首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thrombin activates platelets by binding and cleaving protease-activated receptors 1 and 4 (PAR1 and PAR4). Because of the importance of PAR4 activation on platelets in humans and mice and emerging roles for PAR4 in other tissues, experiments were done to characterize the interaction between PAR4 homodimers. Bimolecular fluorescence complementation and bioluminescence resonance energy transfer (BRET) were used to examine the PAR4 homodimer interface. In bimolecular fluorescence complementation experiments, PAR4 formed homodimers that were disrupted by unlabeled PAR4 in a concentration-dependent manner, but not by rhodopsin. In BRET experiments, the PAR4 homodimers showed a specific interaction as indicated by a hyperbolic BRET signal in response to increasing PAR4-GFP expression. PAR4 did not interact with rhodopsin in BRET assays. The threshold maximum BRET signal was disrupted in a concentration-dependent manner by unlabeled PAR4. In contrast, rhodopsin was unable to disrupt the BRET signal, indicating that the disruption of the PAR4 homodimer is not due to nonspecific interactions. A panel of rho-PAR4 chimeras and PAR4 point mutants has mapped the dimer interface to hydrophobic residues in transmembrane helix 4. Finally, mutations that disrupted dimer formation had reduced calcium mobilization in response to the PAR4 agonist peptide. These results link the loss of dimer formation to a loss of PAR4 signaling.  相似文献   

2.
Protease-activated receptor 2 (PAR2) is a trypsin-activated member of a family of G-protein-coupled PARs. We have identified a polymorphic form of human PAR2 (PAR(2)F240S) characterized by a phenylalanine to serine mutation at residue 240 within extracellular loop 2, with allelic frequencies of 0.916 (Phe(240)) and 0.084 (Ser(240)) for the wild-type and mutant alleles, respectively. Elevations in intracellular calcium were measured in permanently transfected cell lines expressing the receptors. PAR(2)F240S displayed a significant reduction in sensitivity toward trypsin ( approximately 3.7-fold) and the PAR2-activating peptides, SLIGKV-NH(2) ( approximately 2.5-fold) and SLIGRL-NH(2) ( approximately 2.8-fold), but an increased sensitivity toward the selective PAR2 agonist, trans-cinnamoyl-LIGRLO-NH(2) ( approximately 4-fold). Increased sensitivity was also observed toward the selective PAR-1 agonist, TFLLR-NH(2) ( approximately 7-fold), but not to other PAR-1 agonists tested. Furthermore, we found that TLIGRL-NH(2) and a PAR4-derived peptide, trans-cinnamoyl-YPGKF-NH(2), were selective PAR(2)F240S agonists. By introducing the F240S mutation into rat PAR2, we observed shifts in agonist potencies that mirrored the human PAR(2)F240S, suggesting that Phe(240) is involved in determining agonist specificity of PAR2. Finally, differences in receptor signaling were paralleled in a cell growth assay. We suggest that the distinct pharmacological profile induced by this polymorphism will have important implications for the design of PAR-targeted agonists/antagonists and may contribute to, or be predictive of, an inflammatory disease.  相似文献   

3.
4.
Metastasis is the primary cause of an unfavourable prognosis in patients with malignant cancer. Over the last decade, the role of proteinases in the tumour microenvironment has attracted increasing attention. As a sensor of proteinases, proteinase-activated receptor 2 (PAR2) plays crucial roles in the metastatic progression of cervical cancer. In the present study, the expression of PAR2 in multiple types of cancer was analysed by Gene Expression Profiling Interactive Analysis (GEPIA). Kaplan-Meier plotter was used to calculate the correlation between survival and the levels of PAR2, Grb-associated binding protein 2(Gab2) and miR-125b. Immunohistochemistry (IHC) was performed to examine PAR2 expression in a tissue microarray (TMA) of CESCs. Empower Stats was used to assess the predictive value of PAR2 in the metastatic potential of CESC. We found that PAR2 up-regulation was observed in multiple types of cancer. Moreover, PAR2 expression was positively correlated with the clinicopathologic characteristics of CESC. miR-125b and its target Gab2, which are strongly associated with PAR2-induced cell migration, are well-characterized as predictors of the prognostic value of CESC. Most importantly, the Cancer Genome Atlas (TCGA) data set analysis showed that the area under the curve (AUC) of the PAR2 model was significantly greater than that of the traditional model (0.833 vs 0.790, P < .05), demonstrating the predictive value of PAR2 in CESC metastasis. Our results suggest that PAR2 may serve as a prognostic factor for metastasis in CESC patients.  相似文献   

