首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the legume phloem, sieve element occlusion (SEO) proteins assemble into Ca(2+)-dependent contractile bodies. These forisomes presumably control phloem transport by forming reversible sieve tube plugs. This function, however, has never been directly demonstrated, and appears questionable as forisomes were reported to be too small to plug sieve tubes, and failed to block flow efficiently in artificial microchannels. Moreover, plugs of SEO-related proteins in Arabidopsis sieve tubes do not affect phloem translocation. We improved existing procedures for forisome isolation and storage, and found that the degree of Ca(2+)-driven deformation that is possible in forisomes of Vicia faba, the standard object of earlier research, has been underestimated substantially. Forisomes deform particularly strongly under reducing conditions and high sugar concentrations, as typically found in sieve tubes. In contrast to our previous inference, Ca(2+)-inducible forisome swelling certainly seems sufficient to plug sieve tubes. This conclusion was supported by 3D-reconstructions of forisome plugs in Canavalia gladiata. For a direct test, we built microfluidics chips with artificial sieve tubes. Using fluorescent dyes to visualize flow, we demonstrated the complete blockage of these biomimetic microtubes by Ca(2+)-induced forisome plugs, and concluded by analogy that forisomes are capable of regulating phloem flow in vivo.  相似文献   

2.
Forisomes are contractile protein bodies that appear to control flux rates in the phloem of faboid legumes by reversibly plugging the sieve tubes. Plugging is triggered by Ca(2+) which induces an anisotropic deformation of forisomes, consisting of a longitudinal contraction and a radial expansion. By conventional light microscopy and confocal laser-scanning microscopy, the three-dimensional geometry of the forisome-sieve element-sieve plate complex in intact sieve tubes of leaflets of Vicia faba L. was reconstructed. Forisomes were mostly located close to sieve plates, and occasionally were observed drifting unrestrainedly along the sieve element, suggesting that they might be utilized as internal markers of flow direction. The diameter of forisomes in the resting state correlated with the diameter of their sieve elements, supporting the idea that radial expansion of forisomes is the geometric basis of reversible sieve tube plugging. Comparison of the present results regarding forisome geometry in situ with previously published data on forisome reactivity in vitro makes it questionable, however, whether forisomes are capable of completely sealing sieve tubes in V. faba leaves.  相似文献   

3.
Forisomes are Ca(2+)-driven, ATP-independent contractile protein bodies that reversibly occlude sieve elements in faboid legumes. They apparently consist of at least three proteins; potential candidates have been described previously as 'FOR' proteins. We isolated three genes from Medicago truncatula that correspond to the putative forisome proteins and expressed their green fluorescent protein (GFP) fusion products in Vicia faba and Glycine max using the composite plant methodology. In both species, expression of any of the constructs resulted in homogenously fluorescent forisomes that formed sieve tube plugs upon stimulation; no GFP fluorescence occurred elsewhere. Isolated fluorescent forisomes reacted to Ca(2+) and chelators by contraction and expansion, respectively, and did not lose fluorescence in the process. Wild-type forisomes showed no affinity for free GFP in vitro. The three proteins shared numerous conserved motifs between themselves and with hypothetical proteins derived from the genomes of M. truncatula, Vitis vinifera and Arabidopsis thaliana. However, they showed neither significant similarities to proteins of known function nor canonical metal-binding motifs. We conclude that 'FOR'-like proteins are components of forisomes that are encoded by a well-defined gene family with relatives in taxa that lack forisomes. Since the mnemonic FOR is already registered and in use for unrelated genes, we suggest the acronym SEO (sieve element occlusion) for this family. The absence of binding sites for divalent cations suggests that the Ca(2+) binding responsible for forisome contraction is achieved either by as yet unidentified additional proteins, or by SEO proteins through a novel, uncharacterized mechanism.  相似文献   

