首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Woodland restoration sites planted with Quercus lobata (valley oak) often have serious invasions of nonnative annual grasses and thistles. Although prescribed fire can effectively control these exotics, restoration managers may be reluctant to use fire if it causes substantial mortality of recently planted saplings. We studied the effects of prescribed fires on the survival and subsequent growth of 5‐ and 6‐year‐old valley oak saplings at a research field near Davis, California. One set of blocks was burned in summer 2003 at a time that would control yellow star thistle, a second set of blocks was burned in spring 2004 at a time that would control annual grasses, and a third set was left unburned. Very few oaks died as a result of either fire (3–4%). Although a large proportion was top‐killed (66–72%), virtually all these were coppiced and most saplings over 300 cm tall escaped top‐kill. Tree height, fire temperature, and understory biomass were all predictive of the severity of sapling response to fire. Although the mean sapling height was initially reduced by the fires, the growth rates of burned saplings significantly exceeded the growth rates of unburned control trees for 2 years following the fires. By 2–3 years after the fires, the mean height of spring‐ and summer‐burned saplings was similar to that of the unburned control saplings. The presence of valley oak saplings does not appear to preclude the use of a single prescribed burn to control understory invasives, particularly if saplings are over 300 cm tall.  相似文献   

2.
Human activities are changing patterns of ecological disturbance globally. In North American deserts, wildfire is increasing in size and frequency due to fuel characteristics of invasive annual grasses. Fire reduces the abundance and cover of native vegetation in desert ecosystems. In this study, we sought to characterize stem growth and reproductive output of a dominant native shrub in the Mojave Desert, creosote bush (Larrea tridentata (DC.) Coville) following wildfires that occurred in 2005. We sampled 55 shrubs along burned and unburned transects 12 years after the fires (2017) and quantified age, stem diameter, stem number, radial and vertical growth rates, and fruit production for each shrub. The shrubs on the burn transects were most likely postfire resprouts based on stem age while stems from unburn transects dated from before the fire. Stem and vertical growth rates for shrubs on burned transects were 2.6 and 1.7 times higher than that observed for shrubs on unburned transects. Fruit production of shrubs along burned transects was 4.7‐fold more than shrubs along paired unburned transects. Growth rates and fruit production of shrubs in burned areas did not differ with increasing distance from the burn perimeter. Positive growth and reproduction responses of creosote following wildfires could be critical for soil stabilization and re‐establishment of native plant communities in this desert system. Additional research is needed to assess if repeat fires that are characteristic of invasive grass‐fire cycles may limit these benefits.  相似文献   

3.
Wildfires are common natural perturbations in Mediterranean ecosystems. Their frequency and extent have changed in recent decades to become one of the main ecological problems for wildlife. The response of fauna to wildfires depends greatly on the life histories and biological traits of each species. Terrestrial gastropods have limited mobility, and their presence is restricted by the vegetal and abiotic characteristics of habitats. For this reason, they are expected to have a low ability to recolonize burned areas. We have explored their survivorship and recolonization patterns according to the cryptic-refuge and fire-edge models in a Mediterranean protected area affected by a large fire in August 2003. The low number of species recorded at burned sites demonstrates the negative effects of a wildfire on the richness of gastropod assemblages 4 years after the perturbation. However, the total number of living individuals did not vary between burned and unburned areas, suggesting an after-fire shift in dominant species from woodland to open-space species. Forest species with wide European distributions dominated in unburned sites, whereas open-space species and xerophytic Mediterranean species were present at burned sites. These differences were evident even at the burned sites closest to the unburned forest, suggesting low recolonization rates from the fire edge. By contrast, the abundance of xerophilous species as well as isolated records of mesophilous species in the burned areas suggests the survival of small populations and further recuperation after fire following the cryptic-refuge model.  相似文献   

