首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
MicroRNAs (miRNAs) regulate gene expression by repressing translation or directing sequence-specific degradation of complementary mRNA. Here, we report that expression of miR-205 is significantly suppressed in melanoma specimens when compared with nevi and is correlated inversely with melanoma progression. miRNA target databases predicted E2F1 and E2F5 as putative targets. The expression levels of E2F1 and E2F5 were correlated inversely with that of miR-205 in melanoma cell lines. miR-205 significantly suppressed the luciferase activity of reporter plasmids containing the 3'-UTR sequences complementary to either E2F1 or E2F5. Overexpression of miR-205 in melanoma cells reduced E2F1 and E2F5 protein levels. The proliferative capacity of melanoma cells was suppressed by miR-205 and mediated by E2F-regulated AKT phosphorylation. miR-205 overexpression resulted in induction of apoptosis, as evidenced by increased cleaved caspase-3, poly-(ADP-ribose) polymerase, and cytochrome c release. Stable overexpression of miR-205 suppressed melanoma cell proliferation, colony formation, and tumor cell growth in vivo and induced a senescence phenotype accompanied by elevated expression of p16INK4A and other markers for senescence. E2F1 overexpression in miR-205-expressing cells partially reversed the effects on melanoma cell growth and senescence. These results demonstrate a novel role for miR-205 as a tumor suppressor in melanoma.  相似文献   

2.
3.
To identify epigenetically regulated miRNAs in melanoma, we treated a stage 3 melanoma cell line WM1552C, with 5AzadC and/or 4-PBA. Several hypermethylated miRNAs were detected, one of which, miR-375, was highly methylated and was studied further. Minimal CpG island methylation was observed in melanocytes, keratinocytes, normal skin, and nevus but hypermethylation was observed in patient tissue samples from primary, regional, distant, and nodular metastatic melanoma. Ectopic expression of miR-375 inhibited melanoma cell proliferation, invasion, and cell motility, and induced cell shape changes, strongly suggesting that miR-375 may have an important function in the development and progression of human melanomas.  相似文献   

4.
Sirt基因家族及其对细胞寿命的调节   总被引:1,自引:0,他引:1  
在酵母、线虫和果蝇中,Sir2基因家族是寿命调节的关键因子。哺乳动物的Sirt基因家族在进化上与Sir2基因高度同源,共有7个成员。Sir2基因调节酵母寿命的机理已比较清楚。而哺乳动物Sirt基因,特别是Sirt1基因与细胞衰老的关系正在成为新的研究热点。最近的研究表明,在热量限制或氧化逆境条件下,SIRT1蛋白主要是通过以下3个途径影响细胞寿命:一是SIRT1蛋白抑制PPAR-γ减少细胞的脂质过氧化的损伤;二是SIRT1蛋白通过调控p53的活性影响细胞寿命;三是SIRT1蛋白通过调控FOXO的信号通路,启动细胞的抗氧化途径。进一步研究Sirt基因家族对揭示哺乳动物寿命之谜具有重要的科学意义。  相似文献   

5.
Aberrant expression of microRNAs (miRNAs), a class of small non-coding regulatory RNAs, has been implicated in the development and progression of melanoma. However, the precise mechanistic role of many of these miRNAs remains unclear. We have investigated the functional role of miR-7-5p in melanoma, and demonstrate that miR-7-5p expression is reduced in metastatic melanoma-derived cell lines compared with primary melanoma cells, and that when ectopically expressed miR-7-5p significantly inhibits melanoma cell migration and invasion. Additionally, we report that insulin receptor substrate-2 (IRS-2) is a target of miR-7-5p in melanoma cells, and using RNA interference (RNAi) we provide evidence that IRS-2 activates protein kinase B (Akt), and promotes melanoma cell migration. Thus, miR-7-5p may represent a novel tumor suppressor miRNA in melanoma, acting at least in part via its inhibition of IRS-2 expression and oncogenic Akt signaling.  相似文献   