4.
BACKGROUND AND AIMS: Forisomes are Ca(2+)-dependent contractile protein bodies that form reversible plugs in sieve tubes of faboid legumes. Previous work employed Vicia faba forisomes, a not entirely unproblematic experimental system. The aim of this study was to seek to establish a superior model to study these intriguing actuators. METHODS: Existing isolation procedures were modified to study the exceptionally large, tailed forisomes of Canavalia gladiata by differential interference contrast microscopy in vitro. To analyse contraction/expansion kinetics quantitatively, a geometric model was devised which enabled the computation of time-courses of derived parameters such as forisome volume from simple parameters readily determined on micrographs. KEY RESULTS: Advantages of C. gladiata over previously utilized species include the enormous size of its forisomes (up to 55 microm long), the presence of tails which facilitate micromanipulation of individual forisomes, and the possibility of collecting material repeatedly from these fast-growing vines without sacrificing the plants. The main bodies of isolated Canavalia forisomes were box-shaped with square cross-sections and basically retained this shape in all stages of contraction. Ca(2+)-induced a 6-fold volume increase within about 10-15 s; the reverse reaction following Ca(2+)-depletion proceeded in a fraction of that time. CONCLUSIONS: The sword bean C. gladiata provides a superior experimental system which will prove indispensable in physiological, biophysical, ultrastructural and molecular studies on the unique ATP-independent contractility of forisomes.  相似文献   

5.
Forisomes are ATP-independent, Ca(2+)-driven contractile protein bodies acting as reversible valves in the phloem of plants of the legume family. Forisome contraction is anisotropic, as shrinkage in length is associated with radial expansion and vice versa. To test the hypothesis that changes in length and width are causally related, we monitored Ca(2+)- and pH-dependent deformations in the exceptionally large forisomes of Canavalia gladiata by high-speed photography, and computed time-courses of derived geometric parameters (including volume and surface area). Soybean forisomes, which in the resting state resemble those of Canavalia geometrically but have less than 2% of the volume, were also studied to identify size effects. Calcium induced sixfold volume increases in forisomes of both species; in soybean, responses were completed in 0.15 s, compared to about 0.5 s required for a rapid response in Canavalia followed by slow swelling for several minutes. This size-dependent behavior supports the idea that forisome contractility might rest on similar mechanisms as those of polyelectrolyte gels, a class of artificial "smart" materials. In both species, time-courses of forisome length and diameter were variable and lacked correlation, arguing against a simple causal relationship between changes in length and width. Moreover, changes in the geometry of soybean forisomes differed qualitatively between Ca(2+)- and pH-responses, suggesting that divalent cations and protons target different sites on the forisome proteins.  相似文献   

6.
Forisomes are protein bodies found exclusively in the phloem of the Fabaceae (legumes). In response to wounding, the influx of Ca ( 2+) induces a conformational change from a condensed to a dispersed state which plugs the sieve tubes and prevents the loss of photoassimilates. This reversible, ATP-independent reaction can be replicated with purified forisomes in vitro by adding divalent cations or electrically inducing changes in pH, making forisomes ideal components of technical devices. Although native forisomes comprise several subunits, we recently showed that functional homomeric forisomes with distinct properties can be expressed in plants and yeast, providing an abundant supply of forisomes with tailored properties. Forisome subunits MtSEO-F1 and MtSEO-F4 can each assemble into homomeric artificial forisomes, which indicates functional redundancy. However, we provide further evidence that both proteins are subunits of the native heteromeric forisome body in planta. We also show that the properties of artificial forisomes can be modified by immobilization, which is a prerequisite for their incorporation into technical devices.  相似文献   

