首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The enzyme glutathione reductase (GR) recycles oxidized glutathione (GSSG) by converting it to the reduced form (GSH) in an NADPH-dependent manner. A specific antibody raised against recombinant rat GR was used to localize the protein in the female reproductive organs during the estrous cycle in the rat. In the ovary, the strongest reactivity to the antibody was observed in oocytes, followed by granulosa cells, corpus luteum, and interstitial cells. A strongly positive reaction was also observed mainly in the oviduct epithelia, uterine epithelia, and endometrial gland in the reproductive tract. Oviducts contained the highest GR activity. The GR activity of uterus during metestrus was about twice as high as that for other stages of the cycle. The levels of GR proteins in the tissues roughly matched the activities. The expression of the GR mRNA was highest during metestrus. Because GSH is known to increase gamete viability and the efficiency of fertility, GR, which is expressed in these tissues, is predicted to play a pivotal role in the reproduction process as a source of GSH.  相似文献   

3.
4.
5.
Mammalian homologues of the Drosophila Iroquois homeobox gene complex, involved in patterning and regionalization of differentiation, have recently been identified (Mech. Dev., 69 (1997) 169; Dev. Biol., 217 (2000) 266; Dev. Dyn., 218 (2000) 160; Mech. Dev., 91 (2000) 317; Dev. Biol., 224 (2000) 263; Genome Res., 10 (2000) 1453; Mech. Dev., 103 (2001) 193). The six members of the murine family were found to be organized in two cognate clusters of three genes each, Irx1, -2, -4 and Irx3, -5, -6, respectively (Peters et al., 2000). As a basis for further study of their regulation and function we performed a comparative analysis of the genomic organization and of the expression patterns of all six Irx genes. The genes are expressed in highly specific and regionalized patterns of ectoderm, mesoderm and endoderm derived tissues. In most tissues the pattern of expression of the clustered genes, especially of Irx1 and -2 and of Irx3 and -5, respectively, closely resembled each other while those of Irx4 and -6 were very divergent. Interestingly, the expression of cognate genes was found to be mutually exclusive in adjacent and interacting tissues of limb, heart and the laryncho-pharyncheal region. The results indicate that the Irx genes are coordinately regulated at the level of the cluster.  相似文献   

6.
In the mammalian ovary, great interest in the expression and function of the bone morphogenetic protein (BMP) family has been recently generated from evidence of their critical role in determining folliculogenesis and female fertility. Despite extensive work, there is a need to understand the cellular sites of expression of these important regulatory molecules, and how their gene expression changes within the basic ovary cell types through the cycle. Here we have performed a detailed in situ hybridization analysis of the spatial and temporal expression patterns of the BMP ligands (BMP-2, -3, -3b, -4, -6, -7, -15), receptors (BMPR-IA, -IB, -II), and BMP antagonist, follistatin, in rat ovaries over the normal estrous cycle. We have found that: i) all of the mRNAs are expressed in a cell-specific manner in the major classes of ovary cell types (oocyte, granulosa, theca interstitial, theca externa, corpora lutea, secondary interstitial, vascular and ovary surface epithelium); and ii) most undergo dynamic changes during follicular and corpora luteal morphogenesis and histogenesis. The general principle to emerge from these studies is that the developmental programs of folliculogenesis (recruitment, selection, atresia), ovulation, and luteogenesis (luteinization, luteolysis) are accompanied by rather dramatic spatial and temporal changes in the expression patterns of these BMP genes. These results lead us to hypothesize previously unanticipated roles for the BMP family in determining fundamental developmental events that ensure the proper timing and developmental events required for the generation of the estrous cycle.  相似文献   

7.
Estrous cyclicity was studied to examine the possibility that strain differences in the regularity of the mouse estrous cycle are the result of different olfactory signals produced by the male. Females with regular estrous cycles (lines E and S1) were housed in the olfactory presence of males from a line with irregular cycles (line CN-) or in the presence of males of their own line (used as a control). Females with irregular cycles (line CN-) were housed in the presence of males from a line with regular cycles (line E) or were exposed to males of their own line. The regularity of the estrous cycle decreased in line E females (regular cycles) when exposed to line CN- males (irregular cycles). The decreased regularity of line E cyclicity resulted from an increased period of diestrus, i.e., lengthening of the cycle. In contrast, line S1 females (regular cycles) did not show any change in estrous cyclicity when exposed to line CN- males. The period of diestrus increased in line CN- females when they were exposed to line E males. These results provide evidence that 1) the genotype of the male can influence the regularity of the estrous cycle, and 2) the genotype of the female regulates her responsiveness to environmental factors (e.g., male odor).  相似文献   