5.
6.
7.
Proteinase-activated receptors 4 (PAR(4)) is a class A G protein-coupled receptor (GPCR) recognized through the ability of serine proteases such as thrombin and trypsin to mediate receptor activation. Due to the irreversible nature of activation, a fresh supply of receptor is required to be mobilized to the cell surface for responsiveness to agonist to be sustained. Unlike other PAR subtypes, the mechanisms regulating receptor trafficking of PAR(4) remain unknown. Here, we report novel features of the intracellular trafficking of PAR(4) to the plasma membrane. PAR(4) was poorly expressed at the plasma membrane and largely retained in the endoplasmic reticulum (ER) in a complex with the COPI protein subunit β-COP1. Analysis of the PAR(4) protein sequence identified an arginine-based (RXR) ER retention sequence located within intracellular loop-2 (R(183)AR → A(183)AA), mutation of which allowed efficient membrane delivery of PAR(4). Interestingly, co-expression with PAR(2) facilitated plasma membrane delivery of PAR(4), an effect produced through disruption of β-COP1 binding and facilitation of interaction with the chaperone protein 14-3-3ζ. Intermolecular FRET studies confirmed heterodimerization between PAR(2) and PAR(4). PAR(2) also enhanced glycosylation of PAR(4) and activation of PAR(4) signaling. Our results identify a novel regulatory role for PAR(2) in the anterograde traffic of PAR(4). PAR(2) was shown to both facilitate and abrogate protein interactions with PAR(4), impacting upon receptor localization and cell signal transduction. This work is likely to impact markedly upon the understanding of the receptor pharmacology of PAR(4) in normal physiology and disease.  相似文献   

8.
The neurotrophin receptor tropomyosin-related kinase A (TrkA) and its ligand nerve growth factor (NGF) are expressed in astrocytomas, and an inverse association of TrkA expression with malignancy grade was described. We hypothesized that TrkA expression might confer a growth disadvantage to glioblastoma cells. To analyze TrkA function and signaling, we transfected human TrkA cDNA into the human glioblastoma cell line G55. We obtained three stable clones, all of which responded with striking cytoplasmic vacuolation and subsequent cell death to NGF. Analyzing the mechanism of cell death, we could exclude apoptosis and cellular senescence. Instead, we identified several indications of autophagy: electron microscopy showed typical autophagic vacuoles; acridine orange staining revealed acidic vesicular organelles; acidification of acidic vesicular organelles was prevented using bafilomycin A1; cells displayed arrest in G2/M; increased processing of LC3 occurred; vacuolation was prevented by the autophagy inhibitor 3-methyladenine; no caspase activation was detected. We further found that both activation of ERK and c-Jun N-terminal kinase but not p38 were involved in autophagic vacuolation. To conclude, we identified autophagy as a novel mechanism of NGF-induced cell death. Our findings suggest that TrkA activation in human glioblastomas might be beneficial therapeutically, especially as several of the currently used chemotherapeutics also induce autophagic cell death.  相似文献   

9.
Protease-activated receptors (PARs) are a unique family of G-protein coupled receptors. PAR4, the most recently identified PAR member, was reported to be overexpressed during the progression of colon and prostate cancers. Though PAR4 mRNA was detected in normal stomach, the role of PAR4 in gastric cancer has not been investigated. In this study, differential expression of PAR4 was measured by real-time PCR (n=28) and tissue microarrays (n=74). We showed that PAR4 was located from basal to middle portions of normal gastric mucosa. PAR4 expression was remarkably decreased in gastric cancer tissues as compared with matched noncancerous tissues, especially in positive lymph node or low differentiation cancers. Furthermore, methylation of the PAR4 promoter in cell lines was assessed by treatment with 5-aza-2'-deoxycytidine and genomic bisulfite sequencing. AGS and N87 human gastric cancer cell lines did not express PAR4, as compared to HT-29 human colon cancer cell line with significant PAR4 expression. Treatment with 5-aza-2'-deoxycytidine restored PAR4 expression in AGS and N87 cells, which exhibited significantly more 5-methylcytosines in the PAR4 promoter compared with HT-29 cells. Our results revealed that down-regulation of PAR4 expression occurs frequently in gastric cancers and exhibits association with more aggressive gastric cancer. Interestingly, the loss of PAR4 expression in gastric cancers may result from hypermethylation of the PAR4 promoter.  相似文献   

