首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Volis S 《The New phytologist》2011,192(1):237-248
? Both genetic drift and natural selection result in genetic/phenotypic differentiation over space. I analyzed the role of local adaptation in the genetic differentiation of populations of the annual grass Hordeum spontaneum sampled along an aridity gradient. ? The study included the introduction of plants having desert vs nondesert origin into natural (desert) environment, analysis of population differentiation in allozymes and random amplified polymorphic DNA (RAPD) markers vs phenotypic traits (Q(ST) -F(ST) comparison), and planting interpopulation hybrids under simulated desert conditions in a glasshouse. ? The results of the home advantage test, Q(ST) -F(ST) comparison and crossbreeding were consistent with local adaptation; that is, that differentiation of the desert plants from plants of nondesert origin in phenotypic traits was adaptive, giving them home advantage. Each method used provided additional, otherwise unavailable, information, meaning that they should be viewed as complementary rather than alternative approaches. ? Gene flow from adjacent populations (i.e. populations experiencing the desert environment) via seeds (but not pollen) had a positive effect on fitness by enhancing natural selection and counteracting drift. At the same time, the effect of genes from the species distributional core (nondesert plants) by either seed or pollen had a negative fitness effect despite its enriching effect on neutral diversity. The pattern of outbreeding depression observed in interpopulation hybrids (F(1) ) and their segregating progeny (F(2) ) was inconsistent with underdominance, but indicated the presence of additive, dominance and epistatic effects.  相似文献   

2.
Habitat fragmentation commonly causes genetic problems and reduced fitness when populations become small. Stocking small populations with individuals from other populations may enrich genetic variation and alleviate inbreeding, but such artificial gene flow is not commonly used in conservation owing to potential outbreeding depression. We addressed the role of long-term population size, genetic distance between populations and test environment for the performance of two generations of offspring from between-population crosses of the locally rare plant Ranunculus reptans L. Interpopulation outbreeding positively affected an aggregate measure of fitness, and the fitness superiority of interpopulation hybrids was maintained in the second offspring (F2) generation. Small populations benefited more strongly from interpopulation outbreeding. Genetic distance between crossed populations in neutral markers or quantitative characters was not important. These results were consistent under near-natural competition-free and competitive conditions. We conclude that the benefits of interpopulation outbreeding are likely to outweigh potential drawbacks, especially for populations that suffer from inbreeding.  相似文献   

3.
Early-generation hybrid fitness is difficult to interpret because heterosis can obscure the effects of hybrid breakdown. We used controlled reciprocal crosses and common garden experiments to distinguish between effects of heterosis and nuclear and cytonuclear epistasis among morphotypes and advanced-generation hybrid derivative populations in the Piriqueta caroliniana (Turneraceae) plant complex. Seed germination, growth, and sexual reproduction of first-generation hybrids, inbred parental lines, and outbred parental lines were compared under field conditions. Average vegetative performance was greater for hybrids than for inbred lines, and first-season growth was similar for hybrids and outbred parental lines. Hybrid survival surpassed that of inbred lines and was equal to or greater than outbred lines' survival, and more F(1) than parental plants reproduced. Reductions in hybrid fitness due to Dobzhansky-Muller incompatibilities (epistasis among divergent genetic elements) were expressed as differences in vegetative growth, survival, and reproduction between plants from reciprocal crosses for both F(1) and backcross hybrid generations. Comparing performance of hybrids against parental genotypes from intra- and interpopulation crosses allowed a more robust prediction of F(1) hybrids' success and more accurate interpretations of the genetic architecture of F(1) hybrid vigor.  相似文献   

