首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleocapsid protein (NC) of human immunodeficiency virus type 1 (HIV-1) was expressed in Escherichia coli and purified. The protein displayed a variety of activities on DNA structure, all reflecting an ability to promote transition between double-helical and single-stranded conformations. We found that, in addition to its previously described ability to accelerate renaturation of complementary DNA strands, the HIV-1 NC protein could substantially lower the melting temperature of duplex DNA and could promote strand exchange between double-stranded and single-stranded DNA molecules. Moreover, in the presence of HIV-1 NC, annealing of a single-stranded DNA molecule to a complementary DNA strand that would yield a more stable double-stranded product was favored over annealing to alternative complementary DNA strands that would form less stable duplex products (selective annealing). NC thus appears to lower the kinetic barrier so that double-strand <==> single-strand equilibrium is rapidly reached to favor the lowest free-energy nucleic acid conformation. This activity of NC may be important for correct folding of viral genomic RNA and may have practical applications.  相似文献   

2.
G Lavelle  C Patch  G Khoury    J Rose 《Journal of virology》1975,16(4):775-782
Single-stranded fragments of adenovirus type 2 DNA were isolated from infected KB cells under conditions which retarded reassociation of complementary sequences but did not denature native viral DNA. Of the total intracellular, virus-specific DNA labeled during a 1-h pulse with tritiated thymidine begining 15 h after infection, about 20% was single stranded when fractionated on hydroxylapatite. This DNA shifted predominantly to the double-stranded fraction on hydroxylapatite during an extended chase incubation, suggesting that it may represent single-stranded DNA in replicating intermediates. Furthermore, the single-stranded DNA annealed nearly equally to both strands of the adenovirus genome. These findings indicate that at least portions of both complementary strands of adenovirus type 2 DNA are exposed as single strands during the period of viral DNA synthesis.  相似文献   

3.
4.
ICP8, the major single-stranded DNA-binding protein of herpes simplex virus type 1, promotes renaturation of complementary single strands of DNA. This reaction is ATP independent but requires Mg2+. The activity is maximal at pH 7.6 and 80 mM NaCl. The major product of the reaction is double-stranded DNA, and no evidence of large DNA networks is seen. The reaction occurs at subsaturating concentrations of ICP8 but reaches maximal levels with saturating concentrations of ICP8. Finally, the renaturation reaction is second order with respect to DNA concentration. The ability of ICP8 to promote the renaturation of complementary single strands suggests a role for ICP8 in the high level of recombination seen in cells infected with herpes simplex virus type 1.  相似文献   

5.
The double D-loop DNA hybrid contains four DNA strands following hybridization of two RecA protein coated complementary single-stranded DNA probes with a homologous region of a double-stranded DNA target. A remarkable feature of the double D-loop DNA hybrids is their kinetic stabilities at internal sites within linear DNA targets after removal of RecA protein from hybrids. We report here that heterologous DNA inserts in one or both probe strands affect the kinetic stability of protein-free double D-loop hybrids. DNA heterologies normally distort DNA-DNA hybrids and consequently accelerate hybrid dissociation. In contrast, heterologous DNA inserts impede dissociation of double D-loops, especially when the insert sequences interact with each other by DNA base pairing. We propose a mechanism for this kinetic stabilization by heterologous DNA inserts based on the hypothesis that the main pathway of dissociation of double D-loop DNA hybrids is a DNA branch migration process involving the rotation of both probe-target duplexes in the hybrids. Heterologous DNA inserts constrain rotation of probe-target duplexes and consequently impede hybrid dissociation. Potential applications of the stabilized double D-loops for gene targeting are discussed.  相似文献   

