首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang H  Paguio M  Roepe PD 《Biochemistry》2004,43(26):8290-8296
Recently, mutations in the novel polytopic integral membrane protein PfCRT were shown to cause chloroquine resistance (CQR) in the malarial parasite Plasmodium falciparum. PfCRT is not a member of the well-known family of ABC proteins that have previously been associated with other drug resistance phenomena. Thus, the mechanism(s) whereby mutant PfCRT molecules confer antimalarial drug resistance is (are) unknown. Previously, we succeeded in overexpressing PfCRT to high levels in Pichia pastoris yeast by synthesizing a codon-optimized version of the pfcrt gene. Using purified membranes and inside-out plasma membrane vesicles (ISOV) isolated from strains harboring either wild-type or CQR-associated mutant PfCRT, we now show that under deenergized conditions the PfCRT protein specifically binds the antimalarial drug chloroquine (CQ) with a K(D) near 400 nM but does not measurably bind the related drug quinine (QN) at physiologically relevant concentrations. Transport studies using ISOV show that QN is passively accumulated as expected on the basis of previous measurement of the ISOV DeltapH for the different strains. However, passive accumulation of CQ is lower than expected for ISOV harboring mutant PfCRT, despite higher DeltapH for these ISOV.  相似文献   

2.
3.
Spread of chloroquine resistance in Plasmodium falciparum   总被引:14,自引:0,他引:14  
Malaria resistant to chloroquine has now been confirmed in more than 40 countries. The drug was introduced in 1934, but was not in large-scale use until the early 1950s. Anecdotal reports suggest that resistance emerged as early as 1957 both in Colombia and along the then Cambodia-Thailand border area. But by 1960, resistance in these areas was confirmed - and may represent two separate events. Resistance spread rapidly, with a new focus of resistance confirmed in East Africa by 1977. Chloroquine resistance represents a severe problem both for prophylaxis and treatment of malaria. In this aricle, David Payne traces the spread of resistance and discusses some of its implications.  相似文献   

4.
The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within‐host competition with wild‐type drug‐sensitive parasites. To examine these selective forces in vitro, we genetically engineered P. falciparum to express geographically diverse PfCRT haplotypes. Variant alleles from the Philippines (PH1 and PH2, which differ solely by the C72S mutation) both conferred a moderate gain of chloroquine resistance and a reduction in growth rates in vitro. Of the two, PH2 showed higher IC50 values, contrasting with reduced growth. Furthermore, a highly mutated pfcrt allele from Cambodia (Cam734) conferred moderate chloroquine resistance and enhanced growth rates, when tested against wild‐type pfcrt in co‐culture competition assays. These three alleles mediated cross‐resistance to amodiaquine, an antimalarial drug widely used in Africa. Each allele, along with the globally prevalent Dd2 and 7G8 alleles, rendered parasites more susceptible to lumefantrine, the partner drug used in the leading first‐line artemisinin‐based combination therapy. These data reveal ongoing region‐specific evolution of PfCRT that impacts drug susceptibility and relative fitness in settings of mixed infections, and raise important considerations about optimal agents to treat chloroquine‐resistant malaria.  相似文献   

5.
Chloroquine resistance in Plasmodium falciparum has recently been shown to result from mutations in the novel vacuolar transporter, PfCRT. Field studies have demonstrated the importance of these mutations in clinical resistance. Although a pfcrt ortholog has been identified in Plasmodiumvivax, there is no association between in vivo chloroquine resistance and codon mutations in the P. vivax gene. This is consistent with lines of evidence that suggest alternative mechanisms of chloroquine resistance among various malaria parasite species.  相似文献   

6.
Resistance to chloroquine of malaria strains is known to be associated with a parasite protein named PfCRT, the mutated form of which is able to reduce chloroquine accumulation in the digestive vacuole of the pathogen. Whether the protein mediates extrusion of the drug acting as a channel or as a carrier and which is the protonation state of its chloroquine substrate is the subject of a scientific debate. We present here an analytical approach that explores which combination of hypotheses on the mechanism of transport and the protonation state of chloroquine are consistent with available equilibrium experimental data. We show that the available experimental data are not, by themselves, sufficient to conclude whether the protein acts as a channel or as a transporter, which explains the origin of their different interpretation by different authors. Interestingly, though, each of the two models is only consistent with a subset of hypotheses on the protonation state of the transported molecule. The combination of these results with a sequence and structure analysis of PfCRT, which strongly suggests that the molecule is a carrier, indicates that the transported species is either or both the mono and di-protonated forms of chloroquine. We believe that our results, besides shedding light on the mechanism of chloroquine resistance in P. falciparum, have implications for the development of novel therapies against resistant malaria strains and demonstrate the usefulness of an approach combining systems biology strategies with structural bioinformatics and experimental data.  相似文献   

