首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
McCall AC  Karban R 《Oecologia》2006,146(4):566-571
Plants protect themselves against herbivory using a continuum of strategies, ranging from constitutive defenses to intermittent induced responses. Induced defenses may not provide immediate and maximum protection, but could be advantageous when continuous defense is either energetically or ecologically costly. As such, induced defenses in flowers could help defend relatively valuable tissue while keeping reproductive structures accessible and attractive to pollinators. Thus far, no one has demonstrated the efficacy of induced defenses against floral herbivores (florivores) in the field. Here we show that mechanical leaf damage in wild tobacco, Nicotiana attenuata (Solanaceae), reduced both flower and fruit herbivory in the field and that exogenous application of methyl jasmonate, a potent elicitor of induced responses, reduced both leaf and floral damage in natural populations. This result is consistent with a survey of damage in the field, which showed a negative relationship between leaf damage and flower and fruit damage. Although optimal defense theory predicts that induced defenses should be rare in reproductive tissues, owing to their high fitness value, our results suggest otherwise. Induced defenses in leaves and reproductive tissues may allow plants to respond effectively to the concomitant pressures of defending against herbivory and attracting pollinators.  相似文献   

2.
Andrew C. McCall 《Oikos》2006,112(3):660-666
Resistance to leaf herbivory is well-documented in plants. In contrast, resistance to herbivory in flowers has received very little attention, even though reproductive tissues are often essential for plant reproduction. Plants may protect reproductive tissues with a range of defenses from constitutive to induced, although ecological costs associated with constitutive defense or resistance are expected to be higher than costs associated with induced responses. Induced responses in flowers may be effective against floral herbivores while minimizing the negative impacts of resistance on pollinators. This study examines induced responses in Nemophila menziesii (Hydrophyllaceae), a plant that frequently receives high levels of floral herbivory. I report that natural caterpillar herbivory increased levels of resistance against caterpillars later in the season. Similarly, artificial clipping to flowers consistently reduced natural damage to flowers vs unclipped controls over two years. Neither whole-plant nor individual seed set was affected by the reduction of floral damage. Induced resistance in reproductive tissues may benefit plants that are exposed to both floral herbivory and pollinator activity and can be an important link between plant antagonists and plant mutualists.  相似文献   

3.
BACKGROUND AND AIMS: Herbivory on floral structures has been postulated to influence the evolution of floral traits in some plant species, and may also be an important factor influencing the occurrence and outcome of subsequent biotic interactions related to floral display. In particular, corolla herbivory may affect structures differentially involved in flower selection by pollinators and fruit predators (specifically, those ovopositing in ovaries prior to fruit development); hence floral herbivores may influence the relationships between these mutualistic and antagonistic agents. METHODS: The effects of corolla herbivory in Linaria lilacina (Scrophulariaceae), a plant species with complex flowers, were considered in relation to plant interactions with pollinators and fruit predators. Tests were made as to whether experimentally created differences in flower structure (resembling those occurring naturally) may translate into differences in reproductive output in terms of fruit or seed production. KEY RESULTS: Flowers with modified corollas, particularly those with lower lips removed, were less likely to be selected by pollinators than control flowers, and were less likely to be successfully visited and pollinated. As a consequence, fruit production was also less likely in these modified flowers. However, none of the experimental treatments affected the likelihood of visitation by fruit predators. CONCLUSIONS: Since floral herbivory may affect pollinator visitation rates and reduce seed production, differences among plants in the proportion of flowers affected by herbivory and in the intensity of the damage inflicted on affected flowers may result in different opportunities for reproduction for plants in different seasons.  相似文献   

