首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effects of clonal integration on land plants have been extensively studied, but little is known about the role in amphibious plants that expand from terrestrial to aquatic conditions. We simulated expansion from terrestrial to aquatic habitats in the amphibious stoloniferous alien invasive alligator weed ( Alternanthera philoxeroides ) by growing basal ramets of clonal fragments in soils connected (allowing integration) or disconnected (preventing integration) to the apical ramets of the same fragments submerged in water to a depth of 0, 5, 10 or 15 cm. Clonal integration significantly increased growth and clonal reproduction of the apical ramets, but decreased both of these characteristics in basal ramets. Consequently, integration did not affect the performance of whole clonal fragments. We propose that alligator weed possesses a double-edged mechanism during population expansion: apical ramets in aquatic habitats can increase growth through connected basal parts in terrestrial habitats; however, once stolon connections with apical ramets are lost by external disturbance, the basal ramets in terrestrial habitats increase stolon and ramet production for rapid spreading. This may contribute greatly to the invasiveness of alligator weed and also make it very adaptable to habitats with heavy disturbance and/or highly heterogeneous resource supply.  相似文献   

2.
Aims Clonal growth is associated with invasiveness in introduced plant species, but few studies have compared invasive and noninvasive introduced clonal species to investigate which clonal traits may underlie invasiveness. To test the hypothesis that greater capacity to increase clonal growthviaphysiological integration of connected ramets increases invasiveness in clonal plants, we compared the effects of severing connections on accumulation of mass in the two species of the creeping, succulent, perennial, herbaceous genusCarpobrotusthat have been introduced on sand dunes along the Pacific Coast of northern California, the highly invasive speciesCarpobrotus edulisand the co-occurring, noninvasive speciesCarpobrotus chilensis.  相似文献   

3.
A greenhouse experiment examined whether clonal integration improves photosynthesis of ramets of alligator weed [Alternanthera philoxeroides (Mart.) Griseb.], a widespread invasive clonal plant in China, in heterogeneous (He) nutrient habitats. The connected pairs of ramets experienced different nutrient levels [high homogeneous (Ho) nutrient, low Ho nutrient, and two He nutrient treatments]. Clonal integration significantly improved the net photosynthetic rate, stomatal conductance, transpiration rate, and minimal and maximal chlorophyll fluorescence of ramets of alligator weed in low nutrient condition. These characteristics may contribute to the success of the ramets of alligator weed in invading contrasting habitats. The clonal integration of the invasive clonal plants may contribute significantly to their invasiveness.  相似文献   

4.

Background and aims

In contrast to seeds, high sensitivity of vegetative fragments to unfavourable environments may limit the expansion of clonal invasive plants. However, clonal integration promotes the establishment of propagules in less suitable habitats and may facilitate the expansion of clonal invaders into intact native communities. Here, we examine the influence of clonal integration on the morphology and growth of ramets in two invasive plants, Alternanthera philoxeroides and Phyla canescens, under varying light conditions.

Methods

In a greenhouse experiment, branches, connected ramets and severed ramets of the same mother plant were exposed under full sun and 85% shade and their morphological and growth responses were assessed.

Key results

The influence of clonal integration on the light reaction norm (connection×light interaction) of daughter ramets was species-specific. For A. philoxeroides, clonal integration evened out the light response (total biomass, leaf mass per area, and stem number, diameter and length) displayed in severed ramets, but these connection×light interactions were largely absent for P. canescens. Nevertheless, for both species, clonal integration overwhelmed light effect in promoting the growth of juvenile ramets during early development. Also, vertical growth, as an apparent shade acclimation response, was more prevalent in severed ramets than in connected ramets. Finally, unrooted branches displayed smaller organ size and slower growth than connected ramets, but the pattern of light reaction was similar, suggesting mother plants invest in daughter ramets prior to their own branches.

