首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There is a long-standing debate on the extent of vicariance and long-distance dispersal events to explain the current distribution of organisms, especially in those with small diaspores potentially prone to long-distance dispersal. Age estimates of clades play a crucial role in evaluating the impact of these processes. The aim of this study is to understand the evolutionary history of the largest clade of macrolichens, the parmelioid lichens (Parmeliaceae, Lecanoromycetes, Ascomycota) by dating the origin of the group and its major lineages. They have a worldwide distribution with centers of distribution in the Neo- and Paleotropics, and semi-arid subtropical regions of the Southern Hemisphere. Phylogenetic analyses were performed using DNA sequences of nuLSU and mtSSU rDNA, and the protein-coding RPB1 gene. The three DNA regions had different evolutionary rates: RPB1 gave a rate two to four times higher than nuLSU and mtSSU. Divergence times of the major clades were estimated with partitioned BEAST analyses allowing different rates for each DNA region and using a relaxed clock model. Three calibrations points were used to date the tree: an inferred age at the stem of Lecanoromycetes, and two dated fossils: Parmelia in the parmelioid group, and Alectoria. Palaeoclimatic conditions and the palaeogeological area cladogram were compared to the dated phylogeny of parmelioid. The parmelioid group diversified around the K/T boundary, and the major clades diverged during the Eocene and Oligocene. The radiation of the genera occurred through globally changing climatic condition of the early Oligocene, Miocene and early Pliocene. The estimated divergence times are consistent with long-distance dispersal events being the major factor to explain the biogeographical distribution patterns of Southern Hemisphere parmelioids, especially for Africa-Australia disjunctions, because the sequential break-up of Gondwana started much earlier than the origin of these clades. However, our data cannot reject vicariance to explain South America-Australia disjunctions.  相似文献   

2.
The large daisy tribe Gnaphalieae occurs in extra-tropical habitats worldwide, but is most diverse in southern Africa and in Australia. We explore the age and evolutionary history of the tribe by means of a phylogenetic hypothesis based on Bayesian analysis of plastid and nuclear DNA sequences, maximum likelihood reconstruction of ancestral areas, and relaxed Bayesian dating. Early diversification occurred in southern Africa in the Eocene-Oligocene, resulting in a grade of mostly Cape-centred lineages which subsequently began speciating in the Miocene, consistent with diversification times for many Cape groups. Gnaphalieae from other geographic regions are embedded within a southern African paraphylum, indicating multiple dispersals out of southern Africa since the Oligocene to Miocene which established the tribe in the rest of the world. Colonisation of Australia via direct long-distance trans-oceanic dispersal in the Miocene resulted in the radiation which produced the Australasian gnaphalioid flora. The similarly diverse regional gnaphalioid floras of Australasia and southern Africa thus exhibit very different temporal species accumulation histories. An examination of the timing and direction of trans-Indian Ocean dispersal events in other angiosperms suggests a role for the West Wind Drift in long-distance dispersal eastwards from southern Africa.  相似文献   

3.
Oceanic dispersal has emerged as an important factor contributing to biogeographic patterns in numerous taxa. Chameleons are a clear example of this, as they are primarily found in Africa and Madagascar, but the age of the family is post-Gondwanan break-up. A Malagasy origin for the family has been suggested, yet this hypothesis has not been tested using modern biogeographic methods with a dated phylogeny. To examine competing hypotheses of African and Malagasy origins, we generated a dated phylogeny using between six and 13 genetic markers, for up to 174 taxa representing greater than 90 per cent of all named species. Using three different ancestral-state reconstruction methods (Bayesian and likelihood approaches), we show that the family most probably originated in Africa, with two separate oceanic dispersals to Madagascar during the Palaeocene and the Oligocene, when prevailing oceanic currents would have favoured eastward dispersal. Diversification of genus-level clades took place in the Eocene, and species-level diversification occurred primarily in the Oligocene. Plio-Pleistocene speciation is rare, resulting in a phylogeny dominated by palaeo-endemic species. We suggest that contraction and fragmentation of the Pan-African forest coupled to an increase in open habitats (savannah, grassland, heathland), since the Oligocene played a key role in diversification of this group through vicariance.  相似文献   

4.
The Cainotheriidae are small artiodactyls that suddenly appeared in the late Eocene of western Europe. A revision of early Oligocene cainotheriid lineages is proposed on the basis of newly dated material from the Quercy Phosphorites (south-western France). A significant diversification of the group occurred at the end of the Eocene. Few species seem to have persisted through the Eocene/Oligocene boundary, but the Cainotheriidae subsequently diversified rapidly during the early Oligocene.  © 2005 The Linnean Society of London, Zoological Journal of the Linnean Society , 2005, 144 , 145−166.  相似文献   

