首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This review describes the development of the laticifer concept, with emphasis upon the nonarticulated type, from early observations of plant exudates and “juices” to the presentation of laticifers by Esau (1953). Classical writers and herbalists described practical applications of these substances. With the advent of the microscope early investigators believed that these substances occurred in structures present in most, if not all, plants and, wrongly, equated these structures to the circulatory system in animals. Introduction of the term, latex, into botany derived from its early use as a term for a blood component by physicians, and not for analogy to milk. However, the origin of the terms, laticifer and laticiferous, remains uncertain. Initial studies of laticifers were marked by the controversy of whether they represented intercellular spaces or elongated cells. Confirmation of their cellular character led to the designation of nonarticulated and articulated laticifers. Nonarticulated laticifers were shown to arise during early embryogeny in some plants. The ontogenetic origin of the articulated laticifer was unclear to early workers, but new laticifers were detected to be formed by cambium activity. Nonarticulated laticifers were described to develop by intrusive growth whereby tips of the cell penetrated between adjacent cells. The coenocytic condition of the nonarticulated laticifer resulted from nuclear divisions along the cell positioned in the growth region of the shoot and the subsequent distribution of the daughter nuclei along the length of the cell.  相似文献   

3.
In Hevea brasiliensis, laticifers produce and accumulate rubber particles. Despite observation using histochemical methods, development stage structure and structures with ceasing functions have rarely been described. Spectral confocal laser scanning microscopy with Nile red staining simplifies laticifer structure observation in tangential sections while enhancing the resolution. Laticifer and ray images were extracted from unmixed images and used to monitor changes during growth. A laticifer network structure developed from increased anastomoses between adjoining laticifers outside of the conducting phloem, but because of increased radial division and growth of rays, the network structure ruptured and disintegrated. We also investigated immunohistochemical localization of two rubber particle-associated proteins in the laticifers: small rubber particle protein (SRPP) and rubber elongation factor (REF). Mature bark test results show that SRPP is localized only in the laticifer layers in the conducting phloem; REF is localized in all laticifer layers. Because SRPP plays a positive role in rubber biosynthesis, results show that the rubber biosynthesis capability of laticifers is concentrated where rays and the sieve tube actively transport metabolites.  相似文献   

4.
Actin microfilaments of laticiferous cells and bark wounds in Hevea brasiliensis were studied using TRITC-phalloidin fluorescent microscopy. Actin in latex from mature rubber trees was also investigated using SDS-PAGE and western-boltting. TRITC-fluorescent substance plugged the end of laticifers when latex flow stopped. Actin was detected only in C serum among the four latex fractions. Higher actin content was found in the latex collected at the beginning of tapping than in that collected just before latex flow stopped. Lower actin content was detected in the latex from rubber trees with more intensive exploitation. The present study indicated that actin microfilaments might play an important role in regulation of latex flow and plugging of the laticifers wounds.  相似文献   

5.
6.
The multinucleate condition in the non-articulated laticifers of embryos of Euphorbia marginata arises as a result of mitosis. Successive stages of mitosis in the nuclei of the laticifer appear in the form of a wave. No sequence of mitotic stages has been noticed in the neighboring longitudinal tiers of cells. This difference in the mitotic pattern in the laticifer and other parenchymatous cells of the embryo suggests that the synthesis of factor(s) responsible for triggering mitosis occurs within the laticifer and does not diffuse to the surrounding cells. The mitotic waves originate distally from the meristems, either in the cotyledonary or hypocotyl portion of the laticifer, and move uni- or bidirectionally along its longitudinal axis. The mitotic stimulus does not start simultaneously in all the laticifers. The variable velocity of the mitotic substance results in aphasic mitotic waves in laticifers of the same embryo. Mitotic aberrations have not been observed in the dividing nuclei of the laticifer. A chromosome estimation made from a polar view of metaphase does not suggest polyploidization in the observed laticifers.  相似文献   

7.
E. de Faÿ  C. Sanier  C. Hebant 《Protoplasma》1989,149(2-3):155-162
Summary Cell to cell connections, including plasmodesmata and perforations, were examined in the non-conducting secondary phloem ofHevea brasiliensis. Samples were taken from trunks of numerous trees, from several clones, and prepared for thin sectioning and transmission or scanning electron microscopy and as optical sections for fluorescence microscopy. Numerous plasmodesmata were found clustered in primary pit-fields between the ray and axial parenchyma cells. Between the laticifers and adjacent parenchyma sheath cells, structures corresponding to functional plasmodesmata were not observed. But some unusual structural features were occasionally seen in these walls. These observations are discussed in relation to the possible function of the cell types, and to the loss of latex on the tapping ofHevea. It is suggested that the loading of the laticifer might first require a symplastic pathway for the transport of metabolites, at the end of which the assimilates must enter the apoplast. A transmembrane active transport system then transfers the metabolites in the laticifer. The presumable role of parenchyma cells in the loading of laticifers is emphasized.  相似文献   