7.
Forisomes are protein aggregates found uniquely in the sieve elements of Fabaceaen plants. Upon wounding they undergo a reversible, calcium-dependent conformational switch which enables them to act as cellular stopcocks. Forisomes begin to form in young sieve elements at an early stage of metaphloem differentiation. Genes encoding forisome components could therefore be useful as markers of early sieve element development. Here we present a comprehensive analysis of the developmental expression profile of for1, which encodes such a forisome component. The for1 gene is highly conserved among Fabaceaen species and appears to be unique to this phylogenetic lineage since no orthologous genes have been found in other plants, including Arabidopsis and rice. Even so, transgenic tobacco plants expressing reporter genes under the control of the for1 promoter display reporter activity exclusively in immature sieve elements. This suggests that the regulation of sieve element development is highly conserved even in plants where mature forisomes have not been detected. The promoter system could therefore provide a powerful tool for the detailed analysis of differentiation in metaphloem sieve elements in an unexpectedly broad range of plant species. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Phloem transport stops transiently within dicot stems that are cooled rapidly, but the cause remains unknown. Now it is known that (1) rapid cooling depolarizes cell membranes giving a transient increase in cytoplasmic Ca2+, and (2) a rise of free calcium triggers dispersion of forisomes, which then occlude sieve elements (SEs) of fabacean plants. Therefore, we compared the effects of rapid chilling on SE electrophysiology, phloem transport and forisomes in Vicia faba. Forisomes dispersed after rapid cooling with a delay that was longer for slower cooling rates. Phloem transport stopped about 20 s after forisome dispersion, and then transport resumed and forisomes re‐condensed within similar time frames. Transport interruption and forisome dispersion showed parallel behaviour – a cooling rate‐dependent response, transience and desensitization. Chilling induced both a fast and a slow depolarization of SE membranes, the electrical signature suggesting strongly that the cause of forisome dispersion was the transient promotion of SE free calcium. This apparent block of SEs by dispersed forisomes may be assisted by other Ca2+‐dependent sealing proteins that are present in all dicots.  相似文献   

9.
Sieve element occlusion (SEO) genes encoding forisome subunits have been identified in Medicago truncatula and other legumes. Forisomes are structural phloem proteins uniquely found in Fabaceae sieve elements. They undergo a reversible conformational change after wounding, from a condensed to a dispersed state, thereby blocking sieve tube translocation and preventing the loss of photoassimilates. Recently, we identified SEO genes in several non-Fabaceae plants (lacking forisomes) and concluded that they most probably encode conventional non-forisome P-proteins. Molecular and phylogenetic analysis of the SEO gene family has identified domains that are characteristic for SEO proteins. Here, we extended our phylogenetic analysis by including additional SEO genes from several diverse species based on recently published genomic data. Our results strengthen the original assumption that SEO genes seem to be widespread in dicotyledonous angiosperms, and further underline the divergent evolution of SEO genes within the Fabaceae.Key words: forisome, P-protein, sieve element occlusion, phloem, wound sealing, gene family, Fabacea  相似文献   

10.
Forisomes are ATP independent, mechanically active proteins from the Fabaceae family (also called Leguminosae). These proteins are located in sieve tubes of phloem and function to prevent loss of nutrient-rich photoassimilates, upon mechanical injury/wounding. Forisomes are SEO (sieve element occlusion) gene family proteins that have recently been shown to be involved in wound sealing mechanism. Recent findings suggest that forisomes could act as an ideal model to study self assembly mechanism for the development of nanotechnological devices like microinstruments, the microfluidic system frequently used in space exploration missions. Technology enabling improvement in micro instruments has been identified as a key technology by NASA in future space exploration missions. Forisomes are designated as biomimetic smart materials which are calcium-energized motor proteins. Since forisomes are biomolecules from plant systems it can be doctored through genetic engineering. In contrast, “smart” materials which are not derived from plants are difficult to modify in their properties. Current levels of understanding about forisomes conformational shifts with respect to calcium ions and pH changes requires supplement of future advances with relation to its 3D structure to understand self assembly processes. In plant systems it forms blood clots in the form of occlusions to prevent nutrient fluid leakage and thus proves to be a unique damage control system of phloem tissue.  相似文献   