5.
To explore the biogeographic history of Mediterranean/arid plant disjunctions, Old and New World Senecio sect. Senecio were analyzed phylogenetically using nuclear ribosomal DNA sequences (ITS). A clade corresponding to sect. Senecio was strongly supported. Area optimization indicated this clade to be of southern African origin. The Mediterranean and southern African floras were not distinguishable as sources of the main New World lineage, estimated to have become established during the middle Pliocene. Another previously suspected recent dispersal to the New World from the Mediterranean was confirmed for the recently recognized disjunction in S. mohavensis. The loss of suitable land connections by the Miocene means that both New World lineages must represent long-distance dispersal, providing the first evidence of repeat intercontinental dispersal in a Mediterranean group. In contrast, migration within Africa may have utilized an East African arid corridor. Recent dispersal to northern Africa is supported for S. flavus, which formed part of a distinct southern African lineage. Novel pappus modifications in both disjunct species may have enabled dispersal by birds. An estimated early Pliocene origin of sect. Senecio coincides with the appearance of summer-dry climate. However, diversification from 1.6 BP highlights the importance of Pleistocene climate fluctuations for speciation.  相似文献   

6.
Biogeographic dispersal is supported by numerous phylogenetic results. In particular, transoceanic dispersal, rather than vicariance, is suggested for some plant lineages despite current long distances between America and Europe. However, few studies on the biogeographic history of plants have also studied the role of diaspore syndromes in long‐distance dispersal (LDD). Species of the tribe Omphalodeae (Boraginaceae) offer a suitable study system because the species have a wide variety of diaspore traits related to LDD and different lineages conform to patched worldwide distributions on three distant continents (Europe, America and New Zealand). Our aim is to reconstruct the biogeographical history of the Omphalodeae and to investigate the role of diaspore traits favoring LDD and current geographic distributions. To this end, a time‐calibrated phylogeny with 29 of 32 species described for Omphalodeae was reconstructed using biogeographical analyses (BioGeoBEARS, Lagrange) and models (DEC and DIVA) under different scenarios of land connectivity. Character‐state reconstruction (SIMMAP) and diversification rate estimations of the main lineages were also performed. The main result is that epizoochorous traits have been the ancestral state of LDD syndromes in most clades. An early diversification age of the tribe is inferred in the Western Mediterranean during late Oligocene. Colonization of the New World by Omphalodeae, followed by fast lineage differentiation, took place sometime in the Oligocene‐Miocene boundary, as already inferred for other angiosperm genera. In contrast, colonization of remote islands (New Zealand, Juan Fernández) occurred considerably later in the Miocene‐Pliocene boundary.  相似文献   

7.
Aim Gondwanan lineages are a prominent component of the Australian terrestrial biota. However, most squamate (lizard and snake) lineages in Australia appear to be derived from relatively recent dispersal from Asia (< 30 Ma) and in situ diversification, subsequent to the isolation of Australia from other Gondwanan landmasses. We test the hypothesis that the Australian radiation of diplodactyloid geckos (families Carphodactylidae, Diplodactylidae and Pygopodidae), in contrast to other endemic squamate groups, has a Gondwanan origin and comprises multiple lineages that originated before the separation of Australia from Antarctica. Location Australasia. Methods Bayesian (beast ) and penalized likelihood rate smoothing (PLRS) (r 8s ) molecular dating methods and two long nuclear DNA sequences (RAG‐1 and c‐mos) were used to estimate a timeframe for divergence events among 18 genera and 30 species of Australian diplodactyloids. Results At least five lineages of Australian diplodactyloid geckos are estimated to have originated > 34 Ma (pre‐Oligocene) and basal splits among the Australian diplodactyloids occurred c. 70 Ma. However, most extant generic and intergeneric diversity within diplodactyloid lineages appears to post‐date the late Oligocene (< 30 Ma). Main conclusions Basal divergences within the diplodactyloids significantly pre‐date the final break‐up of East Gondwana, indicating that the group is one of the most ancient extant endemic vertebrate radiations east of Wallace’s Line. At least five Australian lineages of diplodactyloid gecko are each as old or older than other well‐dated Australian squamate radiations (e.g. elapid snakes and agamids). The limbless Pygopodidae (morphologically the most aberrant living geckos) appears to have radiated before Australia was occupied by potential ecological analogues. However, in spite of the great age of the diplodactyloid radiation, most extant diversity appears to be of relatively recent origin, a pattern that is shared with other Australian squamate lineages.  相似文献   

