首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Broccoli florets contain low levels of 3-methylsuphinylpropyl and 4-methylsulphinylbutyl glucosinolates. Following tissue disruption, these glucosinolates are hydrolysed to the corresponding isothiocyanates (ITCs), which have been associated with anticarcinogenic activity through a number of physiological mechanisms including the induction of phase II detoxification enzymes and apoptosis. In this paper, we describe the development of ITC-enriched broccoli through the introgression of three small segments of the genome of Brassica villosa, a wild relative of broccoli, each containing a quantitative trait locus (QTL), into a broccoli genetic background, via marker-assisted selection and analysis of glucosinolates in the florets of backcross populations. Epistatic and heterotic effects of these QTLs are described. The ITC-enriched broccoli had 80-times the ability to induce quinone reductase (a standard assay of phase II induction potential) when compared to standard commercial broccoli, due both to an increase in the precursor glucosinolates and a greater conversion of these into ITCs.  相似文献   

2.
Seed glucosinolate content in Brassica juncea is a complex quantitative trait. A recurrent selection backcross (RSB) method with a doubled haploid (DH) generation interspersing backcross generations was used for the introgression of low glucosinolate alleles from an east European gene pool B. juncea line, Heera into an Indian gene pool variety, Varuna. Phenotypic comparisons among the DH populations derived from early to advanced backcrosses revealed a shift in the mean values for various glucosinolates with the advancement of backcrossing, indicating a change in the selective values of the alleles with change in the genetic background due to the existence of epistasis and context dependencies. QTL mapping for various seed glucosinolates from early (F1DH) and advanced generation (BC4DH) populations confirmed the presence of epistasis and context dependency. The common QTL detected in both F1DH and BC4DH changed their R 2 values from the former to the later generation. Some of the QTL detected in the F1DH became irrelevant in the BC4DH population. Further, new QTL were detected in the BC4DH population for various glucosinolates. A validation study on a population of low glucosinolate DH lines derived from all the backcross generations of the RSB breeding programme revealed that the QTL detected in BC4DH were the ‘true’ QTL. Using glucosinolate as an example, the study provides strong evidence for the importance of the RSB method for the identification of the ‘true’ QTL which would be significant for marker assisted introgression of a complex quantitative trait whose expression is influenced by epistatic interactions. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Authors N. Ramchiary, N. C. Bisht, V. Gupta, A. Mukhopadhyay and N. Arumugam have contributed equally to this work.  相似文献   

3.
Two recent studies have mapped QTLs associated with the level of seed glucosinolates in oilseed rape (Brassica napus L.). It was likely that the two most significant QTLs identified in each study were the same, as they were linked to RFLP alleles identified by common DNA probes. To investigate the utility of these probes in breeding programmes, they were used to study RFLPs in a range of low- and high-glucosinolate cultivars and breeding lines. It was shown that all low glucosinolate spring and winter cultivars possessed a specific RFLP fragment identified by probe wg3f7 which is linked to theGSL-1 QTL, and all high-glucosinolate cultivars possessed a specific RFLP fragment identified by probe wg7a8, which is linked to theGSL-2 QTL. Cultivar Ariana, which has intermediate levels of glucosinolates possessed the low-glucosinolate fragment atGSL-1 but the high-glucosinolate fragment atGSL-2. A similar result was found with the cvs. Martina and Bronowski which have intermediate and variable levels of glucosinolates. There were no other RFLP fragments identified by other DNA probes which were specific to either the low- or high-glucosinolate phenotypes. The use of probes wg3f7 and wg7a8 in selection of low-glucosinolate lines in breeding programmes is discussed.  相似文献   