4.
By definition, the floral morphs of distylous plants differ in floral architecture. Yet, because cross-pollination is necessary for reproductive success in both morphs, they should not differ in attributes that contribute to attracting and rewarding floral visitors. Floral and vegetative attributes that function in distylous polymorphism in hummingbird-pollinated Palicourea padifolia (Rubiaceae) and the responses of pollinators and insect herbivores to the resources offered by both morphs were investigated. The performance of each morph along multiple stages of the reproductive cycle, from inflorescence and nectar production to fruit production, was surveyed, and pollinator behavior and nectar standing crops were then observed. Costs associated with such attractiveness were also evaluated in terms of herbivore attack and of plant reproductive fitness (female function) as a function of leaf herbivory. The number of inflorescences, floral buds, open flowers, and ripe fruits offered by either floral morph were similar, but short-styled plants almost doubled the number of developing fruits of long-styled plants. Long-styled flowers produced higher nectar volumes and accumulated more nectar over time than short-styled flowers. Measures of nectar standing crop and data on pollinator behavior suggest that hummingbirds respond to this morph-specific scheduling of nectar production. Lastly, long-styled plants suffered a higher herbivore attack and lost more leaf area over time than those with short-styled flowers. Herbivory was negatively correlated with fruit number and fruit mass, and long-styled plants set significantly less fruit mass than short-styled plants. The results suggest that pollinators and herbivores may exert selective pressures on floral and vegetative traits that could also influence gender function.  相似文献   

5.
Adaptive phenotypic plasticity allows sessile organisms such as plants to match trait expression to the particular environment they experience. Plasticity may be limited, however, by resources in the environment, by responses to prior environmental cues, or by previous interactions with other species, such as competition or herbivory. Thus, understanding the expression of plastic traits and their effects on plant performance requires evaluating trait expression in complex environments, rather than across levels of a single variable. In this study, we tested the independent and combined effects of two components of a plant’s environment, herbivory and water availability, on the expression of attractive and defensive traits in Nicotiana quadrivalvis in the greenhouse. Damage and drought did not affect leaf nicotine concentrations but had additive and non-additive effects on floral attractive and defensive traits. Plants in the high water treatment produced larger flowers with more nectar than in the low water treatment. Leaf damage induced greater nectar volumes in the high water treatment only, suggesting that low water limited plastic responses to herbivore damage. Leaf damage also tended to induce higher nicotine concentrations in nectar, consistent with other studies showing that leaf damage can induce floral defenses. Our results suggest that there are separate and synergistic effects of leaf herbivory and drought on floral trait expression, and thus plasticity in response to complex environments may influence plant fitness via effects on floral visitation and defense.  相似文献   

6.
Krupnick  Gary A.  Weis  Arthur E. 《Plant Ecology》1998,134(2):151-162
Flower-feeding insects may influence the reproductive behavior of their host plant. In plants with labile sex expression, the ratio of maternal to paternal investment may change in response to damage, an effect that goes beyond the direct reduction of plant gametes. We examined the effects of floral herbivory by the beetle Meligethes rufimanus (Nitidulidae) on the ratio of hermaphroditic flowers to male flowers in an andromonoecious shrub, Isomeris arborea (Capparaceae) in southern California. Plants exposed to herbivory had a greater rate of flower bud abortion than those protected from herbivory. Exposed plants produced a greater proportion of hermaphroditic flowers to male flowers, although damaged inflorescences still produced fewer fruit. An additional manipulative experiment showed that the removal of pistils on inflorescences led to an increase in the proportion of hermaphroditic flowers. This suggests that the presence of fruit may lead to pistil suppression in developing flowers. Adaptive responses to herbivory which favor andromonoecy thus include the continued production of hermaphroditic flowers when floral damage is high (and hence low fruit set), and a switch to male flower production when floral damage is low (and fruit production increases). The consequences of an altered six ratio induced by insect herbivores may lead to indirect effects on both the male and female reproductive success of this plant.  相似文献   

