首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In natural forests, hundreds of fungal species colonize plant roots. The preference or specificity for partners in these symbiotic relationships is a key to understanding how the community structures of root‐associated fungi and their host plants influence each other. In an oak‐dominated forest in Japan, we investigated the root‐associated fungal community based on a pyrosequencing analysis of the roots of 33 plant species. Of the 387 fungal taxa observed, 153 (39.5%) were identified on at least two plant species. Although many mycorrhizal and root‐endophytic fungi are shared between the plant species, the five most common plant species in the community had specificity in their association with fungal taxa. Likewise, fungi displayed remarkable variation in their association specificity for plants even within the same phylogenetic or ecological groups. For example, some fungi in the ectomycorrhizal family Russulaceae were detected almost exclusively on specific oak (Quercus) species, whereas other Russulaceae fungi were found even on “non‐ectomycorrhizal” plants (e.g., Lyonia and Ilex). Putatively endophytic ascomycetes in the orders Helotiales and Chaetothyriales also displayed variation in their association specificity and many of them were shared among plant species as major symbionts. These results suggest that the entire structure of belowground plant–fungal associations is described neither by the random sharing of hosts/symbionts nor by complete compartmentalization by mycorrhizal type. Rather, the colonization of multiple types of mycorrhizal fungi on the same plant species and the prevalence of diverse root‐endophytic fungi may be important features of belowground linkage between plant and fungal communities.  相似文献   

3.
兰科菌根真菌研究方法的概述   总被引:1,自引:0,他引:1  
兰科植物资源在全球分布广泛,其中有许多是重要的药用植物和名贵的珍稀花卉,由于具有较高的商业价值,受到各界人士的广泛关注。兰科植物生长习性的特殊性导致其在自然状态下繁殖率极低,因此难以满足市场的广泛需求。近年研究表明,几乎所有兰科植物都能与相应的菌根真菌建立共生关系,并且必须依赖于这些内生真菌才能完成其整个生活史。因而对菌根真菌在提高兰科植物生长速度和繁殖能力过程中机制的研究以及将研究成果运用于工业化育苗中将是缓解兰科植物市场供求紧张问题的关键。通过对近几年有关天麻和铁皮石斛等兰科植物的问题研究中所采用的研究方法加以阐述,以期对今后兰科菌根真菌的研究提供一定的参考。  相似文献   

4.
菌根真菌与植物共生营养交换机制研究进展   总被引:4,自引:0,他引:4  
菌根是陆地生态系统普遍存在的、由土壤中的菌根真菌侵染宿主植物根系形成的联合共生体.菌根的建立是以共生体双方的营养交换为基础的:菌根真菌从土壤中吸收氮、磷等营养物质并转运给宿主植物,供其生长;作为交换,植物则以脂质或糖的形式向菌根真菌提供其生长所必需的碳水化合物.近年来,菌根真菌与宿主植物间的营养交换机制一直是研究的热点,国内外对菌根真菌介导的植物营养物质吸收和转运机制的研究也取得了巨大进展.本文综述了丛枝和外生两种菌根真菌与宿主植物间营养交换的最新研究进展,尤其是碳、氮、磷等几种重要营养物质的吸收与双向转运机制,以及营养交换在菌根形成中的潜在调控作用,并对目前存在的关键问题和未来研究方向进行了分析和展望,这对菌根模型的建立及菌根效益的优化具有重要意义.  相似文献   

5.
Soil environments are dynamic and the plant rhizosphere harbours a phenomenal diversity of micro-organisms which exchange signals and beneficial nutrients. Bipartite beneficial or symbiotic interactions with host roots, such as mycorrhizae and various bacteria, are relatively well characterized. In addition, a tripartite interaction also exists between plant roots, arbuscular mycorrhizal fungi (AMF) and associated bacteria. Bacterial biofilms exist as a sheet of bacterial cells in association with AMF structures, embedded within a self-produced exopolysaccharide matrix. Such biofilms may play important functional roles within these tripartite interactions. However, the details about such interactions in the rhizosphere and their relevant functional relationships have not been elucidated. This review explores the current understanding of naturally occurring microbial biofilms, and their interaction with biotic surfaces, especially AMF. The possible roles played by bacterial biofilms and the potential for their application for a more productive and sustainable agriculture is discussed in this review.  相似文献   