6.
7.
The organised state of living cells must derive from information internal to the system; however, there are strong reasons, based on sound evidence, to reject the base sequence information encoded in the genomic DNA as being directly relevant to the regulation of cellular phenotype. Rather, it is argued here that highly specific relational information, encoded on the gene products, mainly proteins, is responsible for phenotype. This regulatory information emerges as the peptide folds into a tertiary structure in much the same way as enzymic activity emerges under the same circumstances. The DNA coding sequence serves as a “data base” in which a second category of relational information is stored to enable accurate reproduction of the cellular peptides. In the context of the cell, therefore, information is physical in character and contributes, through its ability to dissipate free energy, to the maximisation of the entropy of the cell according to the 2nd law of thermodynamics.  相似文献   

8.
9.
Several years ago it was discovered that plant transformation with a transcribed sense transgene could shut down the expression of a homologous endogenous gene. Moreover, it was shown that the introduction into the cell of dsRNA (double-stranded RNA) containing nucleotide sequence complementary to an mRNA sequence causes selective degradation of the latter and thus silencing of a specific gene. This phenomenon, called RNA interference (RNAi) was demonstrated to be present in almost all eukaryotic organisms. RNAi is also capable of silencing transposons in germ line cells and fighting RNA virus infection. Enzymes involved in this process exhibit high homology across species. Some of these enzymes are involved in other cellular processes, for instance developmental timing, suggesting strong interconnections between RNAi and other metabolic pathways. RNAi is probably an ancient mechanism that evolved to protect eukaryotic cells against invasive forms of nucleic acids.  相似文献   

10.
11.
The role of proteinases in cellular invasiveness   总被引:35,自引:0,他引:35  
  相似文献   

12.
13.
D Schubert  L W Jin  T Saitoh  G Cole 《Neuron》1989,3(6):689-694
The regulation and function of two forms of the amyloid beta protein precursor (ABPP) that are released into the growth-conditioned medium of the PC12 nerve cell line were examined. Nerve growth factor increases the release of the form of ABPP without the protease-inhibitor domain relative to the protein containing the protease inhibitor and increases the overall rate of ABPP secretion 2-fold. In contrast, fibroblast growth factor increases the rate of ABPP secretion approximately 7-fold. Both forms of the secreted ABPP molecule are, in turn, able to stimulate adhesion of PC12 cells to substrata to which they are adsorbed about 10-fold more efficiently on a molar basis than Iaminin.  相似文献   

14.
Macrophage migration inhibitory factor (MIF) is known to function as a cytokine, hormone, and glucocorticoid-induced immunoregulator. In this study, we reported for the first time that human melanocytes and melanoma cells express MIF mRNA and produce MIF protein. Immunohistochemical analysis demonstrated that MIF was mostly localized in the cytoplasm of melanocytes and G361 cells, a widely available human melanoma cell line. In particular, strong positive staining was observed at the dendrites of these cells. Expression of MIF mRNA and production of MIF protein were much higher in human melanoma cells such as G361, A375, and L32 than in normal cultured melanocytes. To assess the role of MIF overexpression in melanoma cells, G361 cells were transfected with an antisense human MIF plasmid. The results demonstrated that the cell growth rate of the transfected cells was markedly suppressed, suggesting that MIF participates in the mechanism of proliferation of melanoma cells. To further evaluate the function of MIF, we employed the Boyden chamber method to examine the effect on tumor cell migration and found that MIF enhanced the migration of G361 cells in a dose-dependent manner. Furthermore, we administered anti-MIF antibody into tumor (G361 cells in a Millipore chamber)-bearing mice to assess the effect on tumor-associated angiogenesis. The anti-MIF antibody significantly suppressed tumor-induced angiogenesis. Taken together, these results indicated that it is likely that MIF may function as a novel growth factor that stimulates incessant growth and invasion of melanoma concomitant with neovascularization.  相似文献   

15.
Ubiquitination is a type of intracellular proteins post-translational modification (PTM) characterized by covalent attachment of ubiquitin molecules to target proteins. This includes monoubiquitination (attachment of one ubiquitin molecule), multiple monoubiquitination also known as multiubiquitination (attachment of several monomeric ubiquitin molecules to a target protein), and polyubiquitination (attachment of ubiquitin chains consisting of several, most frequently four ubiquitin monomers to a target protein). In the case of polyubiquitination, linear or branched polyubiquitin chains are formed. Their formation involves various lysine residues of monomeric ubiquitin. The best studied is Lys48-linked polyubiquitination, which targets proteins for proteasomal degradation. In this review we have considered examples of so-called atypical polyubiquitination, which mainly involves other lysine residues (Lys6, Lys11, Lys27, Lys29, Lys33, Lys63) and also N-terminal methionine. The considered examples convincingly demonstrate that polyubiquitination of proteins (not necessarily) targets proteins for their proteolytic degradation in proteasomes. Atypically polyubiquitinated proteins are involved in regulation of various processes including immune response, genome stability, signal transduction, etc. Alterations of ubiquitination machinery is crucial for development of serious diseases.  相似文献   