10.
Oxidative stress induces cardiac myocyte apoptosis. At least some effects are probably mediated through changes in gene expression. Using Affymetrix arrays, we examined the changes in gene expression induced by H(2)O(2) (0.04, 0.1, and 0.2mM; 2 and 4h) in rat neonatal ventricular myocytes. Changes in selected upregulated genes were confirmed by ratiometric RT-PCR. p21(Cip1/Waf1) was one of the only two genes upregulated in all conditions studied. Of the heat shock proteins, only Hsp70/70.1 was induced by H(2)O(2) with no change in the expression of Hsp25, Hsp60 or Hsp90. Heme oxygenase 1 was also potently upregulated, but not heme oxygenases 2 or 3. Of the intercellular adhesion proteins, syndecan-1 was significantly upregulated in response to H(2)O(2), with little change in the expression of other syndecans and no change in expression of any of the integrins studied. Thus, oxidative stress, exemplified by H(2)O(2), selectively promotes the expression of specific gene family members.  相似文献   

11.
Addendum to: Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, Korb A, Smolen J, Hoffmann M, Scheinecker C, van der Heijde D, Landewe R, Lacey D, Richards WG and Schett G. Dickkopf-1 Is a Master Regulator of Joint Remodeling. Nat Med. 2007; 13:156-63. Remodeling of joints is a key feature of inflammatory and degenerative joint disease. Bone erosion, cartilage degeneration and growth of bony spurs termed osteophytes are key features of structural joint pathology in the course of arthritis, which lead to impairment of joint function. Understanding their molecular mechanisms is essential to tailor targeted therapeutic approaches to protect joint architecture from inflammatory and mechanical stress. This addendum summarizes the new insights in the molecular regulation of bone formation in the joint and its relation to bone resorption. It describes how inflammatory cytokines impair bone formation and block the repair response of joints towards inflammatory stimuli. It particularly points out the key role of Dickkopf-1 protein, a regulator of the Wingless signaling and inhibitor of bone formation. This new link between inflammation and bone formation is also crucial for explaining the generation of osteophytes, bony spurs along joints, which are characterized by new bone and cartilage formation. This mechanism is largely dependent on an activation of wingless protein signaling and can lead to complete joint fusion. This addendum summarized the current concepts of joint remodeling in the limelight of these new findings.  相似文献   

12.
ACKR4 also called CCX-CKR, CCRL1 as a member of atypical chemokine receptors, regulates the biological responses by clearance or transporting homeostatic chemokines such as CCL19, CCL21, CCL25, and CXCL13. Since these chemokines are involved in cancer development and metastasis, ACKR4 could have inhibition roles in cancer cell proliferation and invasion. Forming complexes with chemokine receptors by ACKR4 as in the case of hCXCR3 which lead to chemotaxis prevention is the other function of this protein is. However, as an atypical chemokine receptor, ACKR4 is less well-characterized compared to other members. Here, as the first step in understanding the molecular mechanisms of ACKR4 action, transfectants in HEK293T cell, was generated. In this study, ACKR4 coding sequence was cloned and human embryonic kidney 293T cells were used for recombinant production of ACKR4 protein. The liposome-mediated transfection with ACKR4 CDs, were detected in ACKR4 positive cells as early as 48 h post-transfection. The production of ACKR4 protein was confirmed using RT-PCR, dot blot, western blot, and flow cytometry. ACKR4 may represent a novel molecular target in cancer therapy, which might provide a chance for new therapeutic strategy. Therefore, the first step in the understanding of the molecular mechanisms of ACKR4 action is generation ACKR4-HEK293T recombinant cells.  相似文献   

