首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specialized pollination by prey-hunting wasps is poorly documented in rewarding plants. Furthermore, the mechanisms of achieving specialization are not clear since flowers typically produce exposed nectar and have no morphological adaptations (such as long spurs) to exclude non-pollinating visitors. We investigated the pollination of Xysmalobium orbiculare and explored the functional roles of floral scent and nectar in attracting pollinators and deterring nectar robbers. Floral visitor observations showed that this milkweed is visited almost exclusively by pompilid wasps in the genus Hemipepsis. These wasps were the only insects to carry pollinia, and a cage experiment confirmed their effectiveness in removing and inserting pollinia on flowers. Hand-pollinations showed that plants are genetically self-incompatible and thus reliant on pollinators for seed set. Palatability experiments with honeybees showed that nectar is distasteful to non-pollinating insects and is therefore likely to play a functional role in deterring nectar thieves. Choice experiments in the field showed that the wasp pollinators are attracted primarily by floral scent rather than visual cues. Analysis of spectral reflectance of flowers revealed that flowers are dull colored and are unlikely to stand out from the background vegetation. We conclude that X. orbiculare is specialized for pollination by spider-hunting wasps in the genus Hemipepsis and utilizes floral scent to selectively attract its pollinators and unpalatable nectar to deter non-pollinating visitors.  相似文献   

2.
Flowers of most plant species are visited by a variety of animals. Some of these visitors are effective pollinators while others remove resources without transferring pollen. Studies comparing the effectiveness of different visitors as pollinators often compare taxa without considering variation in behavior within a taxon. Wilson and Thomson (Ecology 72: 1503-1507, 1991) documented the effects of honey bees and bumble bees on the pollination dynamics of Impatiens capensis. They found that pollen-collecting honey bees removed large numbers of pollen grains from anthers but deposited little of it on stigmas; bumble bees, which sought nectar, removed less pollen but deposited more of it on stigmas. It is unclear whether the low pollen transfer efficiencies of honey bees are explained by their morphology or by their pollen-collecting behavior. We repeated the work of Wilson and Thomson at a site where honey bees were foraging for nectar, not pollen. We measured the quantity of pollen remaining in anthers, the number of pollen grains deposited on stigmas, and seed production after single visits by honey bees and bumble bees. The differences between the taxa disappeared when they were foraging in a similar manner. Our results clearly demonstrate the importance of foraging behavior on the pollination effectiveness of floral visitors.  相似文献   

3.
The pollination biology and breeding system of Couepia uiti was studied. In this species, flowers opened at 06:00 AM anthesis, and nectar production began at around 0800 h, reached a maximum volume from 09:30 AM to 10:30 AM, and decreased thereafter. The nectar sugar concentration increased continuously, but showed an abrupt increase from 10:00 AM to 12:00 AM. Pollen release occurred at about 09:30 AM and was quickly collected. The stigmas became receptive at around 12:00 AM. The pollinators of C. uiti included the bees Apis mellifera, Xylocopa sp. and Bombus sp., and three species of wasps. This conclusion was based on the observation that these hymenopterans had C. uiti pollen on their bodies, visited the receptive flowers, and touched the anthers and stigmas, thereby promoting pollination. Of these floral visitors, A. mellifera was considered to be the most efficient pollinator. However, mixed pollination also occurred. The number of C. uiti flowers visited in the morning (n = 52) was three times smaller than in the afternoon (n = 62), and the species richness of floral visitors was also bigger in the afternoon (eight in the afternoon versus five in the morning). This finding indicated that these floral visitors preferred to exploit nectar rather than pollen. Controlled pollination experiments showed that C. uiti was a self-incompatible species that produced fruits only by cross-pollination. Treatments such as agamospermy and spontaneous and self-pollinations did not produce fruits.  相似文献   