7.
Defining the role of PfCRT in Plasmodium falciparum chloroquine resistance   总被引:1,自引:0,他引:1  
Recent studies have highlighted the importance of a parasite protein referred to as the chloroquine resistance transporter (PfCRT) in the molecular basis of Plasmodium falciparum resistance to the quinoline antimalarials. PfCRT, an integral membrane protein with 10 predicted transmembrane domains, is a member of the drug/metabolite transporter superfamily and is located on the membrane of the intra-erythrocytic parasite's digestive vacuole. Specific polymorphisms in PfCRT are tightly correlated with chloroquine resistance. Transfection studies have now proven that pfcrt mutations confer verapamil-reversible chloroquine resistance in vitro and reveal their important role in resistance to quinine. Available evidence is consistent with the view that PfCRT functions as a transporter directly mediating the efflux of chloroquine from the digestive vacuole.  相似文献   

8.
G A Rogers  S M Parsons 《Biochemistry》1992,31(25):5770-5777
The acetylcholine (AcCh) binding site in the AcCh transporter-vesamicol receptor (AcChT-VR) present in synaptic vesicles isolated from the electric organ of Torpedo was characterized. A high-affinity analogue of AcCh containing an aryl azido group, namely, cyclohexylmethyl cis-N-(4-azidophenacyl)-N-methylisonipecotate bromide (AzidoAcCh), was synthesized in nonradioactive and highly tritiated forms. AzidoAcCh was shown to be a competitive inhibitor of [3H]AcCh active transport and binding of [3H]-vesamicol to the allosteric site. The [3H]AzidoAcCh saturation curve was determined. In all cases the AcChT.AzidoAcCh complex exhibited an inhibition or dissociation constant of about 0.3 microM. Binding of [3H]AzidoAcCh was inhibited by vesamicol and AcCh. AzidoAcCh irreversibly blocked greater than 90% of the [3H]vesamicol binding sites after multiple rounds of photolysis and reequilibration with fresh ligand. Autofluorographs of synaptic vesicles photoaffinity-labeled with [3H]AzidoAcCh showed specific labeling of material exhibiting a continuous distribution from 50 to 250 kDa after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The result demonstrates that the AcChT has an unexpected structure highly suggestive of the synaptic vesicle proteoglycan.  相似文献   

9.
Haemoglobin degradation during the erythrocytic life stages is the major function of the food vacuole (FV) of Plasmodium falciparum and the target of several anti-malarial drugs that interfere with this metabolic pathway, killing the parasite. Two multi-spanning food vacuole membrane proteins are known, the multidrug resistance protein 1 (PfMDR1) and Chloroquine Resistance Transporter (PfCRT). Both modulate resistance to drugs that act in the food vacuole. To investigate the formation and behaviour of the food vacuole membrane we have generated inducible GFP fusions of chloroquine sensitive and resistant forms of the PfCRT protein. The inducible expression system allowed us to follow newly-induced fusion proteins, and corroborated a previous report of a direct trafficking route from the ER/Golgi to the food vacuole membrane. These parasites also allowed the definition of a food vacuole compartment in ring stage parasites well before haemozoin crystals were apparent, as well as the elucidation of secondary PfCRT-labelled compartments adjacent to the food vacuole in late stage parasites. We demonstrated that in addition to previously demonstrated Brefeldin A sensitivity, the trafficking of PfCRT is disrupted by Dynasore, a non competitive inhibitor of dynamin-mediated vesicle formation. Chloroquine sensitivity was not altered in parasites over-expressing chloroquine resistant or sensitive forms of the PfCRT fused to GFP, suggesting that the PfCRT does not mediate chloroquine transport as a GFP fusion protein.  相似文献   