13.
We studied the actions of receptor-activating peptide analogues (PAR4APs), modeled on the proteolytically-revealed tethered ligand sequence of murine proteinase-activated receptor-4 (PAR4), in a rat platelet aggregation assay. The PAR4APs GYPGKF-NH2 (GY-NH2) and AYPGKF-NH2 (AY-NH2) were able to cause aggregation with EC50 values of about 40 microM and 15 microM, respectively. The reverse human PAR4 sequence (VQGPYG-NH2, YG-NH2) and the PAR1AP SFLLR-NH2, did not cause aggregation. In contrast, trans-cinnamoyl-YPGKF-NH2 (tcY-NH2) did not cause aggregation but blocked aggregation caused by GY-NH2, AY-NH2, and thrombin without affecting ADP-mediated aggregation. We conclude that in contrast to the PAR1AP, the PAR4APs GY-NH2 and AY-NH2 activate rat platelets via a PAR4-related receptor and that peptide analogues modeled on the PAR4 tethered activating sequence can serve as useful agonist and antagonist probes for assessing the consequence of activating PAR4 either by PAR4APs or thrombin in rat tissue preparations.  相似文献   

14.
Thrombin activation of protease-activated receptor-1 induces Ca(2+) influx through store-operated cation channel TRPC1 in endothelial cells. We examined the role of Ca(2+) influx induced by the depletion of Ca(2+) stores in signaling TRPC1 expression in endothelial cells. Both thrombin and a protease-activated receptor-1-specific agonist peptide induced TRPC1 expression in human umbilical vein endothelial cells, which was coupled to an augmented store-operated Ca(2+) influx and increase in endothelial permeability. To delineate the mechanisms of thrombin-induced TRPC1 expression, we transfected in endothelial cells TRPC1-promoter-luciferase (TRPC1-Pro-Luc) construct containing multiple nuclear factor-kappaB (NF-kappaB) binding sites. Co-expression of dominant negative IkappaBalpha mutant prevented the thrombin-induced increase in TRPC1 expression, indicating the key role of NF-kappaB activation in mediating the response. Using TRPC1 promoter-deletion mutant constructs, we showed that NF-kappaB binding sites located between -1623 and -871 in the TRPC1 5'-regulatory region were required for thrombin-induced TRPC1 expression. Electrophoretic mobility shift assay utilizing TRPC1 promoter-specific oligonucleotides identified that the DNA binding activities of NF-kappaB to NF-kappaB consensus sites were located in this domain. Supershift assays using NF-kappaB protein-specific antibodies demonstrated the binding of p65 homodimer to the TRPC1 promoter. Inhibition of store Ca(2+) depletion, buffering of intracellular Ca(2+), or down-regulation of protein kinase Calpha downstream of Ca(2+) influx all blocked thrombin-induced NF-kappaB activation and the resultant TRPC1 expression in endothelial cells. Thus, Ca(2+) influx via TRPC1 is a critical feed-forward pathway responsible for TRPC1 expression. The NF-kappaB-regulated TRPC1 expression may be an essential mechanism of vascular inflammation and, hence, a novel therapeutic target.  相似文献   

15.
Interleukin 2 receptor expression by T cells in human aging   总被引:2,自引:0,他引:2  
Aged individuals have depressed cell-mediated immunity and diminished T cell proliferation to mitogenic and antigenic stimuli. Because T cell responses depend on the surface expression and normal function of interleukin 2 receptors, we measured the quantities and affinities of cell surface IL-2R and the amount of soluble IL-2R alpha chain (p55) release in vitro in PHA-stimulated mononuclear cells from healthy aged (greater than or equal to 65 years old) and young (less than or equal to 39 years old) donors. At the peak of the PHA response, the fraction of cells expressing IL-2R alpha chain (CD25+) was lower in the aged (43% vs 56%, P = 0.033). Relative to the lower proliferation and CD25 expression, old donor cells released unexpectedly high quantities of soluble alpha chain into culture supernatants. However, the average affinities and the mean numbers of high- and low-affinity surface receptors per CD25+ cell were equivalent in cells from eight pairs of aged and young donors (1850 vs 1586 high affinity, and 20,655 vs 23,466 low affinity, P greater than 0.2 for both). The soluble IL-2R released by stimulated cells had no effect on proliferative responses, because addition of saturating doses of exogenous recombinant IL-2 did not increase cellular proliferation, and addition of soluble anchor-minus recombinant IL-2R alpha chain did not suppress it. These results indicate that in healthy older individuals, diminished numbers of T cells can be induced to express cell surface IL-2R following mitogenic stimulation, although aged CD25+ can express a normal complement of IL-2R molecules. In the aged, either CD25+ cells release excessive quantities or a subset of cells synthesizes and releases soluble IL-2R alpha chain into the extracellular environment without expressing it on the cell surface.  相似文献   