7.
The effects of floral herbivores on floral traits may result in alterations in pollinator foraging behaviour and subsequently influence plant reproductive success. Fed-upon plants may have evolved mechanisms to compensate for herbivore-related decreased fecundity. We conducted a series of field experiments to determine the relative contribution of floral herbivores and pollinators to female reproductive success in an alpine herb, Pedicularis gruina, in two natural populations over two consecutive years. Experimental manipulations included bagging, hand supplemental, geitonogamous pollination, and simulated floral herbivory. Bumblebees not only avoided damaged flowers and plants but also decreased successive visits of flowers in damaged plants, and the latter may reduce the level of geitonogamy. Although seed set per fruit within damaged plants was higher than that in intact plants, total seed number in damaged plants was less than that in intact plants, since floral herbivory-mediated pollinator limitation led to a sharp reduction of fruit set. Overall, the results suggest that resource reallocation within inflorescences of damaged plants may partially compensate for a reduction in seed production. Additionally, a novel finding was the decrease in successive within-plant bumblebee visits following floral herbivory. This may increase seed quantity and quality of P. gruina since self-compatible species exhibit inbreeding depression. The patterns of compensation of herbivory and its consequences reported in this study give an insight into the combined effects of interactions between floral herbivory and pollination on plant reproductive fitness.  相似文献   

8.
Although plant–animal interactions like pollination and herbivory are obviously interdependent, ecological investigations focus mainly on one kind of interaction ignoring the possible significance of the others. Plants with flowers offer an extraordinary possibility to study such mutualistic and antagonistic interactions since it is possible to measure changes in floral traits and fitness components in response to different organisms or combinations of them. In a three factorial common garden experiment we investigated single and combined effects of root herbivores, leaf herbivores and decomposers on flowering traits and plant fitness of Sinapis arvensis. Leaf herbivory negatively affected flowering traits indicating that it could significantly affect plant attractiveness to pollinators. Decomposers increased total plant biomass and seed mass indicating that plants use the nutrients liberated by decomposers to increase seed production. We suggest that S. arvensis faced no strong selection pressure from pollen limitation, for two reasons. First, reduced nutrient availability through leaf herbivory affected primarily floral traits that could be important for pollinator attraction. Second, improved nutrient supply through decomposer activity was invested in seed production and not in floral traits. This study indicates the importance of considering multiple plant–animal interactions simultaneously to understand selection pressures underlying plant traits and fitness.  相似文献   

9.
Some types of plant accumulate liquid in their inflorescences creating phytotelmata. These environments protect the flowers against florivory, although they may be colonized by aquatic or semi-aquatic florivorous insect larvae, whose effects on the fitness of the plants remain unclear. We tested the hypothesis of floral antagonism by the occupants of phytotelmata, which predicts that florivory by the occupants of the phytotelmata represents a cost to the female fitness of the plant, reducing its fecundity. We manipulated experimentally the infestation by 3 florivores larvae species occupants of phytotelmata in inflorescences of Heliconia spathocircinata (Heliconiaceae) to test for negative direct trophic effects on the fecundity of the flowering and fruiting bracts. We found that the foraging of the hoverfly (Syrphidae) and moth (Lepidoptera) larvae in the inflorescences contributed to a decline in the fecundity of the plant. While the lepidopteran impacted fecundity when foraging in both flowering and fruiting bracts, the syrphid only affected the fruiting bracts, which indicates that the nectar and floral tissue are the principal resource exploited by the hoverfly. By contrast, soldier fly (Stratiomyidae) had a neutral effect on fecundity, while foraging in flowering or fruiting bracts. These findings corroborate our hypothesis, that herbivory by the larval occupants represents cost to the host plant having phytotelmata. The negative influence of this foraging on plant fecundity will nevertheless depend on the consequences of the exploitation of resources, which vary considerably in ephemeral habitats such as the phytotalmanta of flower parts.  相似文献   

10.
很多木本植物的叶片会在春季和其他时期产生花青素而呈现红色, 该现象已经被众多学者所关注。本文对已有工作作了归纳总结。研究表明: 这种广泛存在的现象需要消耗营养和能量并影响光合作用, 并非只是代谢的副产品。前人以秋季红叶为研究对象, 主要提出了两大类假说: 第一类假说认为红叶是对强光、低温、干旱等恶劣环境的适应; 第二类认为红叶是植物通过化学防御警示、适口性差、隐蔽自身或暴露啃食者等方式来防御植食动物的啃食。这两类假说也都存在争议。目前对红色幼叶的研究相对较少且多侧重其作为独立视觉信号的作用, 而未能将红叶与植物的其他防御策略结合进行讨论。今后的研究应当综合环境因子的影响和啃食者的视觉分析, 并与植物其他出现红色的器官对比, 深入探讨红色幼叶的适应意义。  相似文献   