4.
Linking adaptive divergence to hybrid unfitness is necessary to understand the ecological factors contributing to reproductive isolation and speciation. To date, this link has been demonstrated in few model systems, most of which encompass ecotypes that occupy relatively early stages in the speciation process. Here we extend these studies by assessing how host‐plant adaptation conditions hybrid fitness in the pea aphid, Acyrthosiphon pisum. We made crosses between and within five pea aphid biotypes adapted to different host plants and representing various stages of divergence within the complex. Performance of F1 hybrids and nonhybrids was assessed on a “universal” host that is favorable to all pea aphid biotypes in laboratory conditions. Although hybrids performed equally well as nonhybrids on the universal host, their performance was much lower than nonhybrids on the natural hosts of their parental populations. Hence, hybrids, rather than being intrinsically deficient, are maladapted to their parents’ hosts. Interestingly, the impact of this maladaptation was stronger in certain hybrids from crosses involving the most divergent biotype, suggesting that host‐dependent postzygotic isolation has continued to evolve late in divergence. Even though host‐independent deficiencies are not excluded, hybrid maladaptation to parental hosts supports the hypothesis of ecological speciation in this complex.  相似文献   

5.
Adaptation to contrasting environments across a heterogeneous landscape favors the formation of ecotypes by promoting ecological divergence. Patterns of fitness variation in the field can show whether natural selection drives local adaptation and ecotype formation. However, to demonstrate a link between ecological divergence and speciation, local adaptation must have consequences for reproductive isolation. Using contrasting ecotypes of an Australian wildflower, Senecio lautus in common garden experiments, hybridization experiments, and reciprocal transplants, we assessed how the environment shapes patterns of adaptation and the consequences of adaptive divergence for reproductive isolation. Local adaptation was strong between ecotypes, but weaker between populations of the same ecotype. F1 hybrids exhibited heterosis, but crosses involving one native parent performed better than those with two foreign parents. In a common garden experiment, F2 hybrids exhibited reduced fitness compared to parentals and F1 hybrids, suggesting that few genetic incompatibilities have accumulated between populations adapted to contrasting environments. Our results show how ecological differences across the landscape have created complex patterns of local adaptation and reproductive isolation, suggesting that divergent natural selection has played a fundamental role in the early stages of species diversification.  相似文献   

6.
For the intertidal copepod Tigriopus californicus, outbreeding depression for a variety of fitness measures is typically observed in early-generation interpopulation hybrids. We examined both controlled crosses and long-term, freely mating experimental hybrid swarms composed of individuals from Baja California (Mexico) populations Playa Altamira and Punta Morro. In controlled crosses, F1 and F2 hybrids showed large and significant declines in hatching numbers compared to parentals, while reciprocal backcrosses produced no offspring at all. For long-term studies, four treatment groups were initiated: 100%PA, 100%PM, 50%PA: 50%PM, and 80%PA: 20%PM. Replicates were surveyed at 3-month intervals for morphometric, census and fitness measures. The PA and 80PA:20PM treatments had initial fitness below the PM treatment, and went extinct within the first 12 months of the experiment. The 50:50 treatment had fitness below the PM parent at the 3- and 6-month time points, recovered to equivalent or superior fitness from months 9 to 18, and dropped again below PM at month 21. Limited genotyping of diagnostic microsatellites was consistent with PM alleles going nearly to fixation in hybrid replicates and male morphological data were concordant with a shift toward PM values. Results were strikingly different from a recent study of a different pair of populations showing extensive introgression and superior fitness in hybrid populations. This demonstrates how long-term consequences of population mixing depend on the relative fitness and level of compatibility between hybridizing populations.  相似文献   

7.
Small and relatively isolated populations that occupy fragmented habitat are at risk of local extinction. However, fitness consequences of fragmentation related to mating distance, such as inbreeding depression following increased self- and near-neighbor mating, may not follow standard expectations in species with specialized genetic systems. We investigated the effect of mating distance on progeny fitness in Calylophus serrulatus, a primarily autogamous, permanent translocation heterozygote that is restricted to prairie fragments in the North American tallgrass prairie region. We pollinated flowers by hand in the field with pollen sampled at various distances from the maternal parent within and between three populations in southeastern Minnesota. We raised the progeny in a greenhouse and measured fitness-related characters. Because their genetic system prevents loss of heterozygosity throughout much of the genome, regardless of inbreeding, permanent translocation heterozygotes are not expected to exhibit inbreeding depression. Consistent with this expectation, in no case did progeny of self matings suffer significantly reduced mean fitness compared to progeny from crosses between plants. Crosses between plants in the two closely situated (2 km) populations yielded progeny with fitness intermediate to their parents, but crosses between each of those populations and the more distant (20 km) population yielded progeny with reduced fitness, suggesting outbreeding depression at this largest spatial scale. Similarly, fitness of self-pollinated progeny and progeny from "near" crosses (<2 m) within populations tended to be higher than "mid" (10-25 m) and "far" (>35 m) cross-progeny fitness. Under the current conditions of fragmentation, it seems likely that the distant matings that produce outbreeding depression are rare. It appears that mean fitness in this species is maintained in the context of severe fragmentation of its populations, largely because of its genetic system.  相似文献   