6.
Uptake, translocation, detoxification, and sequestration of heavy metals (HMs) are key processes in plants to deal with excess amounts of HM. Under natural conditions, plant roots often establish ecto‐ and/or arbuscular‐mycorrhizae with their fungal partners, thereby altering HM accumulation in host plants. This review considers the progress in understanding the physiological and molecular mechanisms involved in HM accumulation in nonmycorrhizal versus mycorrhizal plants. In nonmycorrhizal plants, HM ions in the cells can be detoxified with the aid of several chelators. Furthermore, HMs can be sequestered in cell walls, vacuoles, and the Golgi apparatus of plants. The uptake and translocation of HMs are mediated by members of ZIPs, NRAMPs, and HMAs, and HM detoxification and sequestration are mainly modulated by members of ABCs and MTPs in nonmycorrhizal plants. Mycorrhizal‐induced changes in HM accumulation in plants are mainly due to HM sequestration by fungal partners and improvements in the nutritional and antioxidative status of host plants. Furthermore, mycorrhizal fungi can trigger the differential expression of genes involved in HM accumulation in both partners. Understanding the molecular mechanisms that underlie HM accumulation in mycorrhizal plants is crucial for the utilization of fungi and their host plants to remediate HM‐contaminated soils.  相似文献   

7.
Aims Arbuscular mycorrhizae are formed between >80 % of land plants and arbuscular mycorrhizal (AM) fungi. This Botanical Briefing highlights the chemical identification of strigolactones as a host-recognition signal for AM fungi, and their role in the establishment of arbuscular mycorrhizae as well as in the seed germination of parasitic weeds.• Scope Hyphal branching has long been described as the first morphological event in host recognition by AM fungi during the pre-infection stages. Host roots release signalling molecules called ‘branching factors’ that induce extensive hyphal branching in AM fungi. Strigolactones exuded from host roots have recently been identified as an inducer of hyphal branching in AM fungi. Strigolactones are a group of sesquiterpenes, previously isolated as seed germination stimulants for the parasitic weeds Striga and Orobanche. Parasitic weeds might find their potential hosts by detecting strigolactones, which are released from plant roots upon phosphate deficiency in communication with AM fungi. In addition to acting as a signalling molecule, strigolactones might stimulate the production of fungal symbiotic signals called ‘Myc factors’ in AM fungi.• Conclusions Isolation and identification of plant symbiotic signals open up new ways for studying the molecular basis of plant–AM-fungus interactions. This discovery provides a clear answer to a long-standing question in parasitic plant biology: what is the natural role for germination stimulants? It could also provide a new strategy for the management and control of beneficial fungal symbionts and of devastating parasitic weeds in agriculture and natural ecosystems.  相似文献   

8.
菌根真菌的碳氮循环功能研究进展   总被引:3,自引:0,他引:3  
菌根(Mycorrhiza)是土壤真菌与植物根系形成的共生体(Symbiont),真菌一方面从植物获取碳水化合物,同时帮助植物吸收氮等矿质养分,因此,菌根真菌在生态系统的碳氮循环过程中发挥重要的作用.研究结果表明,菌根真菌可利用约4%-26%的植物净光合固定的碳水化合物,而其生物量和分泌物(如球囊霉素)具有重要的土壤碳汇功能;同时菌根真菌可参与土壤复杂有机质的降解过程.在菌根共生体系中,氮从根外菌丝到根内菌丝的传输经历了一个“无机-有机-无机”的转变过程.本文重点总结分析了菌根真菌在碳氮代谢功能与机理等方面的国内外最新研究进展,以及目前存在的主要问题与未来的研究重点.  相似文献   

9.
In most studies about dioecious plants, the role of arbuscular mycorrhizae (AM) and the potential sex-specific differences between the plant hosts have been overlooked. Because plant sexes frequently differ in drought tolerance and AM fungal colonization provides higher resistance to drought, we investigated whether the relation of mycorrhizal fungi with either male or female Antennaria dioica plants differs using a factorial experiment. We hypothesized that because AM usually increase growth rate and male plants usually grow larger than females, males should gain more benefit from the mycorrhizal symbiosis in terms of mineral nutrition and water supply. Because of higher demands of carbohydrates (C) in males, we expected males to allocate less C resources to the mycorrhizal fungus so that the associated fungi should benefit less of the association with males. In contrast to our initial hypothesis, the male plants, although faster growing under drought, did not gain more symbiosis-mediated benefits than did the females, and both sexes seemed to provide resources equally to their fungal symbiont. Therefore, we conclude that the two plant sexual morphs provide equal amounts of C to their fungal root symbionts and that they can gain specific benefits from the symbiosis, which, however, depend on soil water availability.  相似文献   