8.
Annonaceae are a pantropically distributed family found predominantly in rainforests, so they are megathermal taxa, whereas Rhamnaceae are a cosmopolitan family that tend to be found in xeric regions and may be classified as mesothermal. Phylogenetic analyses of these families are presented based on rbcL and trnL-F plastid DNA sequences. Likelihood ratio tests revealed rate heterogeneity in both phylogenetic trees and they were therefore made ultrametric using non-parametric rate smoothing and penalized likelihood. Divergence times were then estimated using fossil calibration points. The historical biogeography of these families that are species rich in different biomes is discussed and compared with other published reconstructions. Rhamnaceae and most lineages within Annonaceae are too young to have had their distribution patterns influenced by break-up of previously connected Gondwanan landmasses. Contrasts in the degree of geographical structure between these two families may be explained by differences in age and dispersal capability. In both groups, long-distance dispersal appears to have played a more significant role in establishing modern patterns than had previously been assumed. Both families also contain examples of recent diversification of species-rich lineages. An understanding of the processes responsible for shaping the distribution patterns of these families has contributed to our understanding of the historical assembly of the biomes that they occupy.  相似文献   

9.
Phylogenetic relationships of 26 Phortica species were investigated based on DNA sequence data of two mitochondrial (ND2, COI) and one nuclear (28S rRNA) genes. Five monophyletic groups were recovered in the genus Phortica, of which three were established as new subgenera, Alloparadisa, Ashima, and Shangrila. The subgenus Allophortica was suggested as the most basal lineage in Phortica, followed by the lineage of P. helva + P. sobodo + P. varipes. The remaining Phortica species, most of Oriental distribution, formed a monophyletic group, and were subdivided into three lineages (i.e., the subgenera Ashima, Phortica, and Shangrila). The subgenera Shangrila and Phortica were suggested as sister taxa, and four clades were recovered in the subgenus Ashima. The result of reconstruction of ancestral distribution and estimation of divergence times indicates that, the ancestor of the genus Phortica restricted to Africa, its initial diversification was dated back to ca. 23 Mya (coinciding with the Oligocene/Miocene boundary); sympatric speciation and an Africa-to-Asia dispersal was proposed to account for the current distribution of Allophortica and the rest Phortica; most of the rest diversification of Phortica occurred in southern China, and the divergence between the African clade and its Oriental counterpart was suggested as a result of vicariance following a dispersal of their ancestral species from southern China to Africa.  相似文献   

10.
In traditional morphology-based concepts many species of lichenized fungi have world-wide distributions. Molecular data have revolutionized the species delimitation in lichens and have demonstrated that we underestimated the diversity of these organisms. The aim of this study is to explore the phylogeography and the evolutionary patterns of the Xanthoparmelia pulla group, a widespread group of one of largest genera of macrolichens. We used a dated phylogeny based on nuITS and nuLSU rDNA sequences and performed an ancestral range reconstruction to understand the processes and explain their current distribution, dating the divergence of the major lineages in the group. An inferred age of radiation of parmelioid lichens and the age of a Parmelia fossil were used as the calibration points for the phylogeny. The results show that many species of the X. pulla group as currently delimited are polyphyletic and five major lineages correlate with their geographical distribution and the biosynthetic pathways of secondary metabolites. South Africa is the area where the X. pulla group radiated during the Miocene times, and currently is the region with the highest genetic, morphological and chemical diversity. From this center of radiation the different lineages migrated by long-distance dispersal to others areas, where secondary radiations developed. The ancestral range reconstruction also detected that a secondary lineage migrated from Australia to South America via long-distance dispersal and subsequent continental radiation.  相似文献   