6.
A cloning vehicle suitable for strand separation   总被引:21,自引:0,他引:21  
K Hayashi 《Gene》1980,11(1-2):109-115
A new plasmid has been constructed which contains a poly(A) : poly(dT) duplex segment of length approx. 100 base pairs (bp) inserted into the PvuII site of pBR322. This plasmid, pKH47, has all the other restriction sites of pBR322 available for insertion of foreign DNA, and has the same drug resistance genes as does the parental plasmid. The complementary strands of the linearized denatured plasmid DNA can be separated rapidly an efficiently by affinity chromatography with oligo(dA)- and oligo(dT)-cellulose columns in series. More than 90% of the input DNA is recovered as separated strands which can be annealed to form full length double-stranded molecules. One of the applications of the plasmid is to prepare separated complementary strands for sequencing by the chain-terminator technique using DNA primers. This application is illustrated by a sequencing example for a Drosophila DNA insert carrying a tRNA gene.  相似文献   

7.
Networks of DNA and RecA protein are intermediates in homologous pairing   总被引:16,自引:0,他引:16  
S S Tsang  S A Chow  C M Radding 《Biochemistry》1985,24(13):3226-3232
Partial coating of single-stranded DNA by recA protein causes its aggregation, but conditions that promote complete coating inhibit independent aggregation of single strands and, instead, cause the mutually dependent conjunction of single- and double-stranded DNA in complexes that sediment at more than 10 000 S. This coaggregation is independent of homology but otherwise shares key properties of homologous pairing of single strands with duplex DNA: both processes require ATP, MgCl2, and stoichiometric amounts of recA protein; both are very sensitive to inhibition by salt and ADP. Coaggregates are closed domains that are intermediates in homologous pairing: they form faster than joint molecules, they include virtually all of the DNA in the reaction mixture, and they yield joint molecules nearly an order of magnitude faster than they exchange DNA molecules with the surrounding solution. The independent aggregation of single-stranded DNA differs in all respects except the requirement for Mg2+, and its properties correlate instead with those associated with the renaturation of complementary single strands by recA protein.  相似文献   

8.
Gene 5 protein bound to both linear and circular single-stranded DNA and saturated the DNA at a protein-to-DNA weight ratio of 7–8. The viscosity of a complex of the protein with single-stranded DNA was initially less than that of the DNA and slowly increased with time suggesting that the complex adopts its final hydrodynamic shape very slowly. This shape change was confirmed by gradient centrifugation. The complex has a more extended structure than DNA alone accounting for its high viscosity and low S value. Gene 5 protein also bound to linear double-stranded DNA though not as strongly as to single-stranded DNA. The protein decreased the transition temperature, Tm, for viscosity loss of double-stranded DNA by 20 °C in 1 and 10 mm salt at a protein-to-DNA ratio of 2.2. At these low ratios there was no decrease in the hyperchromic Tm at 260 nm. At higher ratios of protein to DNA, the hyperchromic Tm was decreased to a constant value and not by a constant amount. Under no conditions was gene 5 protein able to completely separate the complementary strands of double-stranded DNA or to renature denatured DNA.  相似文献   

9.
Quantitative agarose gel assays reveal that the recA protein promoted renaturation of complementary DNA strands (phi X DNA) proceeds in two stages. The first stage results in the formation of unit-length duplex DNA as well as a distribution of other products ("initial products"). In the second stage, the initial products are converted to complex multipaired DNA structures ("network DNA"). In the presence of ATP, the initial products are formed within 2 min and are then rapidly converted to network DNA. In the absence of ATP, the initial products are formed nearly as fast as with ATP present, but they are converted to network DNA at a much lower rate. The time-dependent formation of initial products and network DNA from complementary single strands for both the ATP-stimulated and ATP-independent reactions can be modeled by using a simple two-step sequential kinetic scheme. This model indicates that the primary effect of ATP in the recA protein promoted renaturation reaction is not on the initial pairing step (which leads to the formation of initial products) but rather is to increase the rate at which subsequent pairing events can occur.  相似文献   

10.
Coding capacity of complementary DNA strands.   总被引:7,自引:4,他引:3       下载免费PDF全文
A Fortran computer algorithm has been used to analyze the nucleotide sequence of several structural genes. The analysis performed on both coding and complementary DNA strands shows that whereas open reading frames shorter than 100 codons are randomly distributed on both DNA strands, open reading frames longer than 100 codons ("virtual genes") are significantly more frequent on the complementary DNA strand than on the coding one. These "virtual genes" were further investigated by looking at intron sequences, splicing points, signal sequences and by analyzing gene mutations. On the basis of this analysis coding and complementary DNA strands of several eukaryotic structural genes cannot be distinguished. In particular we suggest that the complementary DNA strand of the human epsilon-globin gene might indeed code for a protein.  相似文献   