10.
Nonphotosynthetic mycorrhizal plants, so‐called mycoheterotrophic plants, have long attracted the curiosity of botanists and mycologists. Recent advances in molecular methods based on fungal‐specific PCR amplification have dramatically enhanced the identification of their host mycorrhizal fungi. However, studies investigating the fungal hosts of arbuscular mycorrhizae‐forming mycoheterotrophs are still limited in Asia, which is known as one of the diversity hot spots of mycoheterotrophs that parasitize arbuscular mycorrhizae (AM). Therefore, we aimed to reveal the mycorrhizal associations of two Asian, fully mycoheterotrophic Burmannia species by molecular identification. Sequences of the small subunit ribosomal DNA showed that both Burmannia species are associated with several distinct lineages of Glomus group Ab. Because Glomus group Ab fungi have been confirmed as fungal hosts of various mycoheterotrophic plants in Africa and South America, we suggest they are widely exploited by AM‐forming mycoheterotrophs globally.  相似文献   

11.
1. Stressful abiotic conditions and mycorrhizal fungi have both been shown to influence plant quality significantly, yet the interactive effects of these factors on relationships among plants, herbivores, and natural enemies remain unclear. 2. In this study, the results of a factorial field experiment are reported in which the effects of plant stress and mycorrhizae on density and parasitism of three herbivores of Baccharis halimifolia L. were examined. 3. Plant stress was increased by adding salt to the soil, and association with mycorrhizal fungi was increased by inoculating plant roots. 4. Inoculation with mycorrhizal fungi resulted in increased density of all three herbivore species, but the effects of mycorrhizae on parasitism varied by species and with soil salinity levels. For the gall maker Neolasioptera lathami Gagne, mycorrhizae decreased parasitism regardless of soil salinity levels. For the leaf miners Amauromyza maculosa Malloch and Liriomyza trifolii Burgess, mycorrhizae effectively negated the decrease in parasitism resulting from increased salinity. 5. The results of this study show that the effects of mycorrhizae on parasitism may be context dependent, and can be positive or negative depending upon species and environmental conditions.  相似文献   

12.
Symbiotic interactions of the tripartite association of soybeanplant, vesiculararbuscular (VA) mycorrhizal fungus and Rhizobiumjaponicum were shown. Mycorrhizal plants absorbed more P, Ca and Mg and had higherP, Ca and Mg contents in their stems or leaves than non-mycorrhizalplants. Phosphorus concentration was also higher in the nodulesof mycorrhizal plants. VA mycorrhizae increased nodule number, nodule weight and acetylenereduction activity of nodules. Concomitantly seed productionand N content of leaves were enhanced. Both nodulating (A62-1) and non-nodulating (A62-2) cultivarsof soybean plants [Glycine max (L.) Merr.] were colonized byVA mycorrhizal fungi, identified as belonging to the genus Glomus. (Received August 12, 1985; Accepted January 14, 1986)  相似文献   

13.
Li AR  Guan KY 《Mycorrhiza》2008,18(8):429-436
As an important component of plant kingdom, parasitic plants have intrigued many scientists with their heterotrophic strategy. Numerous investigations have been carried out for a better understanding of interactions between parasitic plants and their hosts. Nevertheless, studies on parasitic plants from a mycorrhizal perspective are lacking, largely because of the notion that parasitic plants do not form mycorrhizal associations. Although long being regarded as nonmycorrhizal, some Pedicularis species are recently found to be heavily colonized by mycorrhizal fungi. Because the precise information about parasitism of Chinese Pedicularis has been lacking, we surveyed both the mycorrhizal status and parasitism of 29 Pedicularis species from the northwest of Yunnan Province, China, to test the hypothesis that some Pedicularis may be mycorrhizal and parasitic simultaneously. The majority of studied species were found to be parasitic as well as mycorrhizal. In some cases, parasitic organs and arbuscular mycorrhizal fungi (AMF) were detected in the same rootlets. The results suggest that some Pedicularis species may have another nutrient strategy (e.g., mycotrophy) besides being parasitic. Also, the findings indicate that host plants as well as AMF should be taken into account in cultivation of Pedicularis species.  相似文献   