Conclusions

Clonal integration modifies light reaction norms of morphological and growth traits in a species-specific manner for A. philoxeroides and P. canescens, but it improves the establishment of juvenile ramets of both species in light-limiting environments by promoting their growth during early development. This factor may be partially responsible for their ability to successfully colonize native plant communities.  相似文献   

5.
植物生长调节剂通过克隆整合对空心莲子草顶端和基部生长的不同作用 入侵植物不仅对全球生物多样性造成了巨大的威胁,同时也严重影响了农业生产与粮食安全。克隆整合使得相连植株进行资源共享,能促进入侵植物的生长从而获得优势。然而,入侵杂草 在植物调节剂(plant growth regulators, PGRs)影响下的克隆整合作用则很少有报道。PGRs被广泛应用于 农作物生产上,并能通过土壤淋溶、侵蚀和径流作用,影响分布在作物附近的农田杂草的生长。本 研究采用两种PGRs赤霉素(gibberellins, GA)和多效唑(paclobutrazol,PAC)处理恶性入侵杂草空心莲子草 (Alternanthera philoxeroides)基端,并保持或者通过剪切达到控制基端与顶端的连通,从而探究克隆整合作用在空心莲子草响应两种农业常用PGRs中的作用。研究结果表明,GA和PAC对空心莲子草生长的作用相反。GA通过克隆整合作用显著促进顶端植株的地上生长。相反地,PAC显著抑制基端和顶端的地 上生长,但是能够通过克隆整合作用显著促进基端和顶端的地下生长。这些研究结果解释了克隆整合作用能促进PGRs对空心莲子草生长的促进作用,这很可能是外来杂草能够成功入侵人为干扰较多的农业生态系统的重要原因之一。  相似文献   

6.
  • One benefit of clonal integration is that resource translocation between connected ramets enhances the growth of the ramets grown under stressful conditions, but whether such resource translocation reduces the performance of the ramets grown under favourable conditions has not produced consistent results. In this study, we tested the hypothesis that resource translocation to recipient ramets may reduce the performance of donor ramets when resources are limiting but not when resources are abundant.
  • We grew Mikania micrantha stolon fragments (each consisting of two ramets, either connected or not connected) under spatially heterogeneous competition conditions such that the developmentally younger, distal ramets were grown in competition with a plant community and the developmentally older, proximal ramets were grown without competition. For half of the stolon fragments, slow‐release fertiliser pellets were applied to both the distal and proximal ramets.
  • Under both the low and increased soil nutrient conditions, the biomass, leaf number and stolon length of the distal ramets were higher, and those of the proximal ramets were lower when the stolon internode was intact than when it was severed. For the whole clone, the biomass, leaf number and stolon length did not differ between the two connection treatments. Connection did not change the biomass of the plant communities competing with distal ramets of M. micrantha.
  • Although clonal integration may promote the invasion of M. micrantha into plant communities, resource translocation to recipient ramets of M. micrantha will induce a cost to the donor ramets, even when resources are relatively abundant.
  相似文献   

7.
Few studies have examined the effects of clonal integration (translocation of resources between interconnected ramets) during the expansion of amphibious clonal plants from terrestrial to aquatic habitats. We conducted a greenhouse experiment to simulate the expansion of plants from terrestrial to contaminated aquatic habitats in the amphibious stoloniferous herb Alternanthera philoxeroides (alligator weed). The proximal ramets (i.e. relatively old) of clonal fragments grown in uncontaminated soils were connected to (allowing clonal integration) or disconnected from (preventing clonal integration) distal ramets (i.e. relatively young) grown either in uncontaminated water (control, no CuSO4) or in four copper‐contaminated water treatments containing 31.25, 62.5, 125 and 250 mg/L CuSO4, respectively. When a stolon connection was severed, all distal ramets grown in the contaminated water died. When the stolon connection was intact, however, the survival rate of the distal ramets was 85–100% when they were grown at the three lower levels of contamination and 43.75% at the highest level. Moreover, the survival rate and growth of the distal ramets grown in the three lower levels of contamination treatments did not differ from those in the control (uncontaminated water). These results suggest that clonal integration could greatly improve the survival and growth of alligator weed subjected to moderate levels of copper stress. Although clonal integration could also increase the survival rate of the connected distal ramets subjected to the highest level of copper stress (250 mg/L CuSO4) compared with that of disconnected distal ramets, the survival rate and growth measures were still significantly lower than those in the control. This suggests that clonal integration plays a limited role in the survival and growth of alligator weed when it is subjected to severe stress by high levels of copper contamination.  相似文献   