11.
Autonomous parvoviruses are thought to uniquely encapsidate single-stranded DNA of minus polarity. In contrast, the defective adeno-associated viruses separately encapsidate equal amounts of plus and minus DNA strands. We reexamined the uniqueness of minus strand encapsidation for the autonomous parvoviruses. Although we found that Kilham rat virus and H-1 virus encapsidate varying but small amounts of complementary-strand DNA, it was unexpected to find that LuIII virus encapsidated equal amounts of plus and minus DNA. The extracted LuIII DNA possessed properties of double-stranded replicative-form DNA, including insensitivity to S1 endonuclease, cleavage by restriction enzymes, and conversion to unit-length, single-stranded DNA when electrophoresed under denaturing conditions. However, the inability of this DNA to form single-stranded DNA circles when denatured and then renatured in the presence of formamide and the lack of double-stranded DNA circle formation after treatment with exonuclease III and reannealing shows a lack of sequence homology of the 3' and 5' termini of LuIII DNA, in contrast to adeno-associated virus DNA. Digestion of LuIII double-stranded DNA with EcoRI and HincII and separation of plus and minus DNA strands on composite agarose-acrylamide gels identified a heterogeneity present only in the plus DNA strand. These results suggest that strand specificity of viral DNA encapsidation is not a useful property for differentiation between the autonomous and defective parvoviruses. Furthermore, encapsidation by LuIII of equal amounts of complementary DNA strands in contrast to encapsidation of minus strands by H-1 virus, when propagated in the same host cell type, suggests that selection of strands for encapsidation is a virus-coded rather than host-controlled event.  相似文献   

12.
Simian-virus-40 large-T-antigen-catalyzed DNA and RNA unwinding reactions   总被引:3,自引:0,他引:3  
Simian virus 40 large T antigen is a helicase separating the complementary strands of double-stranded DNA in the presence of hydrolyzable ATP and of double-stranded RNA in the presence of non-ATP nucleotides (GTP, CTP or UTP). We have constructed partially single-stranded nucleic acid substrates consisting of RNA or DNA strands hydrogen bonded to either RNA or DNA complements. We found that ATP is utilized as a cofactor for the T-antigen-catalyzed unwinding reaction when the substrates contain overhanging single-stranded DNA, regardless of whether the double-stranded region is DNA or hybrid DNA.RNA. Conversely, non-ATP nucleotides are used when the overhanging single strand is RNA. Based on these and additional findings, we propose that the bound nucleic acid induces a conformational change in T antigen resulting in a proper orientation of both nucleic acid and nucleotide relative to the active center of the ATPase/helicase domain of the enzyme. The implications of our conclusion for the roles which T antigen may play in vivo are discussed.  相似文献   

13.
The opposite strands of the ColE1 and ColE3 plasmids were isolated as circular single-stranded DNA molecules. These molecules were compared with M13 and phi X174 viral DNA with respect to their capacity to function as templates for in vitro DNA synthesis by a replication enzyme fraction from Escherichia coli. It was found for both ColE plasmids that the conversion of H as well as L strands to duplex DNA molecules closely resembles phi X174 complementary strand synthesis and occurs by a rifampicin-resistant priming mechanism involving the dnaB, dnaC, and dnaG gene products. Restriction analysis of partially double-stranded intermediates indicates that preferred start sites for DNA synthesis are present on both strands of the ColE1 HaeII-C fragment. Inspection of the nucleotide sequence of this region reveals structural similarities with the origin of phi X174 complementary strand synthesis. We propose that the rifampicin-resistant initiation site (rri) in the ColE1 L strand is required for the priming of discontinuous lagging strand synthesis during vegetative replication and that the rri site in the H strand is involved in the initiation of L strand synthesis during conjugative transfer.  相似文献   