11.
Díaz M  Pulido FJ  Møller AP 《Oecologia》2004,139(2):224-234
Plants are able to compensate for loss of tissue due to herbivores at a variety of spatial and temporal scales, masking detrimental effects of herbivory on plant fitness at these scales. The stressing effect of herbivory could also produce instability in the development of plant modules, and measures of such instability may reflect the fitness consequences of herbivory if instability is related to components of plant fitness. We analyse the relationships between herbivory, developmental instability and production of female flowers and fruits of holm oak Quercus ilex trees by means of herbivore removal experiments. Removal of leaf herbivores reduced herbivory rates at the tree level, but had no effect on mean production of female flowers or mature fruits, whereas herbivory tended to enhance flower production and had no effect on fruit abortion at the shoot level. Differences in herbivory levels between shoots of the same branch did not affect the size and fluctuating asymmetry of intact leaves. These results indicate compensation for herbivory at the tree level and over-compensation at the shoot level in terms of allocation of resources to female flower production. Removal of insect herbivores produced an increase in the mean developmental instability of leaves at the tree level in the year following the insecticide treatment, and there was a direct relationship between herbivory rates in the current year and leaf fluctuating asymmetry the following year irrespective of herbivore removal treatment. Finally, the production of pistillate flowers and fruits by trees was inversely related to the mean fluctuating asymmetry of leaves growing the same year. Leaf fluctuating asymmetry was thus an estimator of the stressing effects of herbivory on adult trees, an effect that was delayed to the following year. As leaf fluctuating asymmetry was also related to tree fecundity, asymmetry levels provided a sensitive measure of plant performance under conditions of compensatory responses to herbivory.  相似文献   

12.
Floral herbivores and pollinators are major determinants of plant reproduction. Because interaction of floral herbivores and pollinators occurs when herbivores attack the flowers in the bud and flower stages and because the compensatory ability of plants is known to differ according to the timing of herbivory, the effects of herbivory may differ according to its timing. In this study, we investigated the effects of floral herbivory at different stages on fruit production and seed/ovule ratio at two sites of large populations of the perennial herb, Iris gracilipes for 2 years. Herbivory at the bud and fruit stages both tended to have negative effects on fruit production, but the former caused more severe damage. On the other hand, herbivory at the flower stage tended not to have negative effects on fruit production because the degree of flower loss was smaller in the flower stage. Although herbivory decreased fruit production, flowers did not compensate for the damage by increasing the seed/ovule ratio because reproduction of I. gracilipes was limited by pollen availability rather than resources. These results indicate that floral herbivory at different stages has different effects on plant reproduction.  相似文献   

13.
Plants experience unique challenges due to simultaneous life in two spheres, above- and belowground. Interactions with other organisms on one side of the soil surface may have impacts that extend across this boundary. Although our understanding of plant–herbivore interactions is derived largely from studies of leaf herbivory, belowground root herbivores may affect plant fitness directly or by altering interactions with other organisms, such as pollinators. In this study, we investigated the effects of leaf herbivory, root herbivory, and pollination on plant growth, subsequent leaf herbivory, flower production, pollinator attraction, and reproduction in cucumber (Cucumis sativus). We manipulated leaf and root herbivory with striped cucumber beetle (Acalymma vittatum) adults and larvae, respectively, and manipulated pollination with supplemental pollen. Both enhanced leaf and root herbivory reduced plant growth, and leaf herbivory reduced subsequent leaf damage. Plants with enhanced root herbivory produced 35% fewer female flowers, while leaf herbivory had no effect on flower production. While leaf herbivory reduced the time that honey bees spent probing flowers by 29%, probing times on root-damaged plants were over twice as long as those on control plants. Root herbivory increased pollen limitation for seed production in spite of increased honey bee preference for plants with root damage. Leaf damage and hand-pollination treatments had no effect on fruit production, but plants with enhanced root damage produced 38% fewer fruits that were 25% lighter than those on control plants. Despite the positive effect of belowground damage on honey bee visitation, root herbivory had a stronger negative effect on plant reproduction than leaf herbivory. These results demonstrate that the often-overlooked effects of belowground herbivores may have profound effects on plant performance.  相似文献   