16.
The apoplast has crucial functions in plant biology. It comprises all the compartments beyond the plasmalemma, including the cell wall. As the reservoir of information on the biotic and abiotic environment surrounding the cell and a major conduit of information between cells, the apoplast has functions in stress perception and the subsequent appropriate control of growth and defence. The oxidative burst phenomenon, caused by environmental challenges and pathogen attack in particular, oxidises the apoplast. Ascorbic acid (AA), the major and probably the only antioxidant buffer in the apoplast, becomes oxidised in these conditions. The apoplastic enzyme ascorbate oxidase (AO) also regulates the reduction/oxidation (redox) state of the apoplastic ascorbate pool. We propose that a key function of the oxidative burst and of AO is to modify the apoplastic redox state in such a way as to modify receptor activity and signal transduction to regulate defence and growth.  相似文献   

17.
18.
The miRNA-29 family of microRNAs (miRNAs), including miR-29a, miR-29b and miR-29c, was recently reported to be aberrantly expressed in multiple cancers. Increasing evidence shows that the abnormal expression of miR-29 family is associated with tumorigenesis and cancer progression, making miR-29s a well-analyzed group of miRNAs in cancer research. Here, in this review we aim to provide an overview of the role of miR-29 family in the pathophysiologic changes of cancer cells and the epigenetic and immune regulation through the biological function of miR-29s.  相似文献   

19.
Ovarian folliculogenesis is regulated by both endocrine and intraovarian mechanisms that coordinate the processes of oocyte growth and somatic cell proliferation and differentiation. Within the follicle, paracrine interactions between the oocyte and surrounding granulosa cells are critical for normal cell development and function. This review focuses on the role of paracrine interactions during early oocyte and follicular development that ensure proper coordination of oocyte and somatic cell function. Particular emphasis is given to granulosa cell-derived Kit Ligand (KitL), whose functional importance for oocyte growth has been demonstrated by a wide range of in vivo and in vitro studies. Reported interactions between KitL and oocyte-derived growth differentiation factor-9 (GDF9) and bone morphogenetic protein-15 (BMP15) suggest the molecular basis of oocyte-granulosa cell interactions, but also hint at the complexity of these communications. These paracrine interactions and the structure of the oocyte-granulosa cell interface are follicle stage-specific and regulated by FSH. Elucidation of the molecular mechanisms that promote the development of healthy oocytes with good developmental competence has potential applications for improving fertility and for in vitro growth systems for oocytes from domestic animals and humans.  相似文献   

20.
SHPS-1 is a transmembrane protein whose cytoplasmic region undergoes tyrosine phosphorylation and then binds the protein-tyrosine phosphatase SHP-2. Formation of the SHPS-1-SHP-2 complex is implicated in regulation of cell migration. In addition, SHPS-1 and its ligand CD47 constitute an intercellular recognition system that contributes to inhibition of cell migration by cell-cell contact. The ectodomain of SHPS-1 has now been shown to be shed from cells in a reaction likely mediated by a metalloproteinase. This process was promoted by activation of protein kinase C or of Ras, and the released ectodomain exhibited minimal CD47-binding activity. Metalloproteinases catalyzed the cleavage of a recombinant SHPS-1-Fc fusion protein in vitro, and the primary cleavage site was localized to the juxtamembrane region of SHPS-1. Forced expression of an SHPS-1 mutant resistant to ectodomain shedding impaired cell migration, cell spreading, and reorganization of the actin cytoskeleton. It also increased the tyrosine phosphorylation of paxillin and FAK triggered by cell adhesion. These results suggest that shedding of the ectodomain of SHPS-1 plays an important role in regulation of cell migration and spreading by this protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号