14.
Type I DNA topoisomerases from mouse ascites cell nuclei and from rat liver cell nuclei act on denatured viral closed circular PM2 DNA to produce molecules with a highly contracted structure as well as fully duplex non-supercoiled covalently closed circular molecules. Highly contracted DNA molecules contain a novel type of topological linkage in which a strand in one region of the double-stranded molecule passes between the strands in another region of the circular molecule one or more times. Since it is also found that the action of the topoisomerase promotes renaturation of complementary strands in denatured closed circular DNA, it is suggested that formation of contracted DNA structures proceeds through renatured, duplex intermediates with highly negative superhelix densities that contain small single-stranded regions.  相似文献   

15.
Homologous pairing of DNA molecules promoted by a protein from Ustilago   总被引:26,自引:0,他引:26  
E Kmiec  W K Holloman 《Cell》1982,29(2):367-374
A protein from mitotic cells of Ustilago maydis was purified on the basis of its ability to reanneal complementary single strands of DNA. The protein catalyzed the uptake of linear single strands by super-helical DNA, but only in reactions with homologous combinations of single-strand fragments and super-helical DNA from phages phi X174 and fd. No reaction occurred with heterologous combinations. The protein also efficiently paired circular single strands and linear duplex DNA molecules. The product was a joint molecule in which the circular single strand displaced one strand of the duplex. Efficient pairing depended upon ATP, and ATPase activity was found associated with the purified protein. ATP-dependent reannealing of complementary single strands was not detectable in the rec1 mutant of Ustilago, which is deranged in meiotic recombination, as complete tetrads are rare, and is defective in radiation-induced mitotic gene conversion.  相似文献   

16.
Bromberg KD  Burgin AB  Osheroff N 《Biochemistry》2003,42(12):3393-3398
Several important antineoplastic drugs kill cells by increasing levels of topoisomerase II-mediated DNA breaks. These compounds act by two distinct mechanisms. Agents such as etoposide inhibit the ability of topoisomerase II to ligate enzyme-linked DNA breaks. Conversely, compounds such as quinolones have little effect on ligation and are believed to stimulate the forward rate of topoisomerase II-mediated DNA cleavage. The fact that there are two scissile bonds per double-stranded DNA break implies that there are two sites for drug action in every enzyme-DNA cleavage complex. However, since agents in the latter group are believed to act by locally perturbing DNA structure, it is possible that quinolone interactions at a single scissile bond are sufficient to distort both strands of the double helix and generate an enzyme-mediated double-stranded DNA break. Therefore, an oligonucleotide system was established to further define the actions of topoisomerase II-targeted drugs that stimulate the forward rate of DNA cleavage. Results indicate that the presence of the quinolone CP-115,953 at one scissile bond increased the extent of enzyme-mediated scission at the opposite scissile bond and was sufficient to stimulate the formation of a double-stranded DNA break by human topoisomerase IIalpha. These findings stand in marked contrast to those for etoposide, which must be present at both scissile bonds to stabilize a double-stranded DNA break [Bromberg, K. D., et al. (2003) J. Biol. Chem. 278, 7406-7412]. Moreover, they underscore important mechanistic differences between drugs that enhance DNA cleavage and those that inhibit ligation.  相似文献   

17.
The physiological role of the nonspecific DNA-binding protein Sso7d from the crenarchaeon Sulfolobus solfataricus is unknown. In vitro studies have shown that Sso7d promotes annealing of complementary DNA strands (Guagliardi et al. 1997), induces negative supercoiling (Lopez-Garcia et al. 1998), and chaperones the disassembly and renaturation of protein aggregates in an ATP hydrolysis-dependent manner (Guagliardi et al. 2000). In this study, we examined the relationships among the binding of Sso7d to double-stranded DNA, its interaction with protein aggregates, and its ATPase activity. Experiments with 1-anilinonaphthalene-8-sulfonic acid as probe demonstrated that exposed hydrophobic surfaces in Sso7d are responsible for interactions with protein aggregates and double-stranded DNA, whereas the site of ATPase activity has a non-hydrophobic character. The interactions of Sso7d with double-stranded DNA and with protein aggregates are mutually exclusive events, suggesting that the disassembly activity and the DNA-related activities of Sso7d may be competitive in vivo. In contrast, the hydrolysis of ATP by Sso7d is independent of the binding of Sso7d to double-stranded DNA or protein aggregates.  相似文献   