4.
We investigated the reproductive biology, including the floral biology, pollination biology, breeding system and reproductive success, of Pachira aquatica, a native and dominant tropical tree of fresh water wetlands, throughout the coastal plain of the Gulf of Mexico. The flowers present nocturnal anthesis, copious nectar production and sugar concentration (range 18–23%) suitable for nocturnal visitors such as bats and sphingid moths. The main nocturnal visitors were bats and sphingid moths while bees were the main diurnal visitors. There were no differences in legitimate visitation rates among bats, moths and honey bees. Bats and honey bees fed mainly on pollen while moths fed on nectar, suggesting resource partitioning. Eight species of bats carried pollen but Leptonycteris yerbabuenae is probably the most effective pollinator due to its higher pollen loads. The sphingid moths Manduca rustica, Cocytius duponchel and Eumorpha satellitia were recorded visiting flowers. Hand pollination experiments indicated a predominant outcrossing breeding system. Open pollination experiments resulted in a null fruit set, indicating pollen limitation; however, mean reproductive success, according to a seasonal census, was 17 ± 3%; these contrasting results could be explained by the seasonal availability of pollinators. We conclude that P. aquatica is an outcrossing species with a pollination system originally specialized for bats and sphingid moths, which could be driven to a multimodal pollination system due to the introduction of honey bees to tropical America.  相似文献   

5.
1. Sympatric flower visitor species often partition nectar and pollen and thus affect each other's foraging pattern. Consequently, their pollination service may also be influenced by the presence of other flower visiting species. Ants are solely interested in nectar and frequent flower visitors of some plant species but usually provide no pollination service. Obligate flower visitors such as bees depend on both nectar and pollen and are often more effective pollinators. 2. In Hawaii, we studied the complex interactions between flowers of the endemic tree Metrosideros polymorpha (Myrtaceae) and both, endemic and introduced flower‐visiting insects. The former main‐pollinators of M. polymorpha were birds, which, however, became rare. We evaluated the pollinator effectiveness of endemic and invasive bees and whether it is affected by the type of resource collected and the presence of ants on flowers. 3. Ants were dominant nectar‐consumers that mostly depleted the nectar of visited inflorescences. Accordingly, the visitation frequency, duration, and consequently the pollinator effectiveness of nectar‐foraging honeybees (Apis mellifera) strongly decreased on ant‐visited flowers, whereas pollen‐collecting bees remained largely unaffected by ants. Overall, endemic bees (Hylaeus spp.) were ineffective pollinators. 4. The average net effect of ants on pollination of M. polymorpha was neutral, corresponding to a similar fruit set of ant‐visited and ant‐free inflorescences. 5. Our results suggest that invasive social hymenopterans that often have negative impacts on the Hawaiian flora and fauna may occasionally provide neutral (ants) or even beneficial net effects (honeybees), especially in the absence of native birds.  相似文献   

6.
Flowers of common ivy (Hedera helix L.) provide late season pollen and nectar for several insect groups, and its fruits are a winter and spring food source for frugivorous birds. Ivy benefits from insect pollination in order to set fruit, but it is unknown which flower-visiting insects are the most effective pollinators. Our observations suggest that Vespula wasps are potentially the most effective pollinators since they were frequent visitors, had relatively fast foraging rates, carried large numbers of pollen grains on their bodies and had the highest ‘Pollination potential PP index’ score (a measure of pollinator effectiveness) of all the insect groups examined. There was also a positive linear relationship between the proportion of ivy flowers that set fruit and wasp foraging activity in 0.5 m2 quadrats. Visits by Vespula wasps may therefore be important for ensuring a supply of ivy fruits for birds.  相似文献   

7.
Pollination precision and efficiency have been deemed to be important driving forces in floral evolution. Herkogamy reduction is a main mechanism to increase pollination precision. Secondary pollen presentation (SPP), by which pollen is presented on other floral organs especially pistils, has been widely accepted as a special mechanism to increase pollen transfer precision through spatial reduction of the anther–stigma distance, that is, minimized herkogamy. This overlooks a potential driving force, that is expanding the pollination niche through converting pollen thieves and nectar robbers into effective pollinators. We selected two species as study models with typical pistillate SPP, Pavetta hongkongensis Bremek. (Rubiaceae) and Scaevola taccada (Gaertn.) Roxb. (Goodeniaceae). In both species, two distinct pollinator functional groups were recognized. Short-tongued bees and flies fed on pollen on stigmas but also stole pollen from anthers and robbed nectar, whereas long-tongued hawkmoths and butterflies only collected nectar. Emasculation had no influence on long-tongued pollinators, but significantly decreased the visitation frequency of short-tongued visitors and fruit set, compared to intact flowers, demonstrating short-tongued visitors did not effectively pollinate and acted merely as pollen thieves or nectar robbers when SPP was absent. Data from the two plant species clearly indicated pistillate SPP has additional adaptive advantages of converting ineffective visitors into pollinators and consequently widening the pollination niche, which could help plants overcome environmental stochasticity. Our results suggest that multiple selective forces drive the evolution of SPP and the minimization of herkogamy.  相似文献   