10.
Efforts to control malaria worldwide have been hindered by the development and expansion of parasite populations resistant to many first-line antimalarial compounds. Two of the best-characterized determinants of drug resistance in the human malaria parasite Plasmodium falciparum are pfmdr1 and pfcrt, although the mechanisms by which resistance is mediated by these genes is still not clear. In order to determine whether mutations in pfmdr1 associated with chloroquine resistance affect the capacity of the parasite to persist when drug pressure is removed, we conducted competition experiments between P. falciparum strains in which the endogenous pfmdr1 locus was modified by allelic exchange. In the absence of selective pressure, the component of chloroquine resistance attributable to mutations at codons 1034, 1042 and 1246 in the pfmdr1 gene also gave rise to a substantial fitness cost in the intraerythrocytic asexual stage of the parasite. The loss of fitness incurred by these mutations was calculated to be 25% with respect to an otherwise genetically identical strain in which wild-type polymorphisms had been substituted at these three codons. At least part of the fitness loss may be attributed to a diminished merozoite viability. These in vitro results support recent in vivo observations that in several countries where chloroquine use has been suspended because of widespread resistance, sensitive strains are re-emerging.  相似文献   

11.
Chloroquine resistance in Plasmodium falciparum malaria results from mutations in PfCRT, a member of a unique family of transporters present in apicomplexan parasites and Dictyostelium discoideum. Mechanisms that have been proposed to explain chloroquine resistance are difficult to evaluate within malaria parasites. Here we report on the targeted expression of wild-type and mutant forms of PfCRT to acidic vesicles in D. discoideum. We show that wild-type PfCRT has minimal effect on the accumulation of chloroquine by D. discoideum, whereas forms of PfCRT carrying a key charge-loss mutation of lysine 76 (e.g. K76T) enable D. discoideum to expel chloroquine. As in P. falciparum, the chloroquine resistance phenotype conferred on transformed D. discoideum can be reversed by the channel-blocking agent verapamil. Although intravesicular pH levels in D. discoideum show small acidic changes with the expression of different forms of PfCRT, these changes would tend to promote intravesicular trapping of chloroquine (a weak base) and do not account for reduced drug accumulation in transformed D. discoideum. Our results instead support outward-directed chloroquine efflux for the mechanism of chloroquine resistance by mutant PfCRT. This mechanism shows structural specificity as D. discoideum transformants that expel chloroquine do not expel piperaquine, a bisquinoline analog of chloroquine used frequently against chloroquine-resistant parasites in Southeast Asia. PfCRT, nevertheless, may have some ability to act on quinine and quinidine. Transformed D. discoideum will be useful for further studies of the chloroquine resistance mechanism and may assist in the development and evaluation of new antimalarial drugs.  相似文献   

12.
Phytochemicals of Catharanthus roseus Linn. and Tylophora indica have been known for their inhibition of malarial parasite, Plasmodium falciparum in cell culture. Resistance to chloroquine (CQ), a widely used antimalarial drug, is due to the CQ resistance transporter (CRT) system. The present study deals with computational modeling of Plasmodium falciparum chloroquine resistance transporter (PfCRT) protein and development of charged environment to mimic a condition of resistance. The model of PfCRT was developed using Protein homology/analogy engine (PHYRE ver 0.2) and was validated based on the results obtained using PSI-PRED. Subsequently, molecular interactions of selected phytochemicals extracted from C. roseus Linn. and T. indica were studied using multiple-iterated genetic algorithm-based docking protocol in order to investigate the translocation of these legends across the PfCRT protein. Further, molecular dynamics studies exhibiting interaction energy estimates of these compounds within the active site of the protein showed that compounds are more selective toward PfCRT. Clusters of conformations with the free energy of binding were estimated which clearly demonstrated the potential channel and by this means the translocation across the PfCRT is anticipated.  相似文献   