8.
The prevalence of F2 hybrid breakdown in interpopulation crosses of the marine copepod Tigriopus californicus can be explained by disruption of coadapted gene complexes. This study further dissects the nature of hybrid gene interactions, revealing that parental populations may also harbor maladapted gene complexes. Diagnostic molecular markers (14) were assayed in reciprocal F2 hybrids to test for gene interactions affecting viability. Results showed some evidence of nuclear–nuclear coadaptation. Although there were no significant examples of pairwise linkage disequilibrium between physically unlinked loci, one of the two reciprocal crosses did show an overall excess of parental double homozygotes and an overall dearth of nonparental double homozygotes. In contrast, the nuclear–cytoplasmic data showed a stronger tendency toward maladaptation within the specific inbred lines used in this study. For three out of four loci with significant frequency differences between reciprocal F2, homozygotes were favored on the wrong cytoplasmic background. A separate study of reciprocal backcross hybrids between the same two populations (but different inbred lines) revealed faster development time when the full haploid nuclear genome did not match the cytoplasm. The occurrence of such suboptimal gene complexes may be attributable to effects of genetic drift in small, isolated populations.  相似文献   

9.
? Premise of the study: Inbreeding depression is a major evolutionary force and an important topic in conservation genetics because habitat fragmentation leads to increased inbreeding in the populations of many species. Crosses between populations may restore heterozygosity, resulting in increased performance (heterosis), but may also lead to the disruption of coadapted gene complexes and to decreased performance (outbreeding depression). ? Methods: We investigated the effects of selfing and of within and between population crosses on reproduction and the performance of two generations of offspring of the declining grassland plant Saxifraga granulata (Saxifragaceae). We also subjected the first generation of offspring to a fertilization and two stress treatments (competition and defoliation) to investigate whether the effects of inbreeding and interpopulation gene flow depend on environmental conditions. ? Key results: Inbreeding depression affected all traits in the F(1) generation (δ = 0.07-0.55), but was stronger for traits expressed late during development and varied among families. The adaptive plasticity of offspring from selfing and from interpopulation crosses in response to nutrient addition was reduced. Outbreeding depression was also observed in response to stress. Multiplicative fitness of the F(2) generation after serial inbreeding was extremely low (δ > 0.99), but there was heterosis after crossing inbred lines. Outbreeding depression was not observed in the F(2). ? Conclusions: Continuous inbreeding may drastically reduce the fitness of plants, but effects may be environment-dependent. When assessing the genetic effects of fragmentation and interpopulation crosses, the possible effects on the mean performance of offspring and on its adaptive plasticity should be considered.  相似文献   

10.
Admixture is the hybridization between populations within one species. It can increase plant fitness and population viability by alleviating inbreeding depression and increasing genetic diversity. However, populations are often adapted to their local environments and admixture with distant populations could break down local adaptation by diluting the locally adapted genomes. Thus, admixed genotypes might be selected against and be outcompeted by locally adapted genotypes in the local environments. To investigate the costs and benefits of admixture, we compared the performance of admixed and within‐population F1 and F2 generations of the European plant Lythrum salicaria in a reciprocal transplant experiment at three European field sites over a 2‐year period. Despite strong differences between site and plant populations for most of the measured traits, including herbivory, we found limited evidence for local adaptation. The effects of admixture depended on experimental site and plant population, and were positive for some traits. Plant growth and fruit production of some populations increased in admixed offspring and this was strongest with larger parental distances. These effects were only detected in two of our three sites. Our results show that, in the absence of local adaptation, admixture may boost plant performance, and that this is particularly apparent in stressful environments. We suggest that admixture between foreign and local genotypes can potentially be considered in nature conservation to restore populations and/or increase population viability, especially in small inbred or maladapted populations.  相似文献   