4.
Little is known about the diversity of tropical animal communities in recently fire‐affected environments. Here we assessed species richness, evenness, and community similarity of butterflies and odonates in landscapes located in unburned isolates and burned areas in a habitat mosaic that was severely affected by the 1997/98 ENSO (El Niño Southern Oscillation) event in east Kalimantan, Indonesian Borneo. In addition related community similarity to variation in geographic distance between sampling sites and the habitat/vegetation structure Species richness and evenness differed significantly among landscapes but there was no congruence between both taxa. The species richness of butterflies was, for example, highest in sites located in a very large unburned isolate whereas odonate species richness was highest in sites located in a small unburned isolate and once‐burned forest. We also found substantial variation in the habitat/vegetation structure among landscapes but this was mainly due to variation between unburned and burned landscapes and variation among burned landscapes. Both distance and environment (habitat/vegetation) contributed substantially to explaining variation in the community similarity (beta diversity) of both taxa. The contribution of the environment was, however, mainly due to variation between unburned and burned landscapes, which contained very different assemblages of both taxa. Sites located in the burned forest contained assemblages that were intermediate between assemblages from sites in unburned forest and sites from a highly degraded slash‐and‐burn area indicating that the burned forest was probably recolonised by species from these disparate environments. We, furthermore, note that in contrast to species richness (alpha diversity) the patterns of community similarity (beta diversity) were highly congruent between both taxa. These results indicate that community‐wide multivariate measures of beta diversity are more consistent among taxa and more reliable indicators of disturbance, such as ENSO‐induced burning, than univariate measures.  相似文献   

5.
In environments with high fire frequency the impoverishment of abiotic resources may favour male sexual expression in plants as it is less costly than female expression. Also, fire can modify pollinator communities and thus affect plant reproduction. Here we evaluate the effect of frequent fires on sexual expression, pollination and reproductive success of Vachellia caven (Leguminosae), an andromonoecious tree that is highly dependent on animal pollination and is abundant in burned sites. We expect that increased fire frequency will favour maleness but it will decrease reproductive success due to abiotic resource depletion in repeated burned sites. To test this, we selected focal plants in three unburned sites and three frequently burned sites and measured their sexual expression, basal diameter, pollination and fruit set. The proportion of male inflorescences per plant was not affected by fire and it was negatively related with the diameter of the plant. The proportion of pollinated flowers was not affected by fire, and fruit set increased with maleness only in frequently burned sites. These results indicate that V. caven is adapted to regimes of high fire frequency: not only was there similar fruit set in both burned and unburned sites, but more male plants had higher fruit set in burned sites. Despite the soil impoverishment triggered by repeated fires, V. caven is able to maintain its sexual and reproductive functions, allowing it to persist and maintain viable populations in fire‐prone environments. Abstract in Spanish is available with online material.  相似文献   

6.
During the 1997/98 ENSO (El Niño Southern Oscillation) event more than 5 million ha of East Kalimantan, Indonesia burned. Here we quantify the initial stages of regeneration (19982001), both in forest that burned and in unburned controls. Sapling and seedling density and species richness remained significantly lower in burned than in unburned forest and community composition remained substantially different between both forest types throughout the sampling period. The only pronounced edge effect was a significantly higher density of seedlings in the interior of unburned forest. Sapling density increased and seedling density declined in both unburned and burned forest during the four-year study period. In the unburned forest, sapling and seedling species richness remained stable, but sapling species richness declined significantly with time in the burned forest. The pioneer community in the burned forest was, furthermore, characterised by higher growth and recruitment than in the unburned forest but mortality did not differ between both forest types. Differences in environment (burned versus unburned: 2965% of variation explained) and the distance between sample sites (1323% of variation explained) explained substantial amounts of variation in sapling and seedling community similarity. Similarity was, however, only marginally (< 1% explained) related to the edge position and temporal variation (difference among sample events). Our results, four years after the initial burn, indicate that burned forest still differed greatly from unburned forest in terms of density, species richness and community composition. There was also no clear trend of a return to pre-disturbance conditions, which indicates that the burned forest may remain in a severely degraded state for a prolonged period of time.  相似文献   