14.
In nature, plants often associate with multiple symbionts concurrently, yet the effects of tripartite symbioses are not well understood. We expected synergistic growth responses from plants associating with functionally distinct symbionts. In contrast, symbionts providing similar benefits to a host may reduce host plant growth. We reviewed studies investigating the effect of multiple interactions on host plant performance. Additionally, we conducted a meta-analysis on the studies that performed controlled manipulations of the presence of two microbial symbionts. Using response ratios, we investigated the effects on plants of pairs of symbionts (mycorrhizal fungi, fungal endophytes, and nitrogen-fixers). The results did not support the view that arbuscular mycorrhizal (AM) fungi and rhizobia should interact synergistically. In contrast, we found the joint effects of fungal endophytes and arbuscular mycorrhizal fungi to be greater than expected given their independent effects. This increase in plant performance only held for antagonistic endophytes, whose negative effects were alleviated when in association with AM fungi, while the impact of beneficial endophytes was not altered by infection with AM fungi. Generalizations from the meta-analysis were limited by the substantial variation within types of interactions and the data available, highlighting the need for more research on a range of plant systems.  相似文献   

15.
How community‐level specialization differs among groups of organisms, and changes along environmental gradients, is fundamental to understanding the mechanisms influencing ecological communities. In this paper, we investigate the specialization of root‐associated fungi for plant species, asking whether the level of specialization varies with elevation. For this, we applied DNA barcoding based on the ITS region to root samples of five plant species equivalently sampled along an elevational gradient at a high arctic site. To assess whether the level of specialization changed with elevation and whether the observed patterns varied between mycorrhizal and endophytic fungi, we applied a joint species distribution modeling approach. Our results show that host plant specialization is not environmentally constrained in arctic root‐associated fungal communities, since there was no evidence for changing specialization with elevation, even if the composition of root‐associated fungal communities changed substantially. However, the level of specialization for particular plant species differed among fungal groups, root‐associated endophytic fungal communities being highly specialized on particular host species, and mycorrhizal fungi showing almost no signs of specialization. Our results suggest that plant identity affects associated mycorrhizal and endophytic fungi differently, highlighting the need of considering both endophytic and mycorrhizal fungi when studying specialization in root‐associated fungal communities.  相似文献   

16.
Yang S  Pfister DH 《Mycologia》2006,98(4):535-540
Plant species in the subfamily Monotropoideae are mycoheterotrophs; they obtain fixed carbon from photosynthetic plants via a shared mycorrhizal network. Previous findings show mycoheterotrophic plants exhibit a high level of specificity to their mycorrhizal fungi. In this study we explore the association of mycorrhizal fungi and Monotropa uniflora (Monotropoideae: Ericaceae) in eastern North America. We collected M. uniflora roots and nearby basidiomycete sporocarps from four sites within a 100 km2 area in eastern Massachusetts. We analyzed DNA sequences of the internal transcribed spacer region (ITS) from the fungal nuclear ribosomal gene to assess the genetic diversity of fungi associating with M. uniflora roots. In this analysis we included 20 ITS sequences from Russula sporocarps collected nearby, 44 sequences of Russula or Lactarius species from GenBank and 12 GenBank sequences of fungi isolated from M. uniflora roots in previous studies. We found that all 56 sampled M. uniflora mycorrhizal fungi were members of the Russulaceae, confirming previous research. The analysis showed that most of the diversity of mycorrhizal fungi spreads across the genus Russula. ITS sequences of the mycorrhizal fungi consisted of 20 different phylotypes: 18 of the genus Russula and two of Lactarius, based on GenBank searches. Of the sampled plants, 57% associated with only three of the 20 mycorrhizal fungi detected in roots, and of the 25 sporocarp phylotypes collected three, were associated with M. uniflora. Furthermore the results indicate that the number of different fungal phylotypes associating with M. uniflora of eastern North America is higher than that of western North America but patterns of fungal species abundance might be similar between mycorrhizae from the two locations.  相似文献   