11.
We investigated the evolution of fruit characters, animals versus abiotic dispersal modes, life forms and geographical distribution, in the large, mostly tropical, family Rubiaceae. As a basis for our analysis we used a phylogenetic tree derived from chloroplast DNA variation. Fleshy fruits have evolved independently at least 12 times in the family. Most of these originations appear to have occurred during Eocene to Oligocene, i.e. the radiation period for some animal taxa (bird families, mammal orders) comprising most extant dispersers of Rubiaceae fruits. Changes of dispersal modes may be of more recent origin in a few cases, e.g. evolution of drupes in some lineages, and shifts from drupes to nuts. The distribution of fruit characters suggested that in several lineages animal-dispersed fruits, such as berries and drupes have remained largely unaltered since the time of origination. This is in contrast to the occurrence of winged seeds in capsules, and pterophylls, i.e. enlarged calyx lobes promoting wind dispersal of fruits, which apparently have shifted more frequently during evolution, indicating a difference in 'phylogenetic plasticity' between modes of animal and wind dispersal.
Animal dispersal was over-represented among genera dominated by shrubs, whereas abiotic dispersal was most prevalent among herbaceous genera. Drupes were over-represented in groups with transoceanic distributions, and on islands, indicating dispersal over long distances, probably by birds. In contrast, no evidence was found to support the view that animal dispersal in general enhances long distance dispersal. We also analysed geographical patterns on the tribal level but these were too complex to yield any resolved area cladograms due to the occurrence of many widespread taxa and area redundancy.  相似文献   

12.
The mechanisms underlying the taxonomic assembly of montane biotas are still poorly understood. Most hypotheses have assumed that the diversification of montane biotas is loosely coupled to Earth history and have emphasized instead the importance of multiple long-distance dispersal events and biotic interactions, particularly competition, for structuring the taxonomic composition and distribution of montane biotic elements. Here we use phylogenetic and biogeographic analyses of species in the parrot genus Pionus to demonstrate that standing diversity within montane lineages is directly attributable to events of Earth history. Phylogenetic relationships confirm three independent biogeographic disjunctions between montane lineages, on one hand, and lowland dry-forest/wet-forest lineages on the other. Temporal estimates of lineage diversification are consistent with the interpretation that the three lineages were transported passively to high elevations by mountain building, and that subsequent diversification within the Andes was driven primarily by Pleistocene climatic oscillations and their large-scale effects on habitat change. These results support a mechanistic link between diversification and Earth history and have general implications for explaining high altitudinal disjuncts and the origin of montane biotas.  相似文献   

13.
Background and AimsSeveral biogeographical models have been proposed to explain the colonization and diversification patterns of Macaronesian lineages. In this study, we calculated the diversification rates and explored what model best explains the current distribution of the 15 species endemic to the Canary Islands belonging to Helianthemum sect. Helianthemum (Cistaceae).MethodsWe performed robust phylogenetic reconstructions based on genotyping-by-sequencing data and analysed the timing, biogeographical history and ecological niche conservatism of this endemic Canarian clade.Key ResultsOur phylogenetic analyses provided strong support for the monophyly of this clade, and retrieved five lineages not currently restricted to a single island. The pristine colonization event took place in the Pleistocene (~1.82 Ma) via dispersal to Tenerife by a Mediterranean ancestor.ConclusionsThe rapid and abundant diversification (0.75–1.85 species per million years) undergone by this Canarian clade seems the result of complex inter-island dispersal events followed by allopatric speciation driven mostly by niche conservatism, i.e. inter-island dispersal towards niches featuring similar environmental conditions. Nevertheless, significant instances of ecological niche shifts have also been observed in some lineages, making an important contribution to the overall diversification history of this clade.  相似文献   

14.
When postulating evolutionary hypotheses for diverse groups of taxa using molecular data, there is a tradeoff between sampling large numbers of taxa with a few Sanger-sequenced genes or sampling fewer taxa with hundreds to thousands of next-generation-sequenced genes. High taxon sampling enables the testing of evolutionary hypotheses that are sensitive to sampling bias (i.e. dating, biogeography and diversification analyses), whereas high character sampling improves resolution of critical nodes. In a group of ant parasitoids (Hymenoptera: Eucharitidae: Oraseminae), we analyse both of these types of datasets independently (203 taxa with five Sanger loci, 92 taxa with 348 anchored hybrid enrichment loci) and in combination (229 taxa, 353 loci) to explore divergence dating, biogeography, host relationships and differential rates of diversification. Oraseminae specialize as parasitoids of the immature stages of ants in the subfamily Myrmicinae (Hymenoptera: Formicidae), with ants in the genus Pheidole being their most common and presumed ancestral host. A general assumption is that the distribution of the parasite must be limited by any range contraction or expansion of its host. Recent studies support a single New World to Old World dispersal pattern for Pheidole at c. 11–27 Ma. Using multiple phylogenetic inference methods (parsimony, maximum likelihood, dated Bayesian and coalescent analyses), we provide a robust phylogeny showing that Oraseminae dispersed in the opposite direction, from Old World to New World, c. 24–33 Ma, which implies that they existed in the Old World before their presumed ancestral hosts. Their dispersal into the New World appears to have promoted an increased diversification rate. Both the host and parasitoid show single unidirectional dispersals in accordance with the presence of the Beringian Land Bridge during the Oligocene, a time when the changing northern climate probably limited the dispersal ability of such tropically adapted groups.  相似文献   