8.
Serpe MD  Muir AJ  Driouich A 《Planta》2002,215(3):357-370
Nonarticulated laticifers are latex-containing cells that elongate indefinitely and grow intrusively between the walls of meristematic cells. To identify biochemical mechanisms involved in the growth of nonarticulated laticifers, we have analyzed the distribution of various polysaccharides and proteoglycans in walls of meristematic cells in contact with laticifers, nonadjacent to laticifers, and in laticifer walls. In the shoot apex of Asclepias speciosa, the levels of callose and a (1-->4)-beta-galactan epitope are lower in meristematic walls in contact with laticifers than in nonadjacent walls. In contrast, we did not detect a decline in xyloglucan, homogalacturonan, and arabinogalactan-protein epitopes upon contact of meristematic cells with laticifers. Laticifer elongation is also associated with the development of a homogalacturonan-rich middle lamella between laticifers and their neighboring cells. Furthermore, laticifers lay down walls that differ from those of their surrounding cells. This is particularly evident for epitopes in rhamnogalacturonan I. A (1-->5)-alpha-arabinan epitope in this pectin is more abundant in laticifers than meristematic cells, while the opposite is observed for a (1-->4)-beta-galactan epitope. Also, different cell wall components exhibit distinct distribution patterns within laticifer walls. The (1-->5)-alpha-arabinan epitope is distributed throughout the laticifer walls while certain homogalacturonan and arabinogalactan-protein epitopes are preferentially located in particular regions of laticifer walls. Taken together, our results indicate that laticifer penetration causes changes in the walls of meristematic cells and that there are differences in wall composition within laticifer walls and between laticifers and their surrounding cells.  相似文献   

9.
The protoplast of the non-articulated branched laticifer in the embryo and seedling of Asclepias syriaca L. was studied at the ultrastructural level and was found to differ from that of adjacent cell types. Embryonal laticifers possess numerous vesicles with electron-dense contents, but lack a large organized central vacuole. Plastids have few lamellae, possess phytoferritin, and accumulate small amounts of starch. Other organelles and membrane systems are similar to those in other cells. After germination, laticifers develop numerous elongated vacuoles by dilation of endoplasmic reticulum. Nuclei in laticifers within the hypocotyl of seedlings are highly lobed and possess dilated perinuclear spaces. Plastids and other organelles are similar to those observed in the protoplast of laticifers in the embryo. The latex or rubber component of the laticifer is not apparent in mature embryos of 72-hr seedlings.  相似文献   

10.
11.

Background and Aims

The major economic product of Hevea brasiliensis is a rubber-containing cytoplasm (latex), which flows out of laticifers (latex cells) when the bark is tapped. The latex yield is stimulated by ethylene. Sucrose, the unique precursor of rubber synthesis, must cross the plasma membrane through specific sucrose transporters before being metabolized in the laticifers. The relative importance of sucrose transporters in determining latex yield is unknown. Here, the effects of ethylene (by application of Ethrel®) on sucrose transporter gene expression in the inner bark tissues and latex cells of H. brasiliensis are described.

Methods

Experiments, including cloning sucrose transporters, real time RT-PCR and in situ hybridization, were carried out on virgin (untapped) trees, treated or untreated with the latex yield stimulant Ethrel.

Key Results

Seven putative full-length cDNAs of sucrose transporters were cloned from a latex-specific cDNA library. These transporters belong to all SUT (sucrose transporter) groups and differ by their basal gene expression in latex and inner soft bark, with a predominance of HbSUT1A and HbSUT1B. Of these sucrose transporters, only HbSUT1A and HbSUT2A were distinctly increased by ethylene. Moreover, this increase was shown to be specific to laticifers and to ethylene application.

Conclusion

The data and all previous information on sucrose transport show that HbSUT1A and HbSUT2A are related to the increase in sucrose import into laticifers, required for the stimulation of latex yield by ethylene in virgin trees.Key words: Hevea brasiliensis, laticifers, latex production, ethylene, sucrose transporters  相似文献   