8.
Abstract Diurnal visitors to the flowers of many native plant species were identified in a wide range of Tasmanian sclerophyllous vegetation between September 1996 and April 1997. These foraging profiles were analysed to determine whether they were characteristic of various floral morphologies in predictable ways. It was found that although visitor profiles were sometimes consistent with classic pollination syndromes, these syndromes were unreliable predictors of floral visitors. Very few flowers were exclusively bird‐pollinated, and none were strictly fly‐, beetle‐, wasp‐, or butterfly‐pollinated. The majority of flowering plants were unspecialized in their morphology, and consequently hosted a diverse array of visitors. In addition, visitor profiles to congeners with similar floral morphologies, and even to conspecifics, differed between habitats. Altitude was a major factor in determining visitors, with flies being the most abundant visitors above 700 m. However, congeners in several genera of Epacridaceae, as well as the genus Correa, which differed in floral morphology also differed in visitor profiles. Tubular flowers were associated with birds, while flowers with more accessible nectar were visited by insects. The only taxa exhibiting a bee‐pollination syndrome that were largely visited by bees were the Fabaceae and Goodenia ovata Sm. Several species with purple or pink flowers were also predominantly visited by bees, but did not strictly conform to the melittophilous syndrome. In contrast, other flowers exhibiting an ostensibly mellitophilous syndrome hosted very few bees. Of these, species that occurred at high altitude were mainly visited by flies, while others received very few potential pollen vectors.  相似文献   

9.
《Journal of Asia》2022,25(2):101882
Honey bees and stingless bees are generalist visitors of several wild and cultivated plants. They forage with a high degree of floral fidelity and thereby help in the pollination services of those plants. We hypothesized that pollination efficiency might be influenced by flowering phenology, floral characteristics, and resource collection modes of the worker bees. In this paper, we surveyed the foraging strategies of honey bees (Apis cerana, Apis dorsata, and Apis florea) and stingless bees (Tetragonula iridipennis) concerning their pollination efficiencies. Bees showed different resource gathering strategies, including legitimate (helping in pollination as mixed foragers and specialized foragers) and illegitimate (serving as nectar robbers and pollen thieves) types of flower visitation patterns. Foraging strategies are influenced by the shape of flowers, the timing of the visitation, floral richness, and bee species. Honey bees and stingless bees mainly acted as legitimate visitors in most plants studied. Sometimes honey bees served as nectar robbers in tubular flowers and stingless bees as pollen thieves in large-sized flowers. Among the legitimate categories, mixed foragers have a comparatively lower flower visitation rate than the specialized nectar and pollen foragers. However, mixed foragers have greater abundance and higher values of the single-visit pollination efficiency index (PEi) than nectar and pollen foragers. The value of the combined parameter ‘importance in pollination (PI)’ was thus higher in mixed foragers than in nectar and pollen foragers.  相似文献   

10.

Background and Aims

The extreme complexity of asclepiad flowers (Asclepiadoideae–Apocynaceae) has generated particular interest in the pollination biology of this group of plants especially in the mechanisms involved in the pollination processes. This study compares two South American species, Morrenia odorata and Morrenia brachystephana, with respect to morphology and anatomy of flower structures, dynamic aspects of the pollination mechanism, diversity of visitors and effectiveness of pollinators.

Methods

Floral structure was studied with fresh and fixed flowers following classical techniques. The pollination mechanism was studied by visiting fresh flowers in the laboratory with artificial pollinator body parts created with an eyelash. Morphometric and nectar measurements were also taken. Pollen transfer efficiency in the flowers was calculated by recording the frequency of removed and inserted pollinia. Visitor activity was recorded in the field, and floral visitors were captured for subsequent analysis of pollen loads. Finally, pollinator effectiveness was calculated with an index.