11.
Crosses between populations of Tigriopus californicus result in backcross and F2 hybrid breakdown for a variety of fitness related measures. The magnitude of this hybrid breakdown is correlated with evolutionary divergence. We assessed the chromosomal basis of viability differences in nonrecombinant backcross hybrids using markers mapped to individual chromosomes. To assess effects of evolutionary divergence we crossed one population to three different populations: two distantly related (approximately 18% mitochondrial COI sequence divergence) and one closely related (approximately 1% mitochondrial COI sequence divergence). We found that all three interpopulation crosses resulted in significant deviations from expected Mendelian ratios at a majority of the loci studied. In all but one case, deviations were due to a deficit of parental homozygotes. This pattern implies that populations of T. californicus carry a significant genetic load, and that a combination of beneficial dominance and deleterious homozygote-heterozygote interactions significantly affects hybrid viability. Pairwise tests of linkage disequilibrium detected relatively few significant interactions. For the two divergent crosses, effects of individual chromosomes were highly concordant. These two crosses also showed higher heterozygote excess in females than males across the vast majority of chromosomes.  相似文献   

12.
Willi Y  Fischer M 《Heredity》2005,95(6):437-443
Small populations of our study species Ranunculus reptans have reduced fitness because of inbreeding, genetic load, and reduced mate availability; that is, they suffer from a three-fold genetic Allee effect. Here, we investigate how the effect of interpopulation outbreeding on offspring fitness depends on population size. We performed within- and between-population crosses with plants originating from 15 populations, and measured offspring performance in a common environment. Interpopulation outbreeding led to an increase in population means of clonal performance, which was defined as the number of rooted offspring rosettes produced per maternal ovule. This fitness gain mainly occurred at the life stage of seed set. It was especially pronounced for populations with a long-term history of small size inferred from their low genetic diversity, estimated from eight allozyme loci. We conclude that in a self-incompatible plant such as R. reptans, interpopulation outbreeding can lead to an immediate genetic rescue effect due to increased cross-compatibility and heterosis, and that this rescue effect is increased as population size decreases.  相似文献   

13.
Isolation and small size of populations as a result of habitat destruction and fragmentation may negatively affect plant fitness through pollinator limitation and increased levels of inbreeding. To increase genetic variation in small populations of rare plants artificial gene flow has been suggested as a management tool. We investigated whether pollinator limitation and inbreeding depression could reduce fitness in Gentianella germanica, an endangered biennial of increasingly fragmented calcareous grasslands in Central Europe. We experimentally excluded pollinators and generated progenies by hand-pollinating flowers with pollen from different distances. G. germanica was highly selfing. Pollinator exclusion strongly reduced seed set, indicating that pollinator limitation could potentially reduce plant fitness. Germination rate as well as number of leaves and rosette size of progeny from 10-m crosses was higher than that of progeny from open pollinations, self-, 1-m, and interpopulation crosses. After 6 mo of growth differences in the number of surviving plants persisted, whereas differences in plant size did not. The results suggest that inbreeding depression may reduce plant performance in G. germanica. Outbreeding depression in the performance of progeny from interpopulation crosses indicates that caution is necessary in using artificial interpopulation gene flow as a management tool.  相似文献   