4.
Breeding of oilseed rape (Brassica napus ssp. napus) has evoked a strong bottleneck selection towards double-low (00) seed quality with zero erucic acid and low seed glucosinolate content. The resulting reduction of genetic variability in elite 00-quality oilseed rape is particularly relevant with regard to the development of genetically diverse heterotic pools for hybrid breeding. In contrast, B. napus genotypes containing high levels of erucic acid and seed glucosinolates (++ quality) represent a comparatively genetically divergent source of germplasm. Seed glucosinolate content is a complex quantitative trait, however, meaning that the introgression of novel germplasm from this gene pool requires recurrent backcrossing to avoid linkage drag for high glucosinolate content. Molecular markers for key low-glucosinolate alleles could potentially improve the selection process. The aim of this study was to identify potentially gene-linked markers for important seed glucosinolate loci via structure-based allele-trait association studies in genetically diverse B. napus genotypes. The analyses included a set of new simple-sequence repeat (SSR) markers whose orthologs in Arabidopsis thaliana are physically closely linked to promising candidate genes for glucosinolate biosynthesis. We found evidence that four genes involved in the biosynthesis of indole, aliphatic and aromatic glucosinolates might be associated with known quantitative trait loci for total seed glucosinolate content in B. napus. Markers linked to homoeologous loci of these genes in the paleopolyploid B. napus genome were found to be associated with a significant effect on the seed glucosinolate content. This example shows the potential of Arabidopsis-Brassica comparative genome analysis for synteny-based identification of gene-linked SSR markers that can potentially be used in marker-assisted selection for an important trait in oilseed rape. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Epidemiological and mechanistic studies show health-promoting effects of glucosinolates and their breakdown products. In literature, differences in non-enzymatic glucosinolate degradation rates during food processing between different vegetables are described, which provide the basis for studying the genetic effects of this trait and breeding vegetables with high glucosinolate retention during food processing. Non-enzymatic glucosinolate degradation, induced by heat, was studied in a publicly available Brassica oleracea doubled haploid population. Data were modeled to obtain degradation rate constants that were used as phenotypic traits to perform quantitative trait loci (QTL) mapping. Glucosinolate degradation rate constants were determined for five aliphatic and two indolic glucosinolates. Degradation rates were independent of the initial glucosinolate concentration. Two QTL were identified for the degradation rate of the indolic glucobrassicin and one QTL for the degradation of the aliphatic glucoraphanin, which co-localized with one of the QTL for glucobrassicin. Factors within the plant matrix might influence the degradation of different glucosinolates in different genotypes. In addition to genotypic effects, we demonstrated that growing conditions influenced glucosinolate degradation as well. The study identified QTL for glucosinolate degradation, giving the opportunity to breed vegetables with a high retention of glucosinolates during food processing, although the underlying mechanisms remain unknown.  相似文献   

6.
The biochemical and genetical relationship between aliphatic glucosinolates which have methylthioalkyl, methylsulphinylalkyl and alkenyl side chains has not been resolved by biochemical studies. In this study, two hypothetical models are tested by the genetic analysis of a backcross population between Brassica drepanensis and B. atlantica. The results support one of the models in which 3-methylthiopropyl glucosinolate is sequentially converted to 3-methylsulphinylpropyl, and then to 2-propenyl glucosinolate, by the action of dominant alleles at two loci. RFLP mapping positioned both loci on the same linkage group homologous to the B. napus N19 linkage group. The implication of the results for the genetic manipulation of glucosinolates in Brassica to improve flavour and nutritional properties, and in order to investigate plant-insect interactions, is discussed.  相似文献   

7.
8.
Methylthioalkylmalate (MAM) synthases and their associated genes that have been extensively investigated in Arabidopsis control the side-chain elongation of methionine during the synthesis of aliphatic glucosinolates. A Brassica homolog of the Arabidopsis MAM genes was used in this study to analyze the role of MAM genes in B. napus through RNA interference (RNAi). The silencing of the MAM gene family in B. napus canola and B. napus rapeseed resulted in the reduction of aliphatic glucosinolates and total glucosinolate content. The results indicated that RNAi has potential for reducing glucosinolate content and improving meal quality in B. napus canola and rapeseed cultivars. Interestingly, MAM gene silencing in B. napus significantly induced the production of 2-propenyl glucosinolate, a 3-carbon side-chain glucosinolate commonly found in B. juncea mustard. Most transgenic plants displayed induction of 2-propenyl glucosinolate; however, the absolute content of this glucosinolate in transgenic B. napus canola was relatively low (less than 1.00 μmol g−1 seed). In the high glucosinolate content progenies derived from the crosses of B. napus rapeseed and transgenic B. napus canola, MAM gene silencing strongly induced the production of 2-propenyl glucosinolate to high levels (up to 4.45 μmol g−1 seed).  相似文献   