Key Results

The detailed structure of the flowers revealed a complex system of guide rails and chambers precisely arranged in order to achieve effective pollinaria transport. Morrenia odorata is functionally specialized for wasp pollination, and M. brachystephana for wasp and bee pollination. Pollinators transport chains of pollinaria adhered to their mouthparts.

Conclusions

Morrenia odorata and M. brachystephana present differences in the morphology and size of their corona, gynostegium and pollinaria, which explain the differences in details of the functioning of the general pollination mechanism. Pollination is performed by different groups of highly effective pollinators. Morrenia species are specialized for pollination mainly by several species of wasps, a specialized pollination which has been poorly studied. In particular, pompilid wasps are reported as important pollinators in other regions outside South Africa. A putative new function of nectar in asclepiads is presented, as it would be contributing to the pollination mechanism.  相似文献   

11.
The effectiveness of flower visitors as pollinators will determine their potential role as selective agents on flower traits. Pitcairnia angustifolia has floral characters that would fit pollination by long-billed hummingbirds, and they should be the most effective pollinators for this plant. To test this prediction, we characterized the behavior of visitors toward flowers and their pollination effectiveness. Coereba flaveola (bananaquits) was the most frequent flower visitor and acted as a primary nectar robber; however, they pollinated incidentally and deposited pollen on stigmas. The endemic short-billed hummingbird Chlorostilbon maugaeus behaved as a secondary robber and did not pollinate flowers. As expected, the long-billed hummingbird, Anthracothorax viridis, was the most efficient visitor in terms of pollen deposition; however, it was the least frequent flower visitor. Introduced Apis mellifera (honeybees) were second in efficiency at depositing pollen and performed one third of the flower visits. Estimates of the expected rate of pollen deposition by each pollinator did not identify a single most effective pollinator. For P. angustifolia at least three flower visitors including an exotic bee and a nectar robber may be equally important to reproductive success. While these results limit our ability to make predictions on the role of hummingbird-pollination on current flower evolution, they do suggest the potential for pollination redundancy among flower visitors for P. angustifolia populations.  相似文献   

12.
Floral characteristics often indicate the pollinators' functional group visiting the plant and the pollination syndromes associated with them. This idea has been challenged in the past decades due to increasing evidence that most plants, including those exhibiting floral syndromes, are visited by large arrays of species that differ in their effectiveness as pollinators. Our study focuses on Mecardonia tenella (Plantaginaceae) from the Araucaria forest of southern Brazil, which exhibits characteristics of the oil flower pollination syndrome. However, it is visited by three types of functional groups of bees: male orchid bees, oil-collecting bees, and pollen-seeking bees. The relative contribution of each functional group to the plant's reproductive success was estimated based on their pollen load, visitation frequency, and morphology. We assessed resources, phenology, and breeding system of M. tenella . Our results indicate that flowers lack nectar, but volatiles, lipids, and pollen are resources that can be gathered by visitors. This combination of floral traits and visitors' assemblage makes M. tenella a challenge to the concept of pollination syndromes. Our findings indicate that the current interactions may not reflect the circumstances under which some floral traits of this plant were selected.  相似文献   

13.
The aim of this study was to analyse the reproductive biology of Echinopsis terscheckii, a species endemic to northwest Argentina that has nocturnal flowers. We expected that this species had a generalised pollination system, with moths and diurnal visitors as the primary pollinators. To test this, we studied the floral biology, breeding system and floral visitors of this species and the effectiveness of nocturnal and diurnal visitors. Floral biology was defined based on floral morphology, floral cycle and nectar production of the flowers. The breeding system and relative contributions of diurnal and nocturnal visitors to fruit and seed set were analysed through field experiments. E.?terscheckii flowers opened at sunset and closed the following day. The peak of nectar production occurred at midnight. Flowers were determined to be self-incompatible. Moths, bees and birds were identified as floral visitors. Moths were the most frequent visitors at night, whereas bees were the most frequent visitors during the day. Fruit production by diurnal pollinators was less than that by nocturnal pollinators; among all floral visitors, moths were the most effective pollinators. We have demonstrated for the first time that moths are the primary pollinators of columnar cacti of the genus Echinopsis. Our results suggest that moths might be important pollinators of columnar cactus species with nocturnal flowers in the extra-tropical deserts of South America.  相似文献   