7.
Borneo contains a diverse rainforest butterfly community, but its forests are under threat from logging and ENSO- (El Niño Southern Oscillation) induced fires. Contrasts in butterfly assemblage structure were examined in nine 450 ha landscapes in logged forest, primary unburned continuous and isolated forest, and forest affected by surface fires during the 1997/98 ENSO event. Temporally the effect of the 1997/98 ENSO event was followed in a single burned landscape from 1997 to 2004. In total, 517 species were present in 190 sampling sites. There was a five-fold difference in species richness among landscapes, with highest richness in continuous landscapes and lowest richness in burned landscapes. Richness was also higher in logged forest than proximate unlogged forest. Temporally, species richness dropped dramatically from 1997 to 1998, but afterwards increased remaining, however, substantially lower than pre-ENSO (1997) sampling. Sites in burned landscapes were distinct from other sites in terms of vegetation structure with the slash-and-burn area the most dissimilar to other landscapes. There was much less structure among unburned landscapes. The pattern of butterfly community composition was similar to that of vegetation structure with the community from the slash-and-burn area the most distinct. However, there was much less overlap among sites from different landscapes. Temporally, 1998 possessed the most distinct assemblage when compared to assemblages from other years. The community composition was, however, slowly returning to a pre-disturbance composition. Variance in community composition explained by environmental and spatial factors differed substantially among landscapes. The spatial fraction was the only explanatory component in recently burned landscapes and a proximate small unburned isolate, but explained no variation in logged landscapes. The environmental fraction explained substantial amounts of variation in logged landscapes and the slash-and-burn area. When all landscapes were pooled high proportions of variation in butterfly community composition were explained by both geographic distance between sites and environmental variables. In contrast when only unburned landscapes were considered, most variation was explained by the geographic distance among them. Despite differences among landscapes there was a general pattern of relatively sharp decline in similarity at short distances that levels out over greater distances, a result that agrees with previous studies on other tropical species assemblages.  相似文献   

8.
Although wildfires are important in many forested ecosystems, increasing suburbanization necessitates management with prescribed fires. The physiological responses of overstory trees to prescribed fire has received little study and may differ from typical wildfires due to the lower intensity and timing of prescribed fire in the dormant season. Trees may be negatively affected by prescribed fires if injury occurs, or positively affected due to reduced competition from understory vegetation and release of nutrients from partially consumed litter. We estimated sap flow and photosynthetic parameters before a late-March prescribed fire and throughout the growing season in burned and unburned pitch pine (Pinus rigida L.) sites in the New Jersey Pinelands to determine how water use and photosynthetic capacity were affected. Water use was similar between sites before the fire but 27 % lower in burned trees immediately following the fire. After about a month, water use in the burned site was 11–25 % higher than pines from the unburned site and these differences lasted into the summer. Photosynthetic capacity remained similar between sites but instantaneous intrinsic water use efficiency increased by 22 % and maximum Rubisco carboxylation rate (V cmax) was over three times greater in the summer compared to the pre-fire period in the burned site, whereas the unburned site exhibited similar V cmax and intrinsic water use efficiencies between pre-fire and summer measurements. These differences in physiology suggest that the prescribed fire altered the amount of water and nutrients that pines had access to and led to increased water use and water use efficiency; both of which are important in this water- and nutrient-limited ecosystem.  相似文献   

9.
This paper presents circumstantial evidence that the mating system of the North American pocket gophers (Rodentia: Geomyidae) is a promiscuous one, with female choice at its base. A molecular marker (a length variant in the mitochondrial Control region [D-loop]) is used to show mating asymmetry in a hybrid zone between the species Thomomys bottae and Thomomys townsendii in north-eastern California. All hybrids result from a bottae mother × townsendii father cross. Because of significant differences in body size and resulting burrow diameter, bottae females must have actively sought their respective townsendii mates for the asymmetry in mating to have occurred, signalling female choice in these subterranean mammals that are otherwise characterized by exclusive-use territories, skewed adult sex ratio in favour of females, and high variance in male reproductive success.  相似文献   

10.
Questions: How do fire frequency, tree canopy cover, and their interactions influence cover of grasses, forbs and understorey woody plants in oak savannas and woodlands? Location: Minnesota, USA. Methods: We measured plant functional group cover and tree canopy cover on permanent plots within a long‐term prescribed fire frequency experiment and used hierarchical linear modeling to assess plant functional group responses to fire frequency and tree canopy cover. Results: Understorey woody plant cover was highest in unburned woodlands and was negatively correlated with fire frequency. C4‐grass cover was positively correlated with fire frequency and negatively correlated with tree canopy cover. C3‐grass cover was highest at 40% tree canopy cover on unburned sites and at 60% tree canopy cover on frequently burned sites. Total forb cover was maximized at fire frequencies of 4–7 fires per decade, but was not significantly influenced by tree canopy cover. Cover of N‐fixing forbs was highest in shaded areas, particularly on frequently burned sites, while combined cover of all other forbs was negatively correlated with tree canopy cover. Conclusions: The relative influences of fire frequency and tree canopy cover on understorey plant functional group cover vary among plant functional groups, but both play a significant role in structuring savanna and woodland understorey vegetation. When restoring degraded savannas, direct manipulation of overstorey tree canopy cover should be considered to rapidly reduce shading from fire‐resistant overstorey trees. Prescribed fires can then be used to suppress understorey woody plants and promote establishment of light‐demanding grasses and forbs.  相似文献   