13.
A large body of genetic, reverse genetic, and epidemiological data has linked chloroquine-resistant malaria to polymorphisms within a gene termed pfcrt in the human malarial parasite Plasmodium falciparum. To investigate the biological function of the chloroquine resistance transporter, PfCRT, as well as its role in chloroquine resistance, we functionally expressed this protein in Xenopus laevis oocytes. Our data show that PfCRT-expressing oocytes exhibit a depolarized resting membrane potential and a higher intracellular pH compared with control oocytes. Pharmacological and electrophysiological studies link the higher intracellular pH to an enhanced amiloride-sensitive H(+) extrusion and the low membrane potential to an activated nonselective cation conductance. The finding that both properties are independent of each other, together with the fact that they are endogenously present in X. laevis oocytes, supports a model in which PfCRT activates transport systems. Our data suggest that PfCRT plays a role as a direct or indirect activator or modulator of other transporters.  相似文献   

14.
15.
16.
Mutations in the Plasmodium falciparum chloroquine (CQ) resistance transporter (PfCRT) can result in verapamil-reversible CQ resistance and altered susceptibility to other antimalarials. PfCRT contains 10 membrane-spanning domains and is found in the digestive vacuole (DV) membrane of intraerythrocytic parasites. The mechanism by which PfCRT mediates CQ resistance is unclear although it is associated with decreased accumulation of drug within the DV. On the permissive background of the P. falciparum 106/1(K76) parasite line, we used single-step drug selection to generate isogenic clones containing unique pfcrt point mutations that resulted in amino acid changes in PfCRT transmembrane domains 1 (C72R, K76N, K76I and K76T) and 9 (Q352K, Q352R). The resulting changes of charge and hydropathy affected quantitative CQ susceptibility and accumulation as well as the stereospecific responses to quinine and quinidine. These results, together with a previously described S163R mutation in transmembrane domain 4, indicate that transmembrane segments 1, 4 and 9 of PfCRT provide important structural components of a substrate recognition and translocation domain. Charge-affecting mutations within these segments may affect the ability of PfCRT to bind different quinoline drugs and determine their net accumulation in the DV.  相似文献   

17.
Nearly one million deaths are attributed to malaria every year. Recent reports of multi-drug treatment failure of falciparum malaria underscore the need to understand the molecular basis of drug resistance. Multiple mutations in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) are involved in chloroquine resistance, but the evolution of complex haplotypes is not yet well understood. Using over 4,500 archival human serum specimens collected from 19 Pacific populations between 1959 and 1979, the period including and just prior to the appearance of chloroquine treatment failure in the Pacific, we PCR-amplified and sequenced a portion of the pfcrt exon 2 from 771 P. falciparum-infected individuals to explore the spatial and temporal variation in falciparum malaria prevalence and the evolution of chloroquine resistance. In the Pacific, the prevalence of P. falciparum varied considerably across ecological zones. On the island of New Guinea, the decreases in prevalence of P. falciparum in coastal, high-transmission areas over time were contrasted by the increase in prevalence during the same period in the highlands, where transmission was intermittent. We found 78 unique pfcrt haplotypes consisting of 34 amino acid substitutions and 28 synonymous mutations. More importantly, two pfcrt mutations (N75D and K76T) implicated in chloroquine resistance were present in parasites from New Hebrides (now Vanuatu) eight years before the first report of treatment failure. Our results also revealed unexpectedly high levels of genetic diversity in pfcrt exon 2 prior to the historical chloroquine resistance selective sweep, particularly in areas where disease burden was relatively low. In the Pacific, parasite genetic isolation, as well as host acquired immune status and genetic resistance to malaria, were important contributors to the evolution of chloroquine resistance in P. falciparum.  相似文献   

18.
19.
20.
D-glucose carrier protein in K562 cell membrane was studied by photoaffinity labeling with cytochalasin B. The saturable cytochalasin B binding in purified K562 cell membranes was 90 pmol/mg and 200 pmol/mg protein in the presence of D-glucose and D-sorbitol, respectively. More than half of the total cytochalasin B binding could be depressed by D-glucose. The results of SDS-PAGE analysis of K562 cell membranes after photoaffinity labeling at 0.1 microM cytochalasin B showed that the main peak of covalently bound [3H]-cytochalasin B was in the Mr range of 46-65 KDa. The label found in the peak was reduced by more than 50% in the presence of 0.5 M D-glucose, the inhibition similar being to that obtained in the binding experiment. This polypeptide has a slightly higher molecular weight than that of the human erythrocyte cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号