14.
General visual bee mimicry and specific chemical mimicry by flowers to solitary female bees or wasps are well known in several orchid genera, for example, the Mediterranean genus Ophrys, the Australian genera Cryptostylis and Chiloglottis, and the South-African Disa. This mimicry has been shown to attract solitary male bees or wasps, which are their species-specific pollinators. The visual and chemical signals are considered to be a type of deceptive pollination mechanism based on mimicry for the exploitation of perceptual biases of animals. We propose that in addition to this unique pollination mechanism, these plants exhibit another, rarely mentioned and practically forgotten, non-exclusive function of bee or wasp mimicry (Batesian mimicry). This mimicry may deter large mammalian herbivores, and possibly also insects from the plants and especially from their flowers by a type of visual and olfactory deceptive aposematism. While visiting the flowers, bees and wasps may add a Müllerian effect to this defense. We extend this hypothesis to many other rewarding flowers that are bee or wasp pollinated and propose that abundance of pollinating bees or wasps may deter herbivorous mammals and insects from the plants during their peak flowering season.  相似文献   

15.
In order to compare the effectiveness of birds and insects as pollinators, we studied the floral biology of the bromeliad Aechmea nudicaulis (L.) Grisebach in the biome of the Atlantic rain forest, southern Brazil. On Santa Catarina Island, flowering extends from mid-September to the end of December, with diurnal anthesis. The reproductive system is obligatory xenogamy, thus pollinator-dependent. Flowers secrete 31.84 μl of nectar per day, with a mean sugar concentration of 23.2%. Highest nectar volume and sugar concentration occur at the beginning of anthesis. Most floral traits are characteristic for ornithophily, and nectar production appears to be adapted to the energy demand of hummingbirds. Continued secretion of the sucrose-dominated nectar attracts and binds visitors to inflorescences, strengthening trapline foraging behaviour. Experiments assessing seed set after single flower visits were performed with the most frequent visitors, revealing the hummingbird Thalurania glaucopis as the most effective pollen vector. In addition, bees are also functional pollinators, as substantiated by their high visitation frequency. We conclude that this pollination system is bimodal. Thus, there is redundancy in the pollination service provided by birds and bees, granting a high probability of successful reproduction in Ae. nudicaulis.  相似文献   

16.
Many recent studies have suggested that the majority of animal-pollinated plants have a higher diversity of pollinators than that expected according to their pollination syndrome. This broad generalization, often based on pollination web data, has been challenged by the fact that some floral visitors recorded in pollination webs are ineffective pollinators. To contribute to this debate, and to obtain a contrast between visitors and pollinators, we studied insect and bird visitors to virgin flowers of Hypoestes aristata in the Bamenda Highlands, Cameroon. We observed the flowers and their visitors for 2-h periods and measured the seed production as a metric of reproductive success. We determined the effects of individual visitors using 2 statistical models, single-visit data that were gathered for more frequent visitor species, and frequency data. This approach enabled us to determine the positive as well as neutral or negative impact of visitors on H. aristata’s reproductive success. We found that (i) this plant is not generalized but rather specialized; although we recorded 15 morphotaxa of visitors, only 3 large bee species seemed to be important pollinators; (ii) the carpenter bee Xylocopa cf. inconstans was both the most frequent and the most effective pollinator; (iii) the honey bee Apis mellifera acted as a nectar thief with apparent negative effects on the plant reproduction; and (iv) the close relationship between H. aristata and carpenter bees was in agreement with the large-bee pollination syndrome of this plant. Our results highlight the need for studies detecting the roles of individual visitors. We showed that such an approach is necessary to evaluate the pollination syndrome hypothesis and create relevant evolutionary and ecological hypotheses.  相似文献   