11.
12.
We measured plant and soil carbon (C) storage following canopy-replacing wildfires in woodlands of northeastern Spain that include an understory of shrubs dominated by Quercus coccifera and an overstory of Pinus halepensis trees. Established plant succession models predict rapid shrub recovery in these ecosystems, and we build on this model by contrasting shrub succession with long-term C storage in soils, trees, and the whole ecosystem. We used chronosequence and repeated sampling approaches to detect change over time. Aboveground plant C increased from <100 to ~3,000 g C m−2 over 30 years following fire, which is substantially less than the 5,942 ± 487 g C m−2 (mean ±1 standard error) in unburned sites. As expected, shrubs accumulated C rapidly, but the capacity for C storage in shrubs was <600 g C m−2. Pines were the largest plant C pool in sites >20 years post fire, and accounted for all of the difference in plant C between older burned sites and unburned sites. In contrast, soil C was initially higher in burned sites (~4,500 g C m−2) than in unburned sites (3,264 ± 261 g C m−2) but burned site C declined to unburned levels within 10 years after fire. Combining these results with prior research suggests two states for C storage. When pine regeneration is successful, ~9,200 g C m−2 accumulate in woodlands but when tree regeneration fails (due to microclimatic stress or short fire return intervals), ecosystem C storage of ~4,000 g C m−2 will occur in the resulting shrublands.  相似文献   

13.
Aim Feedbacks between climate warming and fire have the potential to alter Arctic and sub‐Arctic vegetation. In this paper we assess the effects and interactions of temperature and wildfire on plant communities across the transition between the Arctic and sub‐Arctic. Location Mackenzie Delta region, Northwest Territories, Canada. Methods We sampled air temperatures, green alder (Alnus viridis ssp. fruticosa) cover, growth, reproduction and age distributions, and overall plant community composition on burned and unburned sites across a latitudinal gradient. Results Mean summer temperature across the study area decreased by 3 °C per degree of increasing latitude (6 °C across the study area). In the northern part of the study area, where seed viability was low, alder was less dominant than at southern sites where seed viability was high. The age structure of alder populations across the temperature gradient was highly variable, except in the northern part of the forest–tundra transition, where populations were dominated by young individuals. Alder growth and reproduction were significantly greater on burned sites (38–51 years following fire) than on unburned sites. North to south across the temperature gradient, vegetation changed from a community dominated by dwarf shrubs and fruticose lichens to one characterized by black spruce (Picea mariana), alder and willows (Salix spp.). Regardless of the position along the temperature gradient, burned sites were dominated by tall shrubs. Main conclusions Temperature limitation of alder abundance and repro‐duction, combined with evidence of recent recruitment on unburned sites, indicates that alder is likely to respond to increased temperature. Elevated alder growth and reproduction on burned sites shows that wildfire also has an important influence on alder population dynamics. The magnitude of alder’s response to fire, combined with observations that burns at the southern margin of the low Arctic are shrub dominated, suggest that increases in the frequency of wildfire have the potential to alter northern vegetation on decadal scales. By creating new seedbeds, fire provides opportunities for colonization that may facilitate the northward movement of tall shrubs. Feedbacks between the global climate system and low Arctic vegetation make understanding the long‐term impact of increasing fire frequency critical to predicting the response of northern ecosystems to global change.  相似文献   