11.
Forisomes are mechanoproteins that undergo ATP-independent contraction–expansion cycles triggered by divalent cations, pH changes, and electrical stimuli. Although native forisomes from Medicago truncatula comprise a number of subunits encoded by separate genes, here we show that at least two of those subunits (MtSEO1 and MtSEO4) can assemble into homomeric forisome bodies that are functionally similar to their native, multimeric counterparts. We expressed these subunits in plants and yeast, resulting in the purification of large quantities of artificial forisomes with unique characteristics depending on the expression platform. These artificial forisomes were able to contract and expand in vitro like native forisomes and could respond to electrical stimulation when immobilized between interdigital transducer electrodes. These results indicate that recombinant artificial forisomes with specific characteristics can be prepared in large amounts and used as components of microscale and nanoscale devices.  相似文献   

12.
Sieve elements of legumes contain forisomes—fusiform protein bodies that are responsible for sieve-tube occlusion in response to damage or wound signals. Earlier work described the existence of tailless and tailed forisomes. This study intended to quantify and compare location and position of tailless (in Vicia faba) and tailed (in Phaseolus vulgaris) forisomes inside sieve elements and to assess their reactivity and potential mobility in response to a remote stimulus. Location (distribution within sieve elements) and position (forisome tip contacts) of more than altogether 2000 forisomes were screened in 500 intact plants by laser scanning confocal microscopy in the transmission mode. Furthermore, we studied the dispersion of forisomes at different locations in different positions and their positional behaviour in response to distant heat shocks. Forisome distribution turned out to be species-specific, whereas forisome positions at various locations were largely similar in bushbean (Phaseolus) and broadbean (Vicia). In general, the tailless forisomes had higher dispersion rates in response to heat shocks than the tailed forisomes and forisomes at the downstream (basal) end dispersed more frequently than those at the upstream end (apical). In contrast to the tailless forisomes that only oscillate in response to heat shocks, downstream-located tailed forisomes can cover considerable distances within sieve elements. This displacement was prevented by gentle rubbing of the leaf (priming) before the heat shock. Movement of these forisomes was also prohibited by Latrunculin A, an inhibitor of actin polymerization. The apparently active mobility of tailed forisomes gives credence to the idea that at least the latter forisomes are not free-floating, but connected to other sieve-element structures.  相似文献   

13.
Forisomes are giant self‐assembling mechanoproteins that undergo reversible structural changes in response to Ca2+ and various other stimuli. Artificial forisomes assembled from the monomer MtSEO‐F1 can be used as smart biomaterials, but the molecular basis of their functionality is not understood. To determine the role of protein polymerization in forisome activity, we tested the Ca2+ association of MtSEO‐F1 dimers (the basic polymerization unit) by circular dichroism spectroscopy and microscale thermophoresis. We found that soluble MtSEO‐F1 dimers neither associate with Ca2+ nor undergo structural changes. However, polarization modulation infrared reflection absorption spectroscopy revealed that aggregated MtSEO‐F1 dimers and fully‐assembled forisomes associate with Ca2+, allowing the hydration of poorly‐hydrated protein areas. A change in the signal profile of complete forisomes indicated that Ca2+ interacts with negatively‐charged regions in the protein complexes that only become available during aggregation. We conclude that aggregation is required to establish the Ca2+ response of forisome polymers.  相似文献   

14.
15.
According to an established concept, injury of the phloem triggers local sieve plate occlusion including callose-mediated constriction and, possibly, protein plugging of the sieve pores. Sieve plate occlusion can also be achieved by distant stimuli, depends on the passage of electropotential waves (EPWs), and is reversible in intact plants. The time-course of the wound response was studied in sieve elements of main veins of intact Vicia faba plants using confocal and multiphoton microscopy. Only 15-45 s after burning a leaf tip, forisomes (giant protein bodies specific for legume sieve tubes) suddenly dispersed, as observed at 3-4 cm from the stimulus site. The dispersion was reversible; the forisomes had fully re-contracted 7-15 min after burning. Meanwhile, callose appeared at the sieve pores in response to the heat shock. Callose production reached a maximum after approximately 20 min and was also reversible; callose degraded over the subsequent 1-2 h. The heat induction of both modes of occlusion coincided with the passage of an EPW visualized by electrophysiology or the potential-sensitive dye RH-414. In contrast to burning, cutting of the leaf tip induced neither an EPW nor callose deposition. The data are consistent with a remote-controlled occlusion of sieve plates depending on the longitudinal propagation of an EPW releasing Ca(2+) into the sieve element lumen. It is hypothesized that forisome plugs and callose constriction are removed once the cytosolic calcium level has returned to the initial level in those sieve tubes.  相似文献   