17.
Many vespid wasps visit flowers to forage nectar. These hymenopterans sometimes contribute to flower pollination. However, none of the nocturnal wasp species is a known pollinator. We collected individuals of light‐attracted Provespa nocturna workers in a montane rainforest on Peninsular Malaysia: some wasps collected bore orchid pollinia on their thoraxes. Among 114 trapped individuals, four bore pollinaria and nine bore only viscidia, suggesting that pollinia had been successfully transported. Molecular barcoding of the pollinia (based on their ITS sequences) assigned the orchid to a species in Coelogyne fimbriata complex. These findings and our other analyses suggest that this nocturnal wasp contributes to pollination of an epiphytic nectarless orchid that probably releases olfactory attractants. This discovery sheds light on the importance of mutualistic relationships between the nocturnal social wasps and epiphytic orchids in Southeast Asian tropical rainforest canopies.  相似文献   

18.
1. In many flowering plants, bumble bees may forage as both pollinators and nectar robbers. This mixed foraging behaviour may be influenced by community context and consequently, potentially affect pollination of the focal plant. 2. Salvia przewalskii is both pollinated and robbed exclusively by bumble bees. In the present study area, it was legitimately visited by two species of bumble bees with different tongue length, Bombus friseanus and Bombus religiosus, but it was only robbed by Bombus friseanus, the shorter‐tongued bumble bee. The intensity of nectar robbing and pollinator visitation rate to the plant were investigated across 26 communities in the Hengduan Mountains in East Himalaya during a 2‐year project. For each of these communities, the floral diversity, and the population size and floral resource of S. przewalskii were quantified. The abundances of the two bumble bee species were also recorded. 3. Both nectar robbing and pollinator visitation rate were influenced by floral diversity. However, pollinator visitation rate was not affected by nectar robbing. The results revealed that relative abundance of the two bumble bee species significantly influenced the incidence of nectar robbing but not the pollinator visitation rate. Increased abundance of B. religiosus, the legitimate visitors, exacerbated nectar robbing, possibly by causing B. friseanus to shift to robbing; however, pollinator visitation remained at a relatively high level. 4. The results may help to explain the persistence of both nectar robbing and pollination, and suggest that, in comparison to pollination, nectar robbing is a more unstable event in a community.  相似文献   

19.
Guilds of Aculeate solitary wasps and bees that nest in preexisting cavities in wood are important components of terrestrial ecosystems because they engage in several ecological interactions (e.g. predation and pollination) with other species of plants and animals. Spatial and temporal variations in richness and abundance of solitary wasps and bees can be related to changes in environmental structure and in the diversity of other groups of organisms. The nesting period of these Aculeata is their most critical life cycle stage. Females of solitary wasp and bee species invest relatively more time constructing and provisioning their nests than do females of social species. Differently from species that nest in the soil or construct exposed nests, the main factors affecting the reproductive success of solitary species nesting in preexisting wood holes are still unknown. Our objective is to provide an overview of the role of proximate causes of nesting failure or success among solitary wasps and bees (Aculeata), for designing effective conservation and management strategies for these Hymenoptera.  相似文献   

20.
Mass flowering is a widespread blooming strategy among Neotropical trees that has been frequently suggested to increase geitonogamous pollination. We investigated the pollination ecology of the mass‐flowering tree Handroanthus impetiginosus, addressing its breeding system, the role in pollination of different visitors, the impact of nectar robbers on fruit set and the function of colour changes in nectar guides. This xenogamous species is mainly pollinated by Centris and Euglossa bees (Apidae) seeking nectar, which are known to fly long distances. The flowers favour these bees by having: (1) a closed entrance in newly opened flowers which provides access only to strong bees capable of deforming the flower tube; and (2) a nectar chamber that is accessible only to long‐tongued bees. Only first‐day flowers with yellow nectar guides produce nectar. Pollinators prefer these flowers over second‐ and third‐day flowers with orange and red nectar guides, respectively. Nectar robbers damage two‐thirds of the flowers and this robbing activity decreases fruit set by half. We attribute the low fruit set of H. impetiginosus to the intense nectar robbing and hypothesize that visual signalling of nectar presence in newly opened (receptive) flowers reduces geitonogamy by minimizing bee visits to unrewarding (non‐receptive) flowers. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 176 , 396–407.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号