18.
This paper describes experiments intended to decide whether UV lesions in DNA act as absolute blocks to chain elongation by the Escherichia coli DNA polymerase or only slow down the polymerization process. Ultraviolet (UV)-irradiated, single-stranded (SS) circular DNA of bacteriophage øX174 was used as template for the polymerase in a reaction mixture in vitro, under conditions allowing synthesis of not more than one complementary strand per template molecule. The mean length of the newly synthesized complementary strands (as determined by velocity sedimentation in alkaline CsCl gradients), as well as the over-all template activity (as measured by deoxyadenosine monophosphate [dAMP] incorporation) was found to decrease with the number of biologically lethal hits sustained by the irradiated templates. With the increase of time or temperature of reaction, the net synthesis of complementary strands increased (as a consequence of increased initiation), but their mean length remained constant. The mean length of synthesized strands was greater than would be expected if all biologically lethal hits were to block the polymerization process. The lethal hits which serve as blocking lesions are inferred to be pyrimidine dimers because it is possible to obtain synthesis of full-length complementary strands if, when heat-denatured, UV-irradiated, double-stranded replicative form (RF II) DNA of bacteriophage øX174 is used as a template, it is pretreated with yeast photoreactivating enzyme (YPRE) in presence of visible light.  相似文献   

19.
Adenovirus DNA replicates by displacement of one of the parental strands followed by duplication of the displaced parental single strand (complementary strand synthesis). Displacement synthesis has been performed in a reconstituted system composed of viral and cellular proteins, employing either the viral DNA-terminal protein complex as template or linearized plasmids containing the origin. Previously, evidence was obtained that in vivo complementary strand synthesis requires formation of a panhandle structure originating from hybridization of the inverted terminal repeats. To study the conditions for complementary strand synthesis in vitro, we have constructed an artificial panhandle molecule that contains a double-stranded inverted terminal repetition (ITR) region and a single-stranded loop derived from the left and right terminal XmaI fragments of Ad2. Such a molecule appeared to be an efficient template and could initiate by the same protein-priming mechanism as double-stranded DNA, employing the precursor terminal protein. The efficiency of both types of template was comparable. Like for replication of the duplex molecule initiation of panhandle replication was stimulated by nuclear factors I and III, proteins that bind to specific double-stranded regions of the ITR. The Ad DNA-binding protein is essential and the 39 kDa C-terminal domain of this protein that harbors the DNA-binding properties is sufficient for its function. These results support the hypothesis that panhandle formation is required for duplication of the displaced strand.  相似文献   

20.
Xenopus egg extracts: a model system for chromatin replication   总被引:1,自引:0,他引:1  
A cell-free system derived from Xenopus eggs enables in vitro reproduction of the steps occurring during eukaryotic DNA replication. With a circular single-stranded DNA template, extracts obtained from high-speed centrifugation perform complementary DNA strand synthesis coupled to chromatin assembly. Nucleosomes are formed on the newly replicated DNA and the overall reaction mimics the events occurring during chromosomal replication on the lagging strand at the replication fork. ATP is necessary at all steps examined individually, including RNA priming, elongation of DNA strands and chromatin assembly. Although not required for nucleosome formation, ATP is involved in the correct spacing of nucleosomes and the stability of the assembled chromatin. Replication of double-stranded DNA was observed only with extracts obtained from low-speed centrifugation using demembraned sperm nuclei as substrate. Nuclei are reconstituted around the DNA and then undergo a series of events characteristic of a cell cycle. In contrast, neither DNA elongation or chromatin assembly require formation of the nucleus, and both are independent of the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号