9.
Plants face various abiotic and biotic environmental factors and therefore need to adjust their phenotypic traits on several levels. UV‐B radiation is believed to impact herbivorous insects via host plant changes. Plant responses to abiotic challenges (UV‐B radiation) and their interaction with two aphid species were explored in a multifactor approach. Broccoli plants [Brassica oleracea L. convar. botrytis (L.), Brassicaceae] were grown in two differently covered greenhouses, transmitting either 80% (high UV‐B) or 4% (low UV‐B) of ambient UV‐B. Three‐week‐old plants were infested with either specialist cabbage aphids [Brevicoryne brassicae (L.), Sternorrhyncha, Aphididae] or generalist green peach aphids [Myzus persicae (Sulzer), Sternorrhyncha, Aphididae]. Plants grown under high‐UV‐B intensities were smaller and had higher flavonoid concentrations. Furthermore, these plants had reduced cuticular wax coverage, whereas amino acid concentrations of the phloem sap were little influenced by different UV‐B intensities. Cabbage aphids reproduced less on plants grown under high UV‐B than on plants grown under low UV‐B, whereas reproduction of green peach aphids in both plant light sources was equally poor. These results are likely related to the different specialisation‐dependent sensitivities of the two species. The aphids also affected plant chemistry. High numbers of cabbage aphid progeny on low‐UV‐B plants led to decreased indolyl glucosinolate concentrations. The induced change in these glucosinolates may depend on an infestation threshold. UV‐B radiation considerably impacts plant traits and subsequently affects specialist phloem‐feeding aphids, whereas aphid growth forces broccoli to generate specific defence responses.  相似文献   

10.
The evolutionary response of plant populations to herbivore imposed selection for defense may theoretically be constrained by the costs of defense, yet few studies convincingly demonstrate such costs. We investigated possible constraints on the evolution of defense in rapid cycling Brassica rapa by divergently selecting lines for investment in foliar glucosinolate content, a chemical defense in this species. Costs would then result in a significant correlated response to artificially imposed selection in the direction opposite to the direct response of foliar glucosinolate production. Correlated responses of date of first flowering, total flower number, number of seeds per fruit, and mean seed mass were examined. After three generations of selection, there was a significant direct response in glucosinolate content of the leaves of B. rapa. Furthermore, we found significant correlated responses in both total flower production and number of seeds produced per fruit, but not date of first flowering or mean seed mass. Lines selected for high glucosinolates produced fewer flowers and seeds per fruit compared to those selected for low glucosinolates while lines selected for low glucosinolates showed the opposite response. Thus, costs of defense were demonstrated and may constrain the evolution of foliar glucosinolate production in this plant species.  相似文献   

11.
Epidemiological studies suggest that broccoli can decrease risk for cancer. Broccoli contains many bioactives, including vitamins C and E, quercetin and kaempferol glycosides and, like other members of the Brassicaceae, several glucosinolates, including glucobrassicin (3-indolylmethyl glucosinolate) and glucoraphanin (4-methylsulphinylbutyl glucosinolate). A key bioactive component responsible for much of this activity may be sulforaphane (1-isothiocyanato-4-methylsulfinylbutane), a hydrolysis product of glucoraphanin. Sulforaphane not only upregulates a number of phase II detoxification enzymes involved in clearance of chemical carcinogens and reactive oxygen species, but has anti-tumorigenic properties, causing cell cycle arrest and apoptosis of cancer cells. The bioequivalency of sulforaphane and whole broccoli have not been fully evaluated, leaving it unclear whether whole broccoli provides a similar effect to purified sulforaphane, or whether the presence of other components in broccoli, such as indole-3-carbinol from glucobrassicin, is an added health benefit. Dietary indole-3-carbinol is known to alter estrogen metabolism, to cause cell cycle arrest and apoptosis of cancer cells and, in animals, to decrease risk for breast cancer. Recent research suggests that both dietary broccoli and the individual components sulforaphane and indole-3-carbinol may offer protection from a far broader array of diseases than cancer, including cardiovascular and neurodegenerative diseases. A common link between these oxidative degenerative diseases and cancer may be aggravation by inflammation. A small body of literature is forming suggesting that both indole-3-carbinol and sulforaphane may protect against inflammation, inhibiting cytokine production. It remains to be seen whether cancer, cardiovascular disease, dementia and other diseases of aging can all benefit from a diet rich in broccoli and other crucifers.  相似文献   