16.
We investigated the contracting behavior of forisomes from Vicia faba by carrying out precise measurements of their changing geometric parameters in vitro in the absence and in the presence of dissolved oxygen. Furthermore, we investigated the fine structure of forisomes by scanning electron microscopy. For the first time, single forisomes were titrated with Ca(2+), protons, and hydroxide ions recording the complete progression of their contractions. An apparent Ca(2+)-binding constant of (22+/-3) muM was calculated from two complete titration curves. The forisomes also contracted in the presence of Ba(2+) and Sr(2+) ions, but the amplitudes of contraction were smaller under the same measuring conditions. The time taken to change from the longitudinally expanded into the longitudinally contracted state was up to 2 s shorter in 10 mM Ca(2+) in comparison to 0.2mM Ca(2+). However, the contraction time was prolonged by decreasing the Ca(2+) concentration. In the absence of dissolved oxygen, the transition between the two final states of the forisomes was almost reversible and the amplitude of contraction remained almost constant during the first 25 contraction cycles. In the presence of dissolved oxygen the forisomes denaturated after a few cycles and lost their ability to contract, just after only a few cycles with 10 min in the contracted state. Denaturation of the forisomes occurred appreciably in the contracted state. We propose a cycle process to explain the thermodynamic basis of the Ca(2+)-induced contraction and its reversal by EDTA. Reducing the pH-value from 7.3 to 4.0 caused the forisomes to shorten by approximately 15%, while increasing the pH to 11.0 caused them to shorten by 28 to 30%. In both cases, the increases of the forisomes volume were greater than during the Ca(2+) induced contraction. The pH values of 4.7+/-0.3, and 10.2+/-0.2 marked the inflection points of the acid base titration of different forisomes.  相似文献   

17.
Forisomes are remarkable protein bodies found exclusively in the phloem of the Fabaceae. When the phloem is wounded, forisomes are converted from a condensed to a dispersed state in an ATP-independent reaction triggered by Ca2+, thereby plugging the sieve tubes and preventing the loss of photoassimilates. Potentially, forisomes are ideal biomaterials for technical devices because the conformational changes can be replicated in vitro and are fully reversible over a large number of cycles. However, the development of technical devices based on forisomes has been hampered by the laborious and time-consuming process of purifying native forisomes from plants. More recently, the problem has been overcome by the production of recombinant artificial forisomes. This is a milestone in the development of forisome-based devices, not only because large quantities of homogeneous forisomes can be produced on demand, but also because their properties can be tailored for particular applications. In this review, we discuss the physical and molecular properties of native and artificial forisomes, focusing on their current applications in technical devices and potential developments in the future.  相似文献   