15.
? Premise of the study: Dryopteris is a large, cosmopolitan fern genus ideal for addressing questions about diversification, biogeography, hybridization, and polyploidy, which have historically been understudied in ferns. We constructed a highly resolved, well-supported phylogeny for New World Dryopteris and used it to investigate biogeographic patterns and divergence times. ? Methods: We analyzed relationships among 97 species of Dryopteris, including taxa from all major biogeographic regions, with analyses based on 5699 aligned nucleotides from seven plastid loci. Phylogenetic analyses used maximum parsimony, maximum likelihood, and Bayesian inference. We conducted divergence time analyses using BEAST and biogeographic analyses using maximum parsimony, maximum likelihood, Bayesian, and S-DIVA approaches. We explored the monophyly of subgenera and sections in the most recent generic classification and of geographic groups of taxa using Templeton tests. ? Key results: The genus Dryopteris arose ca. 42 million years ago (Ma). Most of the Central and South American species form a well-supported clade which arose 32 Ma, but the remaining New World species are the result of multiple, independent dispersal and vicariance events involving Asia, Europe, and Africa over the last 15 Myr. We identified six long-distance dispersal events and three vicariance events in the immediate ancestry of New World species; reconstructions for another four lineages were ambiguous. ? Conclusions: New World Dryopteris are not monophyletic; vicariance has dominated the history of the North American species, while long-distance dispersal prevails in the Central and South American species, a pattern not previously seen in plants.  相似文献   

16.
The cosmopolitan genus Fraxinus, which comprises about 40 species of temperate trees and shrubs occupying various habitats in the Northern Hemisphere, represents a useful model to study speciation in long-lived angiosperms. We used nuclear external transcribed spacers (nETS), phantastica gene sequences, and two chloroplast loci (trnH-psbA and rpl32-trnL) in combination with previously published and newly obtained nITS sequences to produce a time-calibrated multi-locus phylogeny of the genus. We then inferred the biogeographic history and evolution of floral morphology. An early dispersal event could be inferred from North America to Asia during the Oligocene, leading to the diversification of the section Melioides sensus lato. Another intercontinental dispersal originating from the Eurasian section of Fraxinus could be dated from the Miocene and resulted in the speciation of F. nigra in North America. In addition, vicariance was inferred to account for the distribution of the other Old World species (sections Sciadanthus, Fraxinus and Ornus). Geographic speciation likely involving dispersal and vicariance could also be inferred from the phylogenetic grouping of geographically close taxa. Molecular dating suggested that the initial divergence of the taxonomical sections occurred during the middle and late Eocene and Oligocene periods, whereas diversification within sections occurred mostly during the late Oligocene and Miocene, which is consistent with the climate warming and accompanying large distributional changes observed during these periods. These various results underline the importance of dispersal and vicariance in promoting geographic speciation and diversification in Fraxinus. Similarities in life history, reproductive and demographic attributes as well as geographical distribution patterns suggest that many other temperate trees should exhibit similar speciation patterns. On the other hand, the observed parallel evolution and reversions in floral morphology would imply a major influence of environmental pressure. The phylogeny obtained and its biogeographical implications should facilitate future studies on the evolution of complex adaptive characters, such as habitat preference, and their possible roles in promoting divergent evolution in trees.  相似文献   