8.
Aims Many invasive alien plant species are clonal and can greatly propagate and spread through clonal integration (sharing resources between connected ramets) in heterogeneous and variable environments. Here, we tested whether water variability influences clonal integration of invasive alien plant species and consequently facilitates their growth and dominance in a native community.  相似文献   

9.
Most work on clonal growth in plants has focused on the advantages of clonality in heterogeneous habitats. We hypothesized (1) that physiological integration of connected ramets within a clone can also increase plant performance in homogeneous environments, (2) that this effect depends on whether ramets differ in ability to take up resources, and (3) that only ramets with relatively low uptake ability benefit. We tested these hypotheses using the perennial amphibious herb Alternanthera philoxeroides. We grew clonal fragments and varied numbers of rooted versus unrooted ramets, connection between the apical and basal parts of fragments, and availability of nitrogen. Patterns of final size and mass of fragments did not support these hypotheses. By some measures, severance did reduce the growth of more apical ramets and increase the growth of less apical ones, consistent with net apical transfer of resources. Rooting of individual ramets strongly influenced their growth: second and third most apical ramets each grew most when they were the most apical rooted ramet, and this pattern was more pronounced under higher nitrogen levels. This adds to the evidence that signalling between ramets is an important aspect of clonal integration. Overall, the results indicate that physiological integration between ramets within clones in homogeneous environments can alter the allocation of resources between connected ramets even when it does not affect the total growth of clonal fragments.  相似文献   

10.
The current approaches to the study of clonal plants are reviewed. Most studies concentrate at the level of the ramet and clonal fragment exploring the “microscopic” view of clonal plants, dealing with the translocation of resources, clonal integration, plasticity of growth etc. The information gained, by this approach can be used in the understanding of higher levels of organization within the clonal system either with the help of spatially explicit modelling techniques, or by using means and distributions of size within a population instead of studying individual ramets separately. Plant scientists use the term clone with two meanings, viz. (a) a set of physiologically connected, but potentially independent ramets, and (b) a set of genetically identical, but potentially physically separated individuals. The overlap of these terms differs between individual plant species, depending on the extent of physical separation of the ramets and the degree of physiological integration between the ramets; the lower the frequency of ramet separation, the closer are the physiological and genetic concepts of the clone. Three critical areas seem to be neglected in clonal plant research: (a) the interrelationship between hierarchical levels in clonal plants, (b) the particular spatial structure of their environment, and (c) the importance of clonal plants in different ecological communities.  相似文献   

11.
喀斯特石漠化环境有着高度的生境异质性,异质性生境中土被不连续,土壤瘠薄,岩溶漏斗上的土壤保水性差,严重制约着喀斯特植被的生长及分布。为探究克隆植物在喀斯特地区的适应策略,本研究以喀斯特黄色石灰土为基质,选用克隆植物活血丹(Glechoma longituba),以一个节间连接的两个分株为材料,保持节间连接或切断,种植于相邻花盆中,并施以不同浇水量,以明确不同水分可用性水平下克隆整合对活血丹生物量积累、生物量分配、叶片气孔及叶片组织特征的影响。结果显示,克隆整合显著促进活血丹生物量的积累及对根、叶的生物量分配;增加了活血丹叶气孔导度,降低了气孔指数;叶海绵组织受克隆整合影响较小,但栅栏组织及栅海比(栅栏组织/海绵组织)表现为非整合分株高于整合分株。本研究表明,克隆整合可增加活血丹胁迫分株对根、叶的投资,并以更佳的叶气孔、组织适应策略提高其在喀斯特生境中的生存与适应。  相似文献   