14.
Populations within a species may diverge through genetic drift and natural selection. Few studies report on population differentiation in autopolyploids where multiple gene copies and the ratio of cytoplasmic to nuclear genes differ from diploids and may influence divergence. In autotetraploid Campanula americana we created hybrids between populations that differed in geographic proximity and genome size. Differences in genome size (up to 6.5%) did not influence hybrid performance. In contrast, hybrid performance was strongly influenced by population proximity. F1 hybrids between distant populations performed poorly relative to their parents while hybrids between proximate populations outperformed their parents. Outbreeding depression was strongest for juvenile traits. The expression of outbreeding depression often differed between reciprocal hybrids indicating interactions between nuclear and cytoplasmic genes contribute to population differentiation. Because plants were grown under greenhouse conditions, the outbreeding depression was likely due to genetic (underdominance or loss of additive-by-additive epistasis) rather than ecological factors.  相似文献   

15.
Gene flow between crop fields and wild populations often results in hybrids with reduced fitness compared to their wild counterparts due to characteristics imparted by the crop genome. But the specifics of the evolutionary outcome of crop-wild gene flow may depend on context, varying due to local environmental conditions and genetic variation within and among wild populations and among crop lines. To evaluate context-dependence of fitness of F1 hybrids, sunflower crop lines were crossed with nine wild populations from across the northern United States. These crop-wild hybrids and their wild counterparts were grown under agricultural conditions in the field with and without wheat competition. Hybrids were far less fecund than wild plants, yet more likely to survive to reproduce. There was considerable variability among wild populations for fecundity and the specific crop line used to generate the crop-wild hybrid significantly affected fecundity. The fitness deficit suffered by crop-wild hybrids varied by population, as did the rankings of the crop-wild hybrids from three different crop lines. Wheat competition decreased fecundity and survival considerably and hampered seed production of wild plants more than that of hybrids. Genotype x environment interactions indicated that the response of fitness to competition differed by population. Consequently, the fitness of hybrids relative to wild plants varied considerably among wild populations and was not consistent across environments. Notably, relative fitness of hybrids was greater under competitive conditions. This research is the first study of its kind to demonstrate that the consequences of crop-wild gene flow are context dependent and contingent on the genetics of the specific wild populations and the local biotic and abiotic conditions.  相似文献   

16.
Early generations of hybrids can express both genetic incompatibilities and phenotypic novelty. Insights into whether these conflicting interactions between intrinsic and extrinsic selection persist after a few generations of recombination require experimental studies. To address this question, we use interpopulation crosses and recombinant inbred lines (RILs) of the copepod Tigriopus californicus, and focus on two traits that are relevant for the diversification of this species: survivorship during development and tolerance to thermal stress. Experimental crosses between two population pairs show that most RILs between two heat‐tolerant populations show enhanced tolerance to temperatures that are lethal to the respective parentals, whereas RILs between a heat‐tolerant and a heat‐sensitive population are intermediate. Although interpopulation crosses are affected by intrinsic selection at early generational hybrids, most of the sampled F9 RILs have recovered fitness to the level of their parentals. Together, these results suggest that a few generations of recombination allows for an independent segregation of the genes underlying thermal tolerance and cytonuclear incompatibilities, permitting certain recombinant lineages to survive in niches previously unused by parental taxa (i.e., warmer thermal environments) without incurring intrinsic selection.  相似文献   

17.

Background and Aims

When conserving rare plant species, managers are often faced with small and/or isolated populations displaying low levels of sexual reproduction and genetic variation. One option for reinvigorating these populations is the introduction of genetic material from other sites, but in some cases fitness may be reduced as a result of outbreeding depression. Here the pollination biology of the rare shrub Grevillea repens is studied across its natural range and reproductive responses following cross-pollination among populations are examined to determine factors that may be limiting sexual reproduction and the potential for genetic rescue.

Methods

Pollen manipulation treatments (self-, autogamous self-, cross- and open pollination) were applied to flowers to examine the breeding system and fruit and seed production in five populations of G. repens. Pollen production, presentation and viability were investigated and interpopulation crosses of increasing genetic distance performed among the populations.

Key Results

The study species is self-incompatible and displayed very low natural seed set over two seasons, due partly to low pollen viability in one of the populations. Within-population crossing increased fruit and seed production at some sites, indicating pollinator limitation. Interpopulation crosses further increased reproductive output in one population, suggesting mate limitation, and for this site there was a positive relationship between genetic distance among populations and the size of genetic rescue benefits. However, in other populations there was a decrease in fruit and seed set with increasing genetic distance.