12.
Natural rubber is synthesized in laticifers in the inner liber of the rubber tree (Hevea brasiliensis). Upon bark tapping, the latex is expelled due to liber turgor pressure. The mature laticifers are devoid of plasmodesmata; therefore a corresponding decrease in the total latex solid content is likely to occur due to water influx inside the laticifers. Auxins and ethylene used as efficient yield stimulants in mature untapped rubber trees, but, bark treatments with abscisic acid (ABA) and salicylic acid (SA) could also induce a transient increase latex yield. We recently reported that there are three aquaporin genes, HbPIP2;1, HbTIP1;1 and HbPIP1;1, that are regulated differentially after ethylene bark treatment. HbPIP2;1 was up-regulated in both the laticifers and the inner liber tissues, whereas HbTIP1;1 was up-regulated in the latex cells, but very markedly down-regulated in the inner liber tissues. Conversely, HbPIP1;1 was down-regulated in both tissues. In the present study, HbPIP2;1 and HbTIP1;1 showed a similar expression in response to auxin, ABA and SA, as seen in ethylene stimulation, while HbPIP1;1 was slightly regulated by auxin, but neither by ABA nor SA. The analysis of the HbPIP1;1 promoter region indicated the presence of only ethylene and auxin responsive elements. In addition, the poor efficiency of this HbPIP1;1 in increasing plasmalemma water conductance was confirmed in Xenopus oocytes. Thus, an increase in latex yield in response to all of these hormones was proposed to be the major function of aquaporins, HbPIP2;1 and HbTIP1;1. This study emphasized that the circulation of water between the laticifers and their surrounding tissues that result in latex dilution, as well as the probable maintenance of the liber tissues turgor pressure, favor the prolongation of latex flow.  相似文献   

13.
植物乳管研究进展   总被引:1,自引:0,他引:1  
植物乳管指含有胶乳的高度特化细胞,它是巴西橡胶树合成胶乳的唯一场所,也是决定橡胶产量的最重要因素。本文系统综述植物乳管研究进展,包括乳管的类型、发育、功能以及巴西橡胶树乳管细胞的构成及胶乳的成分、巴西橡胶树乳管分化和乳管细胞在组织培养物中的分化。提出巴西橡胶树花药愈伤组织可能是未来一种研究乳管分化机制的优良模式。  相似文献   

14.
The ultrastructure of nonarticulated laticifers in the seedlings ofEuphorbia maculata was studied at various developmental stages. The apical regions of the seedling laticifers growing intrusively contained large nuclei with mainly euchromatin and dense cytoplasm possessing various and many organelles such as rich ribosomes, several small vacuoles, giant mitochondria with dense matrices, rough endoplasmic reticulum, dictyosomes, and proplastids. This result suggested that the apical regions of laticifers were metabolically very active. Laticifers in seedlings at the first-leaf developmental stage did not contain latex particle. In seedlings at second-leaf growth stage, the laticifer cells contained numerous and elongated small vacuoles. These vacuoles appeared to arise by dilation of the endoplasmic reticulum and frequently possessed osmiophilic or electron-dense latex particles. The small vacuoles fused with the large vacuole occupying the central portion of the subapical region of laticifers, and then the latex particles were released into the large central vacuole. The latex particles varied in size and were lightly or darkly stained. Proplastids with a dense matrix and a few osmiophilic plastoglobuli were filled with an elongated starch grain and thus were transformed into amyloplasts. Latex particles were initially produced in the laticifers after seedlings had developed their second young leaves. In seedlings at forth-leaf stage, latex particles with an alveolated rim were found in the laticifers.  相似文献   

15.

Main conclusion

Callus cultures of rubber tree may serve as an efficient model to screen and study environmental factors and phytohormones that stimulate laticifer cell differentiation and improve latex yield. The number of laticifer cells in bark is one of the most important factors determining the biosynthesis and economic value of rubber trees (Hevea brasiliensis). The differentiation of laticifer cells in planta has been characterized, whereas laticifer-cell differentiation in callus cultures in vitro is largely unknown. In this study, we present molecular and physiological evidences for laticifer-cell differentiation in calli derived from rubber tree anthers. RT-PCR analysis showed that three key genes rubber elongation factor (REF), small rubber particle protein (SRPP), and cis-prenyl transferase (CPT) that are essential in latex biosynthesis in rubber tree bark also were transcribed in anther calli. Laticifer cell development in callus cultures was age-dependent; the cells began to appear at 58 days after initiation of culture, and the percentage of laticifer cells increased steadily with increasing callus age. Addition of 0–2 mg/L jasmonic acid (JA) to the media significantly promoted the differentiation of laticifer cells in callus cultures. However, JA concentrations higher than 3 mg/L were not optimum for laticifer cells differentiation; this result was not observed in previous in planta studies. Laticifer cells differentiated on media with pH 5.8–7.0, with an optimum of pH 6.2, whereas a higher pH inhibited differentiation. These results indicate that the anther-derived rubber tree callus may serve as a new and more efficient model to study environmental factors that influence laticifer cell differentiation, and may be useful for research on new technologies to improve latex yield, and to screen for commercially useful phytohormones.  相似文献   