17.
The Paleogene (Paleocene-Oligocene) fossil record of birds in Europe is reviewed and recent and fossil taxa are placed into a phylogenetic framework, based on published cladistic analyses. The pre-Oligocene European avifauna is characterized by the complete absence of passeriform birds, which today are the most diverse and abundant avian taxon. Representatives of small non-passeriform perching birds thus probably had similar ecological niches before the Oligocene to those filled by modern passerines. The occurrence of passerines towards the Lower Oligocene appears to have had a major impact on these birds, and the surviving crown-group members of many small arboreal Eocene taxa show highly specialized feeding strategies not found or rare in passeriform birds. It is detailed that no crown-group members of modern 'families' are known from pre-Oligocene deposits of Europe, or anywhere else. The phylogenetic position of Paleogene birds thus indicates that diversification of the crown-groups of modern avian 'families' did not take place before the Oligocene, irrespective of their relative position within Neornithes (crown-group birds). The Paleogene fossil record of birds does not even support crown-group diversification of Galliformes, one of the most basal taxa of neognathous birds, before the Oligocene, and recent molecular studies that dated diversification of galliform crown-group taxa into the Middle Cretaceous are shown to be based on an incorrect interpretation of the fossil taxa used for molecular clock calibrations. Several taxa that occur in the Paleogene of Europe have a very different distribution than their closest extant relatives. The modern survivors of these Paleogene lineages are not evenly distributed over the continents, and especially the great number of taxa that are today restricted to South and Central America is noteworthy. The occurrence of stem-lineage representatives of many taxa that today have a restricted Southern Hemisphere distribution conflicts with recent hypotheses on a Cretaceous vicariant origin of these taxa, which were deduced from the geographical distribution of the basal crown-group members.  相似文献   

18.
Dipodoidea are a diverse rodent group whose earliest known record is from the Middle Eocene. The evolution and diversification of this superfamily have been documented by fossils and comparative morphology, but have not yet been studied from the perspective of molecular phylogeny. This study is the first attempt to reconstruct an extensive phylogeny of Dipodidae and estimate divergence times based on a nuclear gene coding for interphotoreceptor retinoid-binding protein. We found that there is a wide measure of agreement with the fossil record. Each of the three ecological groups of the extant Dipodoidea (sicistines, zapodines, and jerboas) has its distinctive distribution; the distribution patterns have been shaped by the dispersal events. The key events of paleogeographic distribution coincided with major paleoenvironmental events in the Cenozoic. The first important diversification phase occurred during the period from the Oligocene to Early Miocene, when global climate underwent major changes beginning with the Eocene/Oligocene boundary. The second adaptive radiation occurred within jerboas and was associated with the expansion of open habitat starting with the late Middle Miocene. The diversification of jerboas can be correlated with habitat changes in response to global and regional climatic events.  相似文献   

19.
De Bruyn M  Mather PB 《Molecular ecology》2007,16(20):4295-4307
A major paradigm in evolutionary biology asserts that global climate change during the Pleistocene often led to rapid and extensive diversification in numerous taxa. Recent phylogenetic data suggest that past climatic oscillations may have promoted long-distance marine dispersal in some freshwater crustacea from the Indo-Australian Archipelago (IAA). Whether this pattern is common, and whether similar processes are acting on diversification below the species level is unknown. We used nuclear and mitochondrial molecular variation in a freshwater-dependent decapod crustacean (Macrobrachium rosenbergii), sampled widely from the IAA, to assess the impact of Pleistocene sea-level changes on lineage diversification in this species. Fitting of an isolation with migration model enabled us to reject ongoing migration among lineages, and results indicate that isolation among both mainland-mainland and mainland-island lineages arose during the mid-Pleistocene. Our data suggest a scenario of widespread marine dispersal during Pleistocene glacial maxima (in support of the 'Pleistocene marine dispersal hypothesis') when sea levels were low, and geographical distances between fresh watersheds were greatly reduced, followed by increased isolation as sea levels subsequently rose.  相似文献   

20.
This study focuses on the phylogenetic relationships among ninety percent of known Dolichopoda species (44 out of 49); primarily a Mediterranean genus, distributed from eastern Pyrenees to Caucasus. A total of 2490 base pairs were sequenced corresponding to partial sequences of one nuclear (28SrRNA) and three mitochondrial genes (12S, 16S and COI). A relaxed molecular clock, inferred from Bayesian analysis was applied to estimate the divergence times between the lineages using well dated palaeoevents of the study areas. Molecular substitution rates per lineage per million years were also obtained for each analyzed gene. Based on the nearly complete species phylogeny, temporal patterns of diversification were analyzed using Lineage-Through-Time plots and diversification statistics. Alternative hypotheses about the colonization of present range by Dolichopoda species were tested by means of Approximate Bayesian Computation analysis. Results from this analysis carried out on the 90% of known Dolichopoda species confirmed the previous ones based on subgroups of species, suggesting the ABC analysis as a remarkable tool in biogeographic studies. Based on these results, the distribution of Dolichopoda species appears to have been shaped by the palaeogeographic and climatic events that occurred from Late Miocene up to the Plio-Pleistocene. Both vicariance and dispersal events appear to have influenced Dolichopoda species distributions, with many processes occurring in ancestral epigean populations before the invasion of the subterranean environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号