12.
Although clonal plants comprise most of the biomass of several widespread ecosystems, including many grasslands, wetlands, and tundra, our understanding of the effects of clonal attributes on community patterns and processes is weak. Here we present the conceptual basis for experiments focused on manipulating clonal attributes in a community context to determine how clonal characteristics affect interactions among plants at both the individual and community levels. All treatments are replicated at low and high density in a community density series to compare plant responses in environments of different competitive intensity. We examine clonal integration, the sharing of resources among ramets, by severing ramets from one another and comparing their response to ramets with intact connections. Ramet aggregation, the spacing of ramets relative to each other, is investigated by comparing species that differ in their natural aggregation (either clumped growth forms, with ramets tightly packed together, or runner growth forms, with ramets loosely spread) and by planting individual ramets of all species evenly spaced throughout a mesocosm. We illustrate how to test predictions to examine the influence of these two clonal traits on competitive interactions at the individual and community levels. To evaluate the effect of clonal integration on competition, we test two predictions: at the individual level, species with greater clonal integration will be better individual-level competitors, and at the community level, competition will cause a greater change in community composition when ramets are integrated (connected) than when they are not. For aggregation we test at the individual level: clumped growth forms are better competitors than runner growth forms because of their ability to resist invasion, and at the community level: competition will have a greater effect on community structure when ramets are evenly planted. An additional prediction connects the individual- and community-level effects of competition: resistance ability better predicts the effects of competition on relative abundance in a community than does invasion ability. We discuss additional experimental design considerations as revealed by our ongoing studies. Examining how clonal attributes affect both the individual- and community-level effects of competition requires new methods and metrics such as those presented here, and is vital to understanding the role of clonality in community structure of many ecosystems.  相似文献   

13.
In arid and semi-arid inland deserts,one of the environmental stresses for plants is recurrent sand burial,which can influence the physical and biotic microenvironments of the plants and soil.Previous studies have shown that different levels of sand burial have different effects on plants.Slight sand burial could increase the height increment,leaf biomass and the number of new ramets of the plants while heavy sand burial could impair the growth of the plants and even decrease their chances of survival.In other words,below a certain threshold level of burial,the growth of plants is stimulated probably because of multiple factors.However,as the level of burial increases,the positive response starts to decline until it becomes a negative value.Arid and semi-arid inland deserts are frequently colonized and stabilized by many rhizomatous clonal plants.Clonal physiological integration often helps clonal plants buffer local environmental stress encountered by ramets.A rhizomatous clonal semishrub,Hedysarum laeve (H.laeve),is the dominant plant species and important for vegetation restoration in the Mu Us sandland.To investigate whether clonal integration can increase the threshold of sand burial and help rhizomatous H.laeve tolerate heavy sand burial,we conducted a field experiment.The results showed that slight sand burial could accelerate ramet growth and enhance leaf biomass,stem biomass and shoot biomass,while heavy sand burial reducesed the biomass of the plant and impairs survival and growth of the ramets.Clonal integration increased the threshold of sand burial.Under heavy sand burial,ramets connected to other ramets not buried in sand were more in terms of height increment,stem biomass,leaf biomass and shoot biomass compared to the ramets encountering sand burial but disconnected from other ramets.It suggested that clonal physiological integration could help H.laeve ramets tolerate relatively heavy sand burial.We also discussed that clonal integration plays a role in H.laeve presence in the Mu Us sandland.  相似文献   

14.

Background and Aims

One of the special properties of clonal plants is the capacity for physiological integration, which can increase plant performance through mechanisms such as resource sharing and co-ordinated phenotypic plasticity when plants grow in microsites with contrasting resource availabilities. However, many clonal plants are colonized by arbuscular mycorrhizal fungi (AMF). Since AMF are likely to reduce contrasts in effective resource levels, they could also reduce these effects of clonal integration on plasticity and performance in heterogeneous environments.

Methods

To test this hypothesis, pairs of connected and disconnected ramets of the stoloniferous herb Trifolium repens were grown. One ramet in a pair was given high light and low nutrients while the other ramet was given high nutrients and low light. The pairs were inoculated with zero, one or five species of AMF.

Key Results

Pairs of ramets grown without AMF developed division of labour and benefited from resource sharing, as indicated by effects of connection on allocation to roots, accumulation of mass, and ramet production. Inoculation with five species of AMF significantly reduced these effects of connection, both by inhibiting them in ramets given high nutrients and inducing them in ramets given high light. Inoculation with one species of AMF also reduced some effects of connection, but generally to a lesser degree.

Conclusions

The results show that AMF can significantly modify the effects of clonal integration on the plasticity and performance of clonal plants in heterogeneous environments. In particular, AMF may partly replace the effects and benefits of clonal integration in low-nutrient habitats, possibly more so where species richness of AMF is high. This provides the first test of interaction between colonization by AMF and physiological integration in a clonal plant, and a new example of how biotic and abiotic factors could interact to determine the ecological importance of clonal growth.Key words: Arbuscular mycorrhizal fungi, biomass allocation, clonal plant, division of labour, environmental heterogeneity, light availability, nutrients, white clover  相似文献   

15.

