia (10 min) increased irANP from 211 ± 29 (room air) to 229 ± 28 (15%O2, not significant), 911 ± 205 (10% O2), and 4,374 ± 961 pg/ml (8% O2),respectively. Graded increases inCRSA were significant at 8%O2 in fat (3.6-fold), ileum(2.2-fold), abdominal muscles (2.0-fold), kidney (1.8-fold), andjejunum (1.4-fold). CRSA wasdecreased in back skin and testes; heart, brain, and lungs wereunaffected. The increases in CRSAwere related to irANP and not to arterial PO2. Circulating plasma volume wasnegatively correlated with whole bodyCRSA. Graded increases inextravascular water content (EVW) were found in the kidney, left heart,and cerebrum and were positively related toCRSA in the kidney. EVW decreased in gastrointestinal tissues; the magnitude was inversely related toCRSA. We conclude that ANP-inducedprotein extravasation contributes to plasma volume contraction duringacute hypoxia.

  相似文献   

19.
The electrical conductance of the plasmalemma of cells of Charainflata, due to the diffusion of ions, consists predominantlyof K+, Cl and leak components. When the membrane electricalpotential difference is stepped in a negative direction witha voltage-clamp, the resulting inward current has componentsIK, ICl and IL (leak). During such voltage-clamp steps IK isinactivated, and Ic activated with voltage-dependent half-times.Increases in the external NaCl concentration reduce the magnitudeof IK and increase the magnitude of Ic, but reduce the half-timeof inactivation or activation. The NaCl-induced changes in Ikand ICl and their kinetics were more pronounced at pH0 =6.5than at pH0 =9.5. When the concentration of external CaCl2 wasincreased, Ik, ICl and the half-time of inactivation, (T1/2),of Ik were all reduced. The half-time of activation of ICl wasincreased. The NaCI-induced changes could result from increases in bothexternal ion concentration and osmotic pressure. Previous experimentshave shown that an increase in external osmotic pressure alonealters the properties of the conductances. In this paper weattempt to separate the purely ionic effects from the osmoticones. Key words: Chara inflata, ionic effects, K+ and Cl currents  相似文献   

20.
The hypothesis that the intracellularNa+ concentration([Na+]i)is a regulator of the epithelialNa+ channel (ENaC) was tested withthe Xenopus oocyte expression systemby utilizing a dual-electrode voltage clamp.[Na+]iaveraged 48.1 ± 2.2 meq (n = 27)and was estimated from the amiloride-sensitive reversal potential.[Na+]iwas increased by direct injection of 27.6 nl of 0.25 or 0.5 MNa2SO4.Within minutes of injection,[Na+]istabilized and remained elevated at 97.8 ± 6.5 meq(n = 9) and 64.9 ± 4.4 (n = 5) meq 30 min after theinitial injection of 0.5 and 0.25 MNa2SO4,respectively. This increase of[Na+]icaused a biphasic inhibition of ENaC currents. In oocytes injected with0.5 MNa2SO4(n = 9), a rapid decrease of inwardamiloride-sensitive slope conductance(gNa) to 0.681 ± 0.030 of control within the first 3 min and a secondary, slowerdecrease to 0.304 ± 0.043 of control at 30 min were observed.Similar but smaller inhibitions were also observed with the injectionof 0.25 MNa2SO4.Injection of isotonicK2SO4(70 mM) or isotonicK2SO4made hypertonic with sucrose (70 mMK2SO4-1.2M sucrose) was without effect. Injection of a 0.5 M concentration ofeitherK2SO4,N-methyl-D-glucamine (NMDG) sulfate, or 0.75 M NMDG gluconate resulted in a much smaller initial inhibition (<14%) and little or no secondary decrease. Thusincreases of[Na+]ihave multiple specific inhibitory effects on ENaC that can betemporally separated into a rapid phase that was complete within 2-3 min and a delayed slow phase that was observed between 5 and 30 min.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号