18.
Immediately after their stylets penetrate a phloem sieve element, aphids inject saliva into the sieve element for approximately 30–60 s before they begin to ingest phloem sap. This salivation period is recorded as waveform E1 in electrical penetration graph (EPG) monitoring of aphid feeding behavior. It has been hypothesized that the function of this initial period of phloem salivation is to reverse or prevent plugging of the sieve element by one of the plant's phloem defenses: formation of P‐protein plugs or callose synthesis in the sieve pores that connect adjacent sieve elements. This hypothesis was tested using the pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae), and faba bean, Vicia faba L. (Fabaceae), as a model system, and the results do not support the hypothesis. In legumes, such as faba bean, P‐protein plugs in sieve elements are formed by dispersal of proteinaceous bodies called forisomes. Contrary to the hypothesis, the great majority of sieve element penetrations by pea aphid stylets do not trigger forisome dispersal. Thirteen sieve elements were cryofixed early in phloem phase before the aphids could complete their salivation period and the forisomes were not dispersed in any of the 13 samples. However, in these samples, the aphids completed on average a little over half of their normal E1 salivation period before they were cryofixed. Thus, it is possible that sieve element penetration triggered forisome dispersal in these samples but the abbreviated period of salivation was still sufficient to reverse dispersal. To rule out this possibility, 17 sieve elements were cryofixed during R‐pds, which are an EPG waveform associated with sieve element penetration but without the characteristic E1 salivation that occurs during phloem phase. In 16 of the 17 samples, the forisomes were not dispersed. Thus, faba bean sieve elements usually do not form P‐protein plugs in response to penetration by pea aphid stylets. Consequently, the characteristic E1 salivation that occurs at the start of each phloem phase does not seem to be necessary to prevent a plugging response because penetration of sieve elements during R‐pds does not trigger forisome dispersal despite the absence of E1 salivation. Furthermore, as P‐protein plugs do not normally form in response to sieve element penetration, E1 salivation that occurs at the start of each phloem phase is not a response to development of a P‐protein plug. Thus, the E1 salivation period at the beginning of the phloem phase appears to have function(s) unrelated to phloem sealing.  相似文献   

19.
Phloem sieve elements have shut‐off mechanisms that prevent loss of nutrient‐rich phloem sap when the phloem is damaged. Some phloem proteins such as the proteins that form forisomes in legume sieve elements are one such mechanism and in response to damage, they instantly form occlusions that stop the flow of sap. It has long been hypothesized that one function of phloem proteins is defence against phloem sap‐feeding insects such as aphids. This study provides the first experimental evidence that aphid feeding can induce phloem protein occlusion and that the aphid‐induced occlusions inhibit phloem sap ingestion. The great majority of phloem penetrations in Vicia faba by the generalist aphids Myzus persicae and Macrosiphum euphorbiae triggered forisome occlusion and the aphids eventually withdrew their stylets without ingesting phloem sap. This contrasts starkly with a previous study on the legume‐specialist aphid, Acyrthosiphon pisum, where penetration of faba bean sieve elements did not trigger forisome occlusion and the aphids readily ingested phloem sap. Next, forisome occlusion was demonstrated to be the cause of failed phloem ingestion attempts by M. persicae: when occlusion was inhibited by the calcium channel blocker lanthanum, M. persicae readily ingested faba bean phloem sap.  相似文献   

20.
Damage induces remote occlusion of sieve tubes in Vicia faba by forisome dispersion, triggered during the passage of an electropotential wave (EPW). This study addresses the role of Ca2+ channels and cytosolic Ca2+ elevation as a link between EPWs and forisome dispersion. Ca2+ channel antagonists affect the initial phase of the EPW as well as the prolonged plateau phase. Resting levels of sieve tube Ca2+ of ∼50 nM were independently estimated using Ca2+-selective electrodes and a Ca2+-sensitive dye. Transient changes in cytosolic Ca2+ were observed in phloem tissue in response to remote stimuli and showed profiles similar to those of EPWs. The measured elevation of Ca2+ in sieve tubes was below the threshold necessary for forisome dispersion. Therefore, forisomes need to be associated with Ca2+ release sites. We found an association between forisomes and endoplasmic reticulum (ER) at sieve plates and pore-plasmodesma units where high-affinity binding of a fluorescent Ca2+ channel blocker mapped an increased density of Ca2+ channels. In conclusion, propagation of EPWs in response to remote stimuli is linked to forisome dispersion through transiently high levels of parietal Ca2+, release of which depends on both plasma membrane and ER Ca2+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号