16.
FINERAN  B. A. 《Annals of botany》1983,52(3):279-293
Differentiation of non-articulated laticifers in poinsettia(Euphorbia pulcherrima Willd.) was studied ultra-structurally.Growing laticifers show: (1) a multinucleate apical region containingabundant ribosomes but few other differentiated organelles and(2) a sub-apical zone where the cytoplasm is dominated by vacuolesof diverse morphology with latex particles. These particlesappear first within narrow tubular vacuoles developed especiallyin the peripheral cytoplasm. During vacuolation of the laticifer,portions of cytoplasm, including some of the nuclei, becomeisolated by the enlarging and fusing vacuoles; eventually thesebecome lysed, except the latex particles which remain in thecentral vacuole. During differentiation of a laticifer branch,the cytoplasm contains the usual organelles, including a fewmicrobodies and coated vesicles. The plastids that lie withinthe peripheral cytoplasm differentiate into amyloplasts witha single elongated starch grain. Towards the end of differentiationthe cytoplasm becomes restricted to a thin parietal layer, withthe remaining organelles reduced or degenerate, surroundinga central vacuole filled with latex particles. Euphorbia pulcherrima Willd, poinsettia, ultrastructure, differentiation, laticifers  相似文献   

17.
The distribution, cytological organization and differentiationof non-articulated laticifers in the primary and mature tissuesof Calotropis gigantea (Linn.) R.Br., were studied by the useof optical and electron microscopy. Laticifers occur in thecortex, vascular bundle and pith of the plant axis. At the earliestdetectable stage a laticifer is a cell which undergoes rapidelongation and nuclear division. This results in a multinucleateelongated cell which undergoes further increase in length withgradual degeneration of the cytoplasm. At the electron microscopiclevel the presumptive laticifer cell shows increasing vacuolationwhich forms a large central vacuole. Simultaneously the cytoplasmicorganelles undergo degeneration by autophagic processes. Laternumerous vesicles can be observed in the large central vacuole,the remaining cytoplasm being pushed to a thin layer. Maturelaticifers show three types of spherical structures of whichthe highly electron dense globules are the latex particles. Calotropis gigantea (Linn.), R.Br., laticifers, ultrastructure, differentiation  相似文献   

18.
Detailed studies have been made on the structure of the barkof ten Hevea clones and the clonal variabilities with regardto the density and size of ray groups, density of laticifersper row per unit circumference of the tree, diameter of laticifersand the extent of connection between laticifers. Clonal variabilitywas highly significant with regard to the density of ray groups,ray height, ray width in the laticifer layer and the laticifercharacters. The influence of ray characters on the orientationof laticifers and thereby its quantity is discussed. The scopeof using anatomical parameters for clone identification is examined. Hevea brasiliensis, Para rubber tree, laticifers, bark (structure), anatomy, clonal variability, rubber  相似文献   

19.
At present, the lysosome pathway (LP) and proteasome pathway (PP) are known as major clearance systems in eukaryotic cells. The laticifer, a secretory tissue, degrades some cytoplasm during development. In this study, we investigated the distribution of LP and PP in non‐articulated laticifers of Euphorbia helioscopia L. Electron microscopy revealed that, plastids, mitochondria and some cyotsol were degraded in the late development laticifers, where there were numerous vesicles originated from dicytosomes. Accordingly, some key proteins in LP and PP were detected in E. helioscopia latex using isobaric tags for relative and absolute quantitation (iTRAQ) proteomics. Further immunohistochemistry analysis revealed that the clathrin heavy chain (CHC) belonging to LP and the ubiquitin‐mediated proteasome degradation increases gradually as the laticifer develops. Immuno‐electron microscopy revealed that the cysteine protease, CHC and AP‐2 complex subunit beta‐1 belonging to LP were mainly distributed in vesicles deriving from dicytosomes, which we called lysosome‐like vesicles. Ubiquitin was widely distributed in the cytosol, and proteasome activity was significantly reduced when various concentrations of the inhibitor MG132 were added to the latex total protein. We hypothesize that LP and PP are distributed in E. helioscopia laticifers; and it was speculated that LP and PP might be involved in the degradation of organelles and some cytoplasmic matrix in E. helioscopia laticifers.  相似文献   

20.
Although the laticifers of several species of Mammillaria can technically be classified as being of the articulated type, they differ significantly from all other reported articulated laticifers. They are derived from cells which differentiate only in older tissues, never in meristematic or young regions. The development involves the complete lysis of masses of cells, not just the perforation or resorption of the end walls in a single file of cells. At maturity, the laticifer lumen is lined with a one-to-several layered epithelium which may be quite thick. The laticifers increase in diameter with age, apparently by the lysis of the inner epithelial cells. Laticifers occur in the pith, cortex and tubercles of the vegetative body but were not observed in the roots, flower parts or in seedlings up to eight months old. Seven species were studied, all of which have “milky sap.” and the laticifers of each were virtually identical to the laticifers of the others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号