8.
Small proline-rich (SPRR) proteins are structural components of the cornified cell envelope (CE), a specialized structure beneath the plasma membrane of stratified squamous epithelia. They are divided into four families, of which SPRR2 is the most complex consisting of 11 members (2a-2k) in the mouse. To assess the possible influence of estrogen on expression of the SPRR2 family in the uterus, we examined the effect of 17b-estradiol (E2) on SPRR2 mRNA levels on ovariectomized (OVX) adult mice. We employed a combination of laser capture microdissection (LCM) and semiquantitative RT-PCR to examine expression in particular uterine cell types - luminal epithelia, and stromal and muscle cells. We also used quantitative real-time PCR to measure levels of the mRNA of several SPRR2 proteins in the mouse uterus over the estrous cycle and during early pregnancy. Expression of SPRR2a, 2b, 2c, 2d, 2e, 2f and 2g mRNA was increased by estrogen treatment. SPRR2a, 2b, 2d and 2e were highly expressed on day 1 and 2 of pregnancy, but decreased markedly by days 3-6. Interestingly, several members of the SPRR2 family were preferentially up-regulated at implantation sites compared to inter-implantation sites around day 4 of pregnancy. They were abundant during proestrus and estrus but declined rapidly during metestrus. These results indicate that estrogen is a key regulator of the expression of the SPRR2 family in the mouse uterus during the estrous cycle and early pregnancy. In addition, they suggest that some members of the family play an important role in uterine processes such as the estrous cycle, early pregnancy and implantation.  相似文献   

9.
10.
R Torii  N Ohsawa 《Jikken dobutsu》1988,37(4):473-477
Urinary total polyamines; putrescine, spermidine and cadaverine, levels were determined in the estrous cycle and during the pregnancy in female Wistar rats. Urinary total polyamines level in 12 estrous cycles in 4 female rats revealed the definite cyclic changes, showing high levels at estrous and low levels at diestrous stage. After the ovariectomy those cyclic changes disappeared. Urinary total polyamines levels were constantly low during the first half of the pregnancy of 8 female rats, whereas the levels increase abruptly from 10 days before parturition. After fetusectomy at 15th and 17th days of the pregnancy, those levels decreased gradually. These data suggested that the urinary total polyamines levels were closely related with the pituitary-ovarian function and the growth of fetus of rats.  相似文献   

11.
12.
13.
The physiological role of lactoferrin (LF), the major estrogen-inducible protein in the murine uterus, is unclear; however, LF may be a useful marker for the study of estrogen action in the uterus. Thus, the expression of LF mRNA and the localization of the protein in genital tract tissues and secretions of female mice (6-8 wk old) at different stages of the estrous cycle were investigated. Uterine luminal fluid (ULF) was analyzed for LF by means of gel electrophoresis and Western blot techniques; LF mRNA and protein were identified in reproductive tract tissues through in situ hybridization and immunocytochemistry. At diestrus, the level of LF mRNA was low, and staining for the protein was very light in uterine epithelial cells; LF was undetectable in ULF. At proestrus, LF mRNA and protein increased in the uterine epithelium and LF was readily detectable in ULF. LF mRNA and protein reached the highest levels at estrus. At early metestrus as compared to estrus, LF mRNA and protein were detected in decreasing amounts in uterine epithelial cells; the protein was undetected in ULF. By late metestrus and diestrus, LF mRNA and protein returned to a low level, and the protein was undetectable in ULF. LF protein was also demonstrated by immunocytochemistry in the epithelium of the oviduct, cervix, and vagina. LF protein fluctuation similar to that observed in the uterus was seen in these tissues; however, the uterus demonstrated the most dramatic changes in the number of epithelial cells involved in LF production during the estrous cycle. In summary, LF mRNA and its expression in uterine epithelial cells of the mouse varied with the stage of the estrous cycle. These results, combined with previously reported findings that LF is a major constituent of mouse ULF under the influence of estrogen, suggest that LF may play an important role in normal reproductive processes.  相似文献   

14.
Sex steroid hormones influence insulin homeostasis and glucose metabolism, estradiol (E2) and progesterone (P4) induce changes in both fasting and postprandial insulinemia in rodents, however, insulin gene expression during estrous cycle is unknown. The aim of the present study was to determine an insulin gene expression pattern during the estrous cycle in the rat. Groups of 6 adult rats in each day of the estrous cycle were used. Serum P4, E2, testosterone (T) and insulin concentrations were determined by radioimmunoassay (RIA). A Northern blot analysis was performed to assess insulin gene expression in pancreatic tissue. We found a marked variation in insulin gene expression during the estrous cycle. The highest insulin expression was observed during the proestrus day. Interestingly, E2 and P4 but not T levels were correlated with changes in insulin mRNA content. The variations in serum insulin during the cycle were correlated with its mRNA content in pancreas. The overall results showed variations in serum insulin and insulin gene expression during estrous cycle of the rat that correlated with circulating E2 and P4 levels.  相似文献   