Background and Aims

Grazing is a complex process involving the simultaneous occurrence of both trampling and defoliation. Clonal plants are a common feature of heavily grazed ecosystems where large herbivores inflict the simultaneous pressures of trampling and defoliation on the vegetation. We test the hypothesis that physiological integration (resource sharing between interconnected ramets) may help plants to deal with the interactive effects of trampling and defoliation.

Methods

In a field study, small and large ramets of the root-suckering clonal tree Populus simonii were subjected to two levels of trampling and defoliation, while connected or disconnected to other ramets. Plant responses were quantified via survival, growth, morphological and stem mechanical traits.

Key Results

Disconnection and trampling increased mortality, especially in small ramets. Trampling increased stem length, basal diameter, fibrous root mass, stem stiffness and resistance to deflection in connected ramets, but decreased them in disconnected ones. Trampling decreased vertical height more in disconnected than in connected ramets, and reduced stem mass in disconnected ramets but not in connected ramets. Defoliation reduced basal diameter, leaf mass, stem mass and leaf area ratio, but did not interact with trampling or disconnection.

Conclusions

Although clonal integration did not influence defoliation response, it did alleviate the effects of trampling. We suggest that by facilitating resource transport between ramets, clonal integration compensates for trampling-induced damage to fine roots.  相似文献   

16.
很多外来入侵植物都具有克隆生长习性,探究克隆整合特性与外来克隆植物入侵性间的关系对阐明其生态适应性及入侵机制具有重要的意义。本研究以入侵植物空心莲子草及其本地同属种莲子草为研究对象,比较在生防昆虫莲草直胸跳甲的取食下,克隆整合对两种植物先端分株、基端分株及整个克隆片段生长和生物量分配的影响。结果表明: 在莲草直胸跳甲取食下,有克隆整合的空心莲子草先端分株的叶片数、茎长、分株数及整个克隆片段的地径均显著高于无克隆整合植株,其基端分株及整个克隆片段的地下生物量和总生物量相较于无克隆整合植株分别降低了78.2%、60.9%和48.7%、37.2%;有克隆整合的莲子草先端分株的地径及整个克隆片段的叶片数与无克隆整合植株相比显著增加,其基端分株数显著降低了21.7%,而其先端分株、基端分株及整个克隆片段的生物量均无显著差异。耗益分析表明,在莲草直胸跳甲取食下,空心莲子草先端分株的分株数与生物量及莲子草先端分株的分株数均能通过克隆整合显著受益,而两种植物基端的分株数、生物量的耗益则不受克隆整合处理的影响。这些结果表明,克隆整合虽能在一定程度缓解莲草直胸跳甲对于两种植物先端分株的取食压力,且空心莲子草的克隆整合作用要强于莲子草,但在整个克隆片段水平上,两种植物并不能通过克隆整合显著获益。  相似文献   

17.
Sui Y  He W  Pan X  Dong M 《Annals of botany》2011,107(4):693-697

Background and Aims

Mechanical stimulation (MS) often induces plants to undergo thigmomorphogenesis and to synthesize an array of signalling substances. In clonal plants, connected ramets often share resources and hormones. However, little is known about whether and how clonal integration influences the ability of clonal plants to withstand MS. We hypothesized that the effects of MS may be modulated by clonal integration.

Methods

We conducted an experiment in which ramet pairs of Leymus secalinus were subjected to three treatments: (1) connected ramet pairs under a homogeneous condition [i.e. the proximal (relatively old) and distal (relatively young) ramets were not mechanically stressed]; (2) connected ramet pairs under a heterogeneous condition (i.e. the proximal ramet was mechanically stressed but the distal ramet was not); and (3) disconnected ramet pairs under the same condition as in treatment 2. At the end of the experiment, we harvested all plants and determined their biomass and allocation.

Key Results

Clonal integration had no significant influence on measured traits of distal L. secalinus ramets without MS. However, under MS, plants with distal ramets that were connected to a mother ramet produced more total plant biomass, below-ground biomass, ramets and total rhizome length than those that were not connected. Partial MS exerted local effects on stimulated ramets and remote effects on connected unstimulated ramets. Partial MS increased total biomass, root/shoot ratio, number of ramets and total rhizome length of stimulated proximal ramets, and increased total biomass, root weight ratio, number of ramets and total rhizome length of connected unstimulated ramets due to clonal integration.