14.
While many studies demonstrate that herbivores alter selection on plant reproductive traits, little is known about whether antiherbivore defenses affect selection on these traits. We hypothesized that antiherbivore defenses could alter selection on reproductive traits by altering trait expression through allocation trade‐offs, or by altering interactions with mutualists and/or antagonists. To test our hypothesis, we used white clover, Trifolium repens, which has a Mendelian polymorphism for the production of hydrogen cyanide—a potent antiherbivore defense. We conducted a common garden experiment with 185 clonal families of T. repens that included cyanogenic and acyanogenic genotypes. We quantified resistance to herbivores, and selection on six floral traits and phenology via male and female fitness. Cyanogenesis reduced herbivory but did not alter the expression of reproductive traits through allocation trade‐offs. However, the presence of cyanogenic defenses altered natural selection on petal morphology and the number of flowers within inflorescences via female fitness. Herbivory influenced selection on flowers and phenology via female fitness independently of cyanogenesis. Our results demonstrate that both herbivory and antiherbivore defenses alter natural selection on plant reproductive traits. We discuss the significance of these results for understanding how antiherbivore defenses interact with herbivores and pollinators to shape floral evolution.  相似文献   

15.
Herbivory has been long considered an important component of plant-animal interactions that influences the success of invasive species in novel habitats. One of the most important hypotheses linking herbivory and invasion processes is the enemy-release hypothesis, in which exotic plants are hypothesized to suffer less herbivory and fitness-costs in their novel ranges as they leave behind their enemies in the original range. Most evidence, however, comes from studies on leaf herbivory, and the importance of flower herbivory for the invasion process remains largely unknown. Here we present the results of a meta-analysis of the impact of flower herbivory on plant reproductive success, using as moderators the type of damage caused by floral herbivores and the residence status of the plant species. We found 51 papers that fulfilled our criteria. We also included 60 records from unpublished data of the laboratory, gathering a total of 143 case studies. The effects of florivory and nectar robbing were both negative on plant fitness. The methodology employed in studies of flower herbivory influenced substantially the outcome of flower damage. Experiments using natural herbivory imposed a higher fitness cost than simulated herbivory, such as clipping and petal removal, indicating that studies using artificial herbivory as surrogates of natural herbivory underestimate the real fitness impact of flower herbivory. Although the fitness cost of floral herbivory was high both in native and exotic plant species, floral herbivores had a three-fold stronger fitness impact on exotic than native plants, contravening a critical element of the enemy-release hypothesis. Our results suggest a critical but largely unrecognized role of floral herbivores in preventing the spread of introduced species into newly colonized areas.  相似文献   

16.
Theory predicts that plant defensive traits are costly due to trade-offs between allocation to defense and growth and reproduction. Most previous studies of costs of plant defense focused on female fitness costs of constitutively expressed defenses. Consideration of alternative plant strategies, such as induced defenses and tolerance to herbivory, and multiple types of costs, including allocation to male reproductive function, may increase our ability to detect costs of plant defense against herbivores. In this study we measured male and female reproductive costs associated with induced responses and tolerance to herbivory in annual wild radish plants (Raphanus raphanistrum). We induced resistance in the plants by subjecting them to herbivory by Pieris rapae caterpillars. We also induced resistance in plants without leaf tissue removal using a natural chemical elicitor, jasmonic acid; in addition, we removed leaf tissue without inducing plant responses using manual clipping. Induced responses included increased concentrations of indole glucosinolates, which are putative defense compounds. Induced responses, in the absence of leaf tissue removal, reduced plant fitness when five fitness components were considered together; costs of induction were individually detected for time to first flower and number of pollen grains produced per flower. In this system, induced responses appear to impose a cost, although this cost may not have been detected had we only quantified the traditionally measured fitness components, growth and seed production. In the absence of induced responses, 50% leaf tissue removal, reduced plant fitness in three out of the five fitness components measured. Induced responses to herbivory and leaf tissue removal had additive effects on plant fitness. Although plant sibships varied greatly (49–136%) in their level of tolerance to herbivory, costs of tolerance were not detected, as we did not find a negative association between the ability to compensate for damage and plant fitness in the absence of damage. We suggest that consideration of alternative plant defense strategies and multiple costs will result in a broader understanding of the evolutionary ecology of plant defense.  相似文献   