14.
Wildfires are a typical event in many Australian plant communities. Vesicular-arbuscular mycorrhizal (VAM) fungi are important for plant growth in many communities, especially on infertile soils, yet few studies have examined the impact of wildfire on the infectivity of VAM fungi. This study took the opportunity offered by a wildfire to compare the infectivity and abundance of spores of VAM fungi from: (i) pre-fire and post-fire sites, and (ii) post-fire burned and unburned sites. Pre-fire samples had been taken in May 1990 and mid-December 1990 as part of another study. A wildfire of moderate intensity burned the site in late December 1990. Post-fire samples were taken from burned and unburned areas immediately after the fire and 6 months after the fire. A bioassay was used to examine the infectivity of VAM fungi. The post-fire soil produced significantly less VAM infection than the pre-fire soil. However, no difference was observed between colonization of plant roots by VAM fungi in soil taken from post-fire burned and adjacent unburned plots. Soil samples taken 6 months after the fire produced significantly more VAM than corresponding soil samples taken one year earlier. Spore numbers were quantified be wet-sieving and decanting of 100-g, air-dried soil subsamples and microscopic examination. For the most abundant spore type, spore numbers were significantly lower immediately post-fire. However, no significant difference in spore numbers was observed between post-fire burned and unburned plots. Six months after the fire, spore numbers were the same as the corresponding samples taken 1 year earlier. All plants appearing in the burned site resprouted from underground organs. All post-fire plant species recorded to have mycorrhizal associations before the fire had the same associations after the fire, except for species of Conospermum (Proteaceae), which lacked internal vesicles in cortical cells in the post-fire samples.  相似文献   

15.
Invasion by the alien succulent,Carpobrotus edulis, has become a common occurrence after fire in maritime chaparral in coastal California, USA. We studied post-burnCarpobrotus establishment in chaparral that lackedCarpobrotus plants before the fire and compared seedbank and field populations in adjacent burned and unburned stands.Carpobrotus seeds were abundant in deer scat and in the soil before burning. Burning did not enhance germination: many seeds were apparently killed by fire and seed bank cores taken after fire revealed no germinable seeds. Laboratory tests showed that temperatures over 105°C for five minutes killedCarpobrotus seeds. In a field experiment involving use of herbivore exclosures, we found that herbivory was an important source of mortality for seedlings in both burned and unburned chaparral. All seedlings, however, died outside of the burn regardless of the presence of cages. Establishment there is apparently limited by factors affecting plant physiology. In the burned area, seedlings that escaped herbivory grew very rapidly. Overall, it appears that herbivory limited seedling establishment in both burned and unburned sites but that the post-burn soil environment supportedCarpobrotus growth in excess of herbivore use, thus promoting establishment.  相似文献   

16.
Cleary DF 《Oecologia》2003,135(2):313-321
The impact of disturbance on species diversity may be related to the spatial scales over which it occurs. Here I assess the impact of logging and ENSO (El Niño Southern Oscillation) -induced burning and forest isolation on the species richness (477 species out of more than 28,000 individuals) and community composition of butterflies and butterfly guilds using small (0.9 ha) plots nested within large (450 ha) landscapes. The landscapes were located in three habitat classes: (1) continuous, unburned forest; (2) unburned isolates surrounded by burned forest; and (3) burned forest. Plots with different logging histories were sampled within the two unburned habitat classes, allowing for independent assessment of the two disturbance factors (logging and burning). Disturbance within habitat classes (logging) had a very different impact on butterfly diversity than disturbance among habitat classes (due to ENSO-induced burning and isolation). Logging increased species richness, increased evenness, and lowered dominance. Among guilds based on larval food plants, the species richness of tree and herb specialists was higher in logged areas but their abundance was lower. Both generalist species richness and abundance was higher in logged areas. Among habitat classes, species richness was lower in burned forest and isolates than continuous forest but there was no overall difference in evenness or dominance. Among guilds, generalist species richness was significantly lower in burned forest and isolates than continuous forest. Generalist abundance was also very low in the isolates. There was no difference among disturbance classes in herb specialist species richness but abundance was significantly higher in the isolates and burned forest than in continuous forest. Tree specialist species richness was lower in burned forest than continuous forest but did not differ between continuous forest and isolates.The scale of assessment proved important in estimating the impact of disturbance on species richness. Within disturbance classes, the difference in species richness between primary and logged forest was more pronounced at the smaller spatial scale. Among disturbance classes, the difference in species richness between continuous forest and isolates or burned forest was more pronounced at the larger spatial scale. The lower levels of species richness in ENSO-affected areas and at the larger (landscape) spatial scale indicate that future severe ENSO events may prove one of the most serious threats to extant biodiversity.  相似文献   