12.
1. Plant resistance against herbivores can act directly (e.g. by producing toxins) and indirectly (e.g. by attracting natural enemies of herbivores). If plant secondary metabolites that cause direct resistance against herbivores, such as glucosinolates, negatively influence natural enemies, this may result in a conflict between direct and indirect plant resistance. 2. Our objectives were (i) to test herbivore‐mediated effects of glucosinolates on the performance of two generalist predators, the marmalade hoverfly (Episyrphus balteatus) and the common green lacewing (Chrysoperla carnea) and (ii) to test whether intraspecific plant variation affects predator performance. 3. Predators were fed either Brevicoryne brassicae, a glucosinolate‐sequestering specialist aphid that contains aphid‐specific myrosinases, or Myzus persicae, a non‐sequestering generalist aphid that excretes glucosinolates in the honeydew, reared on four different white cabbage cultivars. Predator performance and glucosinolate concentrations and profiles in B. brassicae and host‐plant phloem were measured, a novel approach as previous studies often measured glucosinolate concentrations only in total leaf material. 4. Interestingly, the specialist aphid B. brassicae selectively sequestered glucosinolates from its host plant. The performance of predators fed this aphid species was lower than when fed M. persicae. When fed B. brassicae reared on different cultivars, differences in predator performance matched differences in glucosinolate profiles among the aphids. 5. We show that not only the prey species, but also the plant cultivar can have an effect on the performance of predators. Our results suggest that in the tritrophic system tested, there might be a conflict between direct and indirect plant resistance.  相似文献   

13.
Elevated atmospheric CO2 is known to affect plant–insect herbivore interactions. Elevated CO2 causes leaf nitrogen to decrease, the ostensible cause of herbivore compensatory feeding. CO2 may also affect herbivore consumption by altering chemical defenses via changes in plant hormones. We considered the effects of elevated CO2, in conjunction with soil fertility and damage (simulated herbivory), on glucosinolate concentrations of mustard (Brassica nigra) and collard (B. oleracea var. acephala) and the effects of leaf nitrogen and glucosinolate groups on specialist Pieris rapae consumption. Elevated CO2 affected B. oleracea but not B. nigra glucosinolates; responses to soil fertility and damage were also species‐specific. Soil fertility and damage also affected B. oleracea glucosinolates differently under elevated CO2. Glucosinolates did not affect P. rapae consumption at either CO2 concentration in B. nigra, but had CO2‐specific effects on consumption in B. oleracea. At ambient CO2, leaf nitrogen had strong effects on glucosinolate concentrations and P. rapae consumption but only gluconasturtiin was a feeding stimulant. At elevated CO2, direct effects of leaf nitrogen were weaker, but glucosinolates had stronger effects on consumption. Gluconasturtiin and aliphatic glucosinolates were feeding stimulants and indole glucosinolates were feeding deterrents. These results do not support the compensatory feeding hypothesis as the sole driver of changes in P. rapae consumption under elevated CO2. Support for hormone‐mediated CO2 response (HMCR) was mixed; it explained few treatment effects on constitutive or induced glucosinolates, but did explain patterns in SEMs. Further, the novel feeding deterrent effect of indole glucosinolates under elevated CO2 in B. oleracae underscores the importance of defensive chemistry in CO2 response. We speculate that P. rapae indole glucosinolate detoxification mechanisms may have been overwhelmed under elevated CO2 forcing slowed consumption. Specialists may have to contend with hosts with poorer nutritional quality and more effective chemical defenses under elevated CO2.  相似文献   

14.
Feng J  Long Y  Shi L  Shi J  Barker G  Meng J 《The New phytologist》2012,193(1):96-108
? Glucosinolates are a major class of secondary metabolites found in the Brassicaceae, whose degradation products are proving to be increasingly important for human health and in crop protection. ? The genetic and metabolic basis of glucosinolate accumulation was dissected through analysis of total glucosinolate concentration and its individual components in both leaves and seeds of a doubled-haploid (DH) mapping population of oilseed rape/canola (Brassica napus). ? The quantitative trait loci (QTL) that had an effect on glucosinolate concentration in either or both of the organs were integrated, resulting in 105 metabolite QTL (mQTL). Pairwise correlations between individual glucosinolates and prior knowledge of the metabolic pathways involved in the biosynthesis of different glucosinolates allowed us to predict the function of genes underlying the mQTL. Moreover, this information allowed us to construct an advanced metabolic network and associated epistatic interactions responsible for the glucosinolate composition in both leaves and seeds of B. napus. ? A number of previously unknown potential regulatory relationships involved in glucosinolate synthesis were identified and this study illustrates how genetic variation can affect a biochemical pathway.  相似文献   