Conclusions

These findings suggest that thigmomorphogenesis may protect plants from the stresses caused by high winds or trampling and that thigmomorphogenesis can be strongly modulated by the degree of clonal integration.  相似文献   

18.
Small-scale heterogeneity in soil characteristics and the facility of clonal systems to spread may lead to situations where parent ramets in favourable microhabitats are connected to offspring in stressful conditions. Clonal plants are physiologically integrated if connections among ramets allow transport of resources. Thus, ramets in favourable habitats may provide support to developing or stressed ramets. We examined effects of integration in Fragaria vesca growing in patches of contrasting quality (potting compost vs serpentine soil). Serpentine soil was used to create unfavourable growing conditions. We assessed whether survival, biomass and photosynthetic efficiency (estimated by fluorescence and reflectance) of parents and offspring were affected by integration and soil quality. Integration increased photochemical efficiencies of parents but more consistently in parents with offspring growing in serpentine soils. We suggest that the assimilate demand from offspring enhanced the photosynthetic efficiency of parents by a mechanism of feedback regulation. This result extends the concept of physiological integration in clonal plants to include photochemical responses. Connected parents also showed significantly higher biomass than disconnected parents. In our system, integration did not entail costs for the whole clone in terms of biomass. Integration also improves the survival, growth and photochemical efficiency of developing ramets, suggesting that integration represents a mechanism for increasing survival in stressful habitats, as the serpentine soils.  相似文献   

19.
  • Cadmium (Cd) is a hazardous environmental pollutant with high toxicity to plants, which has been detected in many wetlands. Clonal integration (resource translocation) between connected ramets of clonal plants can increase their tolerance to stress. We hypothesised that clonal integration facilitates spread of amphibious clonal plants from terrestrial to Cd‐contaminated aquatic habitats.
  • The spread of an amphibious grass Paspalum paspaloides was simulated by growing basal older ramets in uncontaminated soil connected (allowing integration) or not connected (preventing integration) to apical younger ramets of the same fragments in Cd‐contaminated water.
  • Cd contamination of apical ramets of P. paspaloides markedly decreased growth and photosynthetic capacity of the apical ramets without connection to the basal ramets, but did not decrease these properties with connection. Cd contamination did not affect growth of the basal ramets without connection to the apical ramets, but Cd contamination of 4 and 12 mg·l?1 significantly increased growth with connection. Consequently, clonal integration increased growth of the apical ramets, basal ramets and whole clones when the apical ramets were grown in Cd‐contaminated water of 4 and 12 mg·l?1. Cd was detected in the basal ramets with connection to the apical ramets, suggesting Cd could be translocated due to clonal integration. Clonal integration, most likely through translocation of photosynthates, can support P. paspaloides to spread from terrestrial to Cd‐contaminated aquatic habitats.
  • Amphibious clonal plants with a high ability for clonal integration are particularly useful for re‐vegetation of degraded aquatic habitats caused by Cd contamination.
  相似文献   

20.
Physical connection between ramets usually allows clonal plants to perform better but can have the opposite effects in some cases. Clonal integration and the effects of climate warming have been extensively studied, but to date little is known about how climate warming affects the benefits of clonal integration. We conducted a field experiment in which Alternanthera philoxeroides segments with connected and severed stolons were subject to four climate regimes (ambient, day warming, night warming and daily warming), and measured final biomass, number of ramets and total length of stolons. Across the three warming treatments, temperature rise suppressed growth of clonal fragments with connected stolons but increased growth of fragments with severed stolons; temperature rise affected the biomass of distal ramets but not proximal ramets, and had similar effects on the numbers of proximal and distal ramets. When the three warming treatments were considered separately, they had contrasting consequences for the benefits of clonal integration. Specifically, when fragments were exposed to day and night warming, physical connection evened out the advantages of clonal integration that occur under ambient conditions; when fragments were exposed to daily warming, physical connection led to smaller clonal plants. These findings suggest that physical connection between ramets may be disadvantageous to overall performance of A. philoxeroides fragments under climate warming, and also indicate that the net consequences of daily warming outweigh those of day or night warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号