Conclusions

The results highlight that management strategies involving interpopulation crosses can improve reproductive output in small, isolated populations of rare plants, but guidelines need to be developed on a population by population basis.Key words: Grevillea repens, Proteaceae, genetic rescue, pollination ecology, self-incompatibility, breeding system, interpopulation cross, outbreeding depression, pollinator limitation, mate limitation, resource limitation  相似文献   

18.
The outcome of hybridization can be impacted by environmental conditions, which themselves can contribute to reproductive isolation between taxa. In crosses of genetically divergent populations, hybridization can have both negative and positive impacts on fitness, the balance between which might be tipped by changes in the environment. Genetically divergent populations of the intertidal copepod Tigriopus californicus have been shown to differ in thermal tolerance at high temperatures along a latitudinal gradient. In this study, a series of crosses were made between pairs of genetically divergent populations of T. californicus, and the thermal tolerance of these hybrids was tested. In most cases, the first-generation hybrids had relatively high thermal tolerance and the second-generation hybrids were not generally reduced below the less-tolerant parental population for high temperature tolerance. This pattern contrasts with previous studies from crosses of genetically divergent populations of this copepod, which often shows hybrid breakdown in these second-generation hybrids for other measures of fitness. These results suggest that high temperature stress could either increase the positive impacts of hybridization or decrease the negative impacts of hybridization resulting in lowered hybrid breakdown in these population crosses.  相似文献   

19.
Natural hybridization is increasingly recognized as an important process for the ecology and evolution of natural plant populations and species. There is a great need to initiate more studies based on natural populations in order to elucidate the possible role of hybrids in nature. The reproductive success of early generation hybrids can make or break hybrid lineages and may determine the genetic structure of hybrid swarms or the potential for gene flow through future generations, but studies of hybrid reproductive success are lacking. Here we measured components of male and female reproductive success in Senecio jacobaea and S. aquaticus (Asteraceae) species and F(1) hybrids between these species under laboratory conditions, and we measured reproductive output from crosses producing F(1), F(2), and backcross (BC) generation hybrids. F(1) hybrids were readily produced, and on average, the success of crosses producing subsequent generations (F(2), BC) decreased (though remained substantial), but the success of crosses was highly dependent on the genotypes involved. Also, F(1) hybrids were bigger, produced more flowers, and therefore produced more pollen than parental plants. Finally, crosses between parents were asymmetrical, such that S. aquaticus produced more and larger F(1) seeds than did S. jacobaea.  相似文献   

20.
The deleterious effects of hybridization are a serious concern for the conservation and management of species, particularly when populations mix as a result of human activity. Outbreeding depression is the typical result observed in early-generation interpopulation hybrids of Tigriopus californicus. We examined both controlled crosses and long-term, freely-mating, experimental hybrid populations composed of southern California populations Royal Palms (RP) and San Diego (SD). Controlled crosses included parentals plus all reciprocal F1, F2, F3 and backcross cohorts, and only F2 cohorts showed significant declines in fitness compared to midparent values, indicating recovery in the F3. For long-term studies, four treatment groups were initiated: 100% RP, 100% SD, 50% RP: 50% SD, and 80% RP: 20% SD. Replicates were surveyed at 3-month intervals for morphometric, census and fitness measures. Fitness of hybrid treatments showed declines relative to midparent values followed by rapid recovery, with two hybrid replicates ultimately showing higher fitness than parentals at the final 15-month time-point (up to 20 generations). In contrast, both males and females in hybrid treatments were larger than the midparent for several morphometric characters at the first time-point, and smaller than the midparent at the final time-point, indicating a possible tradeoff between fitness and body size. Microsatellites for a subset of samples revealed extensive introgression in hybrid treatments. This adds to previous evidence that hybrid breakdown in early generations may be a temporary phenomenon followed by the persistence of highly fit recombinant genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号