15.
芥子油苷(glucosinolates)是十字花科植物中一类含氮、含硫的次生代谢产物,与其水解产物在植物防御功能中有重要意义且与环境因子关系密切.通过控制供水的方式对营养生长时期的拟南芥幼苗进行水分胁迫,观察了土壤自然干旱对营养生长时期拟南芥莲座叶芥子油苷含量及组成的影响.结果表明,土壤自然干旱处理下,拟南芥莲座叶的芥子油苷总量从处理3 d起低于对照,且随着处理天数的增加与对照组的差异逐渐增大,脂肪族芥子油苷的响应均比较明显,与芥子油苷总量的变化趋势基本一致,而吲哚族芥子油苷对水分胁迫则不敏感.脂肪族中的4-甲基亚磺酰丁基芥子油苷(4-methylsulphinylbutyl GS,4MSOB)占脂肪族芥子油苷的比例最大,它的含量变化成为影响莲座叶中芥子油苷组合模式的主导因素.  相似文献   

16.
QTL mapping of glucosinolates in a RI population derived from an F1 hybrid between the Arabidopsis thaliana ecotypes Columbia and Landsberg erecta identified a single major QTL coincident with the GSL-ELONG locus which regulates side chain elongation. Physical mapping and sequencing identified two members of an isopropylmalate synthase-like gene family within the region of maximum LOD score for the QTL and the GSL-ELONG non-recombinant region. These genes are prime candidates for regulating glucosinolate biosynthesis. Received: 19 November 1999 / Accepted: 16 December 1999  相似文献   

17.
18.
We report the RFLP mapping of quantitative trait loci (QTLs) which regulate the total seed aliphaticglucosinolate content in Brassica napus L. A population of 99 F1-derived doubled-haploid (DH) recombinant lines from a cross between the cultivars Stellar (low-glucosinolate) and Major (high-glucosinolate) was used for singlemarker analysis and the interval mapping of QTLs associated with total seed glucosinolates. Two major loci, GSL-1 and GSL-2, with the largest influence on total seed aliphatic-glucosinolates, were mapped onto LG 20 and LG 1, respectively. Three loci with smaller effects, GSL-3, GSL-4 and GSL-5, were tentatively mapped to LG 18, LG 4 and LG 13, respectively. The QTLs acted in an additive manner and accounted for 71 % of the variation in total seed glucosinolates, with GSL-1 and GSL-2 accounting for 33% and 17%, respectively. The recombinant population had aliphatic-glucosinolate levels of between 6 and 160 moles per g-1 dry wt of seed. Transgressive segregation for high seed glucosinolate content was apparent in 25 individuals. These phenotypes possessed Stellar alleles at GSL-3 and Major alleles at the four other GSL loci demonstrating that low-glucosinolate genotypes (i.e. Stellar) may possess alleles for high glucosinolates which are only expressed in particular genetic backgrounds. Gsl-elong and Gsl-alk, loci which regulate the ratio of individual aliphatic glucosinolates, were also mapped. Gsl-elong-1 and Gsl-elong-2, which control elongation of the -amino-acid precursors, mapped to LG 18 and LG 20 and were coincident with GSL loci which regulate total seed aliphatic glucosinolates. A third tentative QTL, which regulates side-chain elongation, was tentatively mapped to LG 12. Gsl-alk, which regulates H3CS-removal and side-chain de-saturation, mapped to LG 20.  相似文献   

19.
Secondary metabolites are a diverse set of plant compounds believed to have numerous functions in plant-environment interactions. Despite this importance, little is known about the regulation of secondary metabolite accumulation. We are studying the regulation of glucosinolates, a large group of secondary metabolites, in Arabidopsis to investigate how secondary metabolism is controlled. We utilized Ler and Cvi, two ecotypes of Arabidopsis that have striking differences in both the types and amounts of glucosinolates that accumulate in the seeds and leaves. QTL analysis identified six loci determining total aliphatic glucosinolate accumulation, six loci controlling total indolic glucosinolate concentration, and three loci regulating benzylic glucosinolate levels. Our results show that two of the loci controlling total aliphatic glucosinolates map to biosynthetic loci that interact epistatically to regulate aliphatic glucosinolate accumulation. In addition to the six loci regulating total indolic glucosinolate concentration, mapping of QTL for the individual indolic glucosinolates identified five additional loci that were specific to subsets of the indolic glucosinolates. These data show that there are a large number of variable loci controlling glucosinolate accumulation in Arabidopsis thaliana.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号