15.
Li X  Su J  Lei Z  Zhao Y  Jin M  Fang R  Zheng L  Jiao Y 《Peptides》2012,36(2):176-185
Since its discovery, gonadotropin-inhibitory hormone (GnIH) has appeared to act as a key neuropeptide in the control of vertebrate reproduction. GnIH acts via the novel G protein-coupled receptor 147 (GPR147) to inhibit gonadotropin release and synthesis. To determine the physiological functions of GnIH in the pig, a study was conducted to clone and sequence the cDNA of the GnIH precursor and GPR147. Our results demonstrated that the cloned pig GnIH precursor cDNA encoded three LPXRF and that its receptor possessed typical transmembrane features. Subsequently, tissue expression studies revealed that GnIH was mainly expressed in the brain, corresponding largely with the tissue expression patterns of GPR147 in the pig. The expression patterns in the reproductive axis of the female pig across the estrous cycle were also systemically investigated. The hypothalamic levels of both GnIH and its receptor mRNA were lowest in estrus and peaked in the proestrus and diestrus phases. The highest pituitary GnIH mRNA level was detected in the metestrus, and its receptor displayed a somewhat similar pattern of expression to that of the ligand. However, the expression patterns of GnIH and GPR147 were negatively correlated in the ovary. Immunolocalization in the ovary during the estrous cycle revealed that the immunoreactivities of GnIH and GPR147 were mainly localized in the granulosa and theca cells of the antral follicles during proestrus and estrus and in the luteal cells during metestrus and diestrus. Taken together, this research provided molecular and morphological data for further study of GnIH in the pig.  相似文献   

16.
Yang YJ  Liu WM  Zhou JX  Cao YJ  Li J  Peng S  Wang L  Yuan JG  Duan EK 《Life sciences》2006,78(7):753-760
Calcyclin-binding protein (Siah-1-Interacting Protein, CacyBP/SIP), is a calcium signaling protein involved in the degradation of beta-catenin, however, little is known about its role in reproductive biology. The present study was to character its temporospatial expression pattern and regulation in mouse uterus and to investigate whether it plays a role in the regulation of normal endometrial events. While prominently expressed in both luminal and glandular epithelia, CacyBP underwent dynamic changes during early pregnancy. CacyBP expression was observed weakly from days 1-4. An intense accumulation in luminal and glandular epithelia as well as decidua surrounding the embryo at later stages (days 5-7) was observed. Most notably, CacyBP accumulation in trophoblast was pronounced at day 7. Using ovariectomized and pseudopregnant mice, we found that progesterone (P(4)) and 17beta-estradiol (E(2)) led to increased expression of CacyBP gene and this could be abolished by Ru486 and tamoxifen, respectively. Antisense oligonucleotides (ODNs) against CacyBP significantly inhibited cultured endometrial stromal cells' (ESCs) apoptosis induced by UV irradiation. Injection of antisense ODNs into mouse uterine horn severely impaired the number of implanted blastocysts. Taken together, our results suggested that CacyBP expression was positively regulated by P(4) and E(2). CacyBP may be involved in the regulation of endometrial cell apoptosis during early pregnancy and play an important role in mouse endometrial events such as pregrancy establishment.  相似文献   

17.
Recent identification of plasminogen activator inhibitor-1 (PAI-1) in the pig oviduct has prompted an evaluation of its mRNA, protein synthesis, and hormonal regulation during the estrous cycle and early pregnancy, defined as time prior to and after maternal recognition of pregnancy. To examine PAI-1 protein synthesis, oviductal tissue was collected from European Large White and Chinese Meishan gilts on days 0, 2, and 5 of early pregnancy, divided into three functional segments, and cultured. Culture media was collected and de novo synthesized PAI-1 analyzed by 2D-SDS-PAGE, fluorography, and densitometry. To determine hormonal regulation of PAI-1 synthesis and secretion, four groups of ovariectomized (OVX) cross-bred gilts were each treated with one of four steroid regimens (corn oil, estrogen, progesterone, or estrogen + progesterone) and tissue collected for RNA or cultured. Steady-state mRNA levels of PAI-1 were evaluated throughout the estrous cycle in cross-bred gilts. To compare steady-state PAI-1 mRNA levels between cyclic and pregnant cross-bred gilts, tissue was collected on days 0, 2, and 12. Quantitative analysis of steady-state levels of PAI-1 mRNA were analyzed by dot-blot hybridization and densitometry. A greater (P < 0.01) synthesis and secretion of PAI-1 protein was found in the isthmus portion of the oviduct relative to either the ampulla or infundibulum regardless of day of pregnancy or breed. No difference could be detected for PAI-1 protein between breeds. The Large White had a greater (P < 0.05) secretion of PAI-1 on day 2 of early pregnancy relative to other days examined. Whole oviductal tissue from cross-bred gilts was found to have a significantly greater amount of PAI-1 mRNA on days 1 and 2 compared to other days examined, while the isthmus had significantly greater levels of mRNA on days 2 and 12. A significant effect of day and segment was detected for levels of PAI-1 mRNA from cyclic and early pregnant cross-bred gilts. PAI-1 mRNA was found to be significantly greater in the isthmus than other segments, regardless of day of the estrous cycle or pregnancy. An interaction was detected for estrogen and progesterone on PAI-1 mRNA (P < 0.05) and protein (P = 0.09). Estrogen was found to inhibit PAI-1 protein synthesis and also inhibited progesterone-mediated stimulation of PAI-1 mRNA. Our results demonstrate expression of PAI-1 mRNA and protein are highest on day 2 of early pregnancy, which is consistent with its proposed function of protecting the oocyte/embryo from enzymatic degradation and/or extracellular matrix remodeling of both oviduct and early cleavage-stage embryo.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号