16.
Kuo FT  Lu TL  Fu HW 《Cellular signalling》2006,18(11):1914-1923
Protease-activated receptor 1 (PAR1), a G protein-coupled receptor for thrombin, is irreversibly proteolytically activated. beta-Arrestin1 and beta-arrestin2 have been reported to have different effects on signal desensitization and transduction of PAR1. In this study, we investigated whether beta-arrestin1 and beta-arrestin2 regulate Src-dependent activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) induced by PAR1 in HEK 293 cells. Our results show that PAR1-mediated activation of Src and ERK1/2 in HEK 293 cells was increased with overexpression of beta-arrestin1 or depletion of beta-arrestin2. PAR1-mediated activation of Src and ERK1/2 in HEK 293 cells was decreased or eliminated with depletion of beta-arrestin1 or overexpression of beta-arrestin2. Furthermore, depletion of beta-arrestin2 blocked PAR1-induced degradation of Src. Thus, beta-arrestin1 and beta-arrestin2 have opposing roles in regulating the activation of Src induced by PAR1. beta-Arrestin2 also appears to promote PAR1-induced degradation of Src. This degradation of Src provides a possible mechanism for terminating PAR1 signaling.  相似文献   

17.
Epithelia from many tissues express protease-activated receptors (PARs) that play a major role in several different physiological processes. In this study, we examined their capacity to modulate IL-6, IL-8, and PGE(2) production in both the A459 and BEAS-2B cell lines and primary human bronchial epithelial cells (HBECs). All three cell types expressed PAR-1, PAR-2, PAR-3, and PAR-4, as judged by RT-PCR and immunocytochemistry. Agonist peptides corresponding to the nascent N termini of PAR-1, PAR-2, and PAR-4 induced the release of cytokines from A549, BEAS-2B, and HBECs with a rank order of potency of PAR-2 > PAR-4 > PAR-1 at 400 microM. PAR-1, PAR-2, and PAR-4 also caused the release of PGE(2) from A549 and HBECs. The PAR-3 agonist peptide was inactive in all systems tested. PAR-1, PAR-2, or PAR-4, in combination, caused additive IL-6 release, but only the PAR-1 and PAR-2 combination resulted in an additive IL-8 response. PAR peptide-induced responses were accompanied by changes in intracellular calcium ion concentrations. However, Ca(2+) ion shutoff was approximately 2-fold slower with PAR-4 than with PAR-1 or PAR-2, suggesting differential G protein coupling. Combined, these data suggest an important role for PAR in the modulation of inflammation in the lung.  相似文献   

18.
19.
20.
Allergenic serine proteases are important in the pathogenesis of asthma. One of these, Pen c 13, is the immunodominant allergen produced by Penicillium citrinum. Many serine proteases induce cytokine expression, but whether Pen c 13 does so in human respiratory epithelial cells is not known. In this study, we investigated whether Pen c 13 caused IL-8 release and activated protease-activated receptors (PARs) in airway epithelial cells. In airway-derived A549 cells and normal human airway epithelial cells, Pen c 13 induced IL-8 release in a dose-dependent manner. Pen c 13 also increased IL-8 release in a time-dependent manner in A549 cells. Pen c 13 cleaved PAR-1 and PAR-2 at their activation sites. Treatment with Pen c 13 induced intracellular Ca(2+) mobilization and desensitized the cells to the action of other proteases and PAR-1 and PAR-2 agonists. Moreover, Pen c 13-mediated IL-8 release was significantly decreased in Ca(2+)-free medium and was abolished by the protease inhibitors, PMSF and 4-(2-aminoethyl) benzenesulfonyl fluoride. Blocking Abs against the cleavage sites of PAR-1 and PAR-2, but not of PAR-4, inhibited Pen c 13-induced IL-8 production, as did inhibition of phospholipase C. Pen c 13 induced IL-8 expression via activation of ERK 1/2, and not of p38 and JNK. In addition, treatment of A549 cells or normal human airway epithelial cells with Pen c 13 increased phosphorylation of ERK 1/2 by a Ca(2+)-dependent pathway. These finding show that Pen c 13 induces IL-8 release in airway epithelial cells and that this is dependent on PAR-1 and PAR-2 activation and intracellular calcium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号