17.
All plants in natural ecosystems are thought to be symbioticwith mycorrhizal and/or endophytic fungi. Collectively, thesefungi express different symbiotic lifestyles ranging from parasitismto mutualism. Analysis of Colletotrichum species indicates thatindividual isolates can express either parasitic or mutualisticlifestyles depending on the host genotype colonized. The endophytecolonization pattern and lifestyle expression indicate thatplants can be discerned as either disease, non-disease, or non-hosts.Fitness benefits conferred by fungi expressing mutualistic lifestylesinclude biotic and abiotic stress tolerance, growth enhancement,and increased reproductive success. Analysis of plant–endophyteassociations in high stress habitats revealed that at leastsome fungal endophytes confer habitat-specific stress toleranceto host plants. Without the habitat-adapted fungal endophytes,the plants are unable to survive in their native habitats. Moreover,the endophytes have a broad host range encompassing both monocotsand eudicots, and confer habitat-specific stress tolerance toboth plant groups. Key words: Colletotrichum, fungal endophytes, stress tolerance, symbiosis, symbiotic lifestyle Received 19 June 2007; Revised 25 November 2007 Accepted 30 November 2007  相似文献   

18.
Mycorrhizal fungi are crucial for the ecological success of land plants, providing their hosts with nutrients in exchange for organic C. However, not all plants are mycorrhizal, especially ferns, of which about one-third of the species lack this symbiosis. Because the mycorrhizal status is evolutionarily ancestral, this lack of mycorrhizae must have ecological advantages, but what these advantages are and how they affect the competitive ability of non-mycorrhizal plants under natural conditions is currently unknown. To address this uncertainty, we studied terrestrial fern assemblages and species abundances as well as their mycorrhization status, leaf nutrient concentration and relative annual growth along an elevational gradient in the Ecuadorian Andes (500–4,000 m). We surveyed the mycorrhizal status of 375 root samples belonging to 85 species, and found mycorrhizae in 89 % of the samples. The degree of mycorrhization decreased with elevation but was unrelated to soil nutrients. Species with mycorrhizae were significantly more abundant than non-mycorrhizal species, but non-mycorrhizal species had significantly higher relative growth and concentrations of leaf N, P, Mg, and Ca. Our study thus shows that despite lower abundances, non-mycorrhizal fern species did not appear to be limited in their growth or nutrient supply relative to mycorrhizal ones. As a basis for future studies, we hypothesize that non-mycorrhizal fern species may be favoured in special microhabitats of the forest understory with high soil nutrient or water availability, or that the ecological benefit of mycorrhizae is not related to nutrient uptake but rather to, for example, pathogen resistance.  相似文献   

19.
Most organisms engage in beneficial interactions with other species; however, little is known regarding how individuals balance the competing demands of multiple mutualisms. Here we examine three-way interactions among a widespread grass, Schedonorus phoenix , a protective fungal endophyte aboveground, Neotyphodium coenophialum , and nutritional symbionts (arbuscular mycorrhizal fungi) belowground. In a greenhouse experiment, we manipulated the presence/absence of both fungi and applied a fertilizer treatment to individual plants. Endophyte presence in host plants strongly reduced mycorrhizal colonization of roots. Additionally, for plants with the endophyte, the density of endophyte hyphae was negatively correlated with mycorrhizal colonization, suggesting a novel role for endophyte abundance in the interaction between the symbionts. Endophyte presence increased plant biomass, and there was a positive correlation between endophyte hyphal density and plant biomass. The effects of mutualists were asymmetric: mycorrhizal fungi treatments had no significant impact on the endophyte and negligible effects on plant biomass. Fertilization affected all three species – increasing plant biomass and endophyte density, but diminishing mycorrhizal colonization. Mechanisms driving negative effects of endophytes on mycorrhizae may include inhibition via endophyte alkaloids, altered nutritional requirements of the host plant, and/or temporal and spatial priority effects in the interactions among plants and multiple symbionts.  相似文献   

20.
兰科菌根的生态学研究进展   总被引:2,自引:0,他引:2  
兰科植物(Orchidaceae)是典型的菌根植物,自然条件下其种子的成功萌发和生长的早期阶段对菌根真菌有绝对的依赖性,在有些成年兰科植物中菌根真菌仍起着重要的作用。目前大部分兰科植物已为濒危物种,鉴于兰科植物天然的菌根共生关系,开展兰科植物和菌根真菌互作的生态学研究不仅具有极高的科研价值,更有助于兰科植物的物种保护和野生种群的生态恢复。近年研究表明,兰科植物对真菌的选择和二者共生关系的建立与菌根真菌的空间分布和丰度密切相关,然而当前对自然环境中兰科菌根真菌的实际分布还了解甚少,因此文章从生态学角度系统分析兰科植物与菌根真菌的关系,探讨该领域的研究热点,旨在为兰科菌根的生态学研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号