17.
The direct and indirect effects of vegetative herbivory on the mating system of Impatiens capensis were analyzed through a survey of herbivory in natural I. capensis populations and manipulation of leaf damage in the field. Across 10 wild populations of I. capensis proportion of cleistogamous flowers had a significant positive exponential relationship with natural levels of herbivory. Similarly, experimental leaf damage increased the proportion of flowers and seeds that were cleistogamous. Leaf damage also reduced the biomass of cleistogamous progeny more severely relative to that of chasmogamous progeny. The cumulative effect of leaf damage was to increase plant reliance on fitness derived from cleistogamous progeny. Leaf damage indirectly affected mating system traits by reducing chasmogamous flower size, leading to a reduction in pollinator visitation. Under these experimental conditions, herbivory did not significantly reduce the number of simultaneously open flowers and potential for geitonogamy, nor did it result in significant changes in the composition of the pollinator fauna. These findings are among the first to demonstrate that herbivory has consequences for mating system and should be considered a factor shaping mating system evolution.  相似文献   

18.
19.
Variation among the leaves, flowers or fruit produced by a plant is often regarded as a nuisance to the experimenter and an impediment to selection. Here, we suggest that within‐plant variation can drive selection on other plant‐level traits. We examine within‐plant variation in floral sex allocation and in fruit set and predict that such variation generates variation in male success among plants, thereby driving selection on flowering time. We tested this prediction in a simulation model estimating selection on flowering time through male fitness when floral sex allocation and/or fruit set vary directionally among flowers on plants. We parameterized the model through a quantitative literature survey of within‐plant change in sex allocation. As predicted, within‐plant variation in floral sex allocation and in fruit set probability can generate selection on flowering time through male fitness. Declining fruit set from first to last flowers on plants, as occurs in many species, selected for early flowering onset through male fitness. This result was robust to self‐incompatibility and to varying returns on male versus female investment. Selection caused by declining fruit set was strong enough to reverse the selection for late flowering that can be caused by intrafloral protandry. Our model provides testable predictions regarding selection on flowering time through male fitness. The model also establishes the intriguing possibility that within‐plant variation may influence selection on other traits, regardless of whether that variation is under selection itself.  相似文献   

20.
Florivory: the intersection of pollination and herbivory   总被引:3,自引:0,他引:3  
McCall AC  Irwin RE 《Ecology letters》2006,9(12):1351-1365
Plants interact with many visitors who consume a variety of plant tissues. While the consequences of herbivory to leaves and shoots are well known, the implications of florivory, the consumption of flowers prior to seed coat formation, have received less attention. Herbivory and florivory can yield different plant, population and community outcomes; thus, it is critical to distinguish between these two types of consumption. Here, we consider the ecological and evolutionary consequences of florivory. A growing number of studies recognize that florivory is common in natural systems and in some cases surpasses leaf herbivory in magnitude and impact. Florivores can affect male and female plant fitness via direct trophic effects and through altered pathways of species interactions. In particular, florivory can affect pollination and have consequences for plant mating and floral sexual system evolution. Plants are not defenceless against florivore damage. Concepts of resistance and tolerance can be applied to plant–florivore interactions. Moreover, extant theories of plant chemical defence, including optimal defence theory, growth rate hypothesis and growth differentiation–balance hypothesis, can be used to make testable predictions about when and how plants should defend flowers against florivores. The majority of the predictions remain untested, but they provide a theoretical foundation on which to base future experiments. The approaches to studying florivory that we outline may yield novel insights into floral and defence traits not illuminated by studies of pollination or herbivory alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号