17.
We assess the differential impact of logging and ENSO (El Niño Southern Oscillation)-induced disturbance on the relative butterfly abundance and species richness of range-restricted and widespread species within the island of Borneo. Relative abundance and species richness were assessed using rarefaction and species accumulation curves in unburned isolates surrounded by burned forest, the burned forest itself, and continuous forest unaffected by ENSO-induced disturbance in addition to logged and unlogged landscapes in unburned forest. The relative abundance of endemics was significantly higher in unlogged forest than logged forest and significantly higher in unburned forest than burned forest. Rarefied species richness of range categories was similar (Bornean endemics) or higher (other categories) in selectively logged than unlogged forest. In contrast, rarefied species richness of range-restricted species was highest in continuous forest, intermediate in unburned isolates, and lowest in burned forest. Only two individuals of a single Bornean endemic species were found in all the burned forest. Although species richness was higher in all range categories in continuous forest than in unburned isolates and in burned forest, the difference was most pronounced for range-restricted species. Logging and ENSO-induced fires thus have contrasting effects on range-restricted species. While both increase the relative abundance of widely distributed species at the expense of range-restricted species, only ENSO-induced disturbance lowers the rarefied number of restricted range species. Our research highlights the threat that severe ENSO events pose to geographically restricted classes of biodiversity.  相似文献   

18.
Abstract. Changes in disturbance due to fire regime in southwestern Pinus ponderosa forests over the last century have led to dense forests that are threatened by widespread fire. It has been shown in other studies that a pulse of native, early‐seral opportunistic species typically follow such disturbance events. With the growing importance of exotic plants in local flora, however, these exotics often fill this opportunistic role in recovery. We report the effects of fire severity on exotic plant species following three widespread fires of 1996 in northern Arizona P. ponderosa forests. Species richness and abundance of all vascular plant species, including exotics, were higher in burned than nearby unburned areas. Exotic species were far more important, in terms of cover, where fire severity was highest. Species present after wildfires include those of the pre‐disturbed forest and new species that could not be predicted from above‐ground flora of nearby unburned forests.  相似文献   

19.
Fire causes dramatic short-term changes in vegetation and ecosystem function, and may promote rapid vegetation change by creating recruitment opportunities. Climate warming likely will increase the frequency of wildfire in the Arctic, where it is not common now. In 2007, the unusually severe Anaktuvuk River fire burned 1039 km2 of tundra on Alaska''s North Slope. Four years later, we harvested plant biomass and soils across a gradient of burn severity, to assess recovery. In burned areas, above-ground net primary productivity of vascular plants equalled that in unburned areas, though total live biomass was less. Graminoid biomass had recovered to unburned levels, but shrubs had not. Virtually all vascular plant biomass had resprouted from surviving underground parts; no non-native species were seen. However, bryophytes were mostly disturbance-adapted species, and non-vascular biomass had recovered less than vascular plant biomass. Soil nitrogen availability did not differ between burned and unburned sites. Graminoids showed allocation changes consistent with nitrogen stress. These patterns are similar to those seen following other, smaller tundra fires. Soil nitrogen limitation and the persistence of resprouters will likely lead to recovery of mixed shrub–sedge tussock tundra, unless permafrost thaws, as climate warms, more extensively than has yet occurred.  相似文献   

20.
Measurements of mid-season live and dead aboveground biomass are reported for a 10-yr period (1975–84) in a northeast Kansas tallgrass prairie. Study sites included shallow, rocky upland and deep, non-rocky lowland soils in annually burned (April) and unburned watersheds. Lowland sites had significantly greater live biomass than upland sites for both burned and unburned prairie for the 10-yr period. Moreover, live biomass was greater on burned than unburned lowland sites, but was not significantly increased by fire on the upland sites. Averaged across upland and lowland sites, mid-season live biomass was 422 g m–2 on annually burned and 364 g m–2 on unburned sites for the 10-yr period. Each site had its lowest live biomass value during the severe drought year of 1980 (range = 185–299 g m–2). During the study period, live biomass was most strongly correlated with seasonal pan water evaporation (r = –0.45 to –0.82), whereas dead biomass was correlated with the previous yr's precipitation (r = 0.61 and 0.90 for upland and lowland sites, respectively). When aboveground biomass was sampled throughout the 1984 season and separated into several components, biomass of the graminoids was 40% lower, whereas that of forbs and woody plants was 200–300% greater in the unburned than in the annually burned site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号