首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ultrastructure of the style and pollen tube pathway before, during and after anthesis were studied in 13 species belonging to the tribes Pomaderreae, Paliureae, Colletieae and Gouanieae (Ziziphoid clade) and Rhamneae (Rhamnoid clade) using light microscopy and transmission electron microscopy. The aim of this study is to provide new morphological characters useful for phylogenetic analysis at suprageneric level in Rhamnaceae. The patterns of pollen tube growth and the ultrastructural changes undergone by cells of the style were also described. Species of Rhamneae (Scutia buxifolia and Condalia buxifolia) have a solid style, with the transmitting tissue forming three independent strands (S. buxifolia) or a central, single horseshoe-shaped strand as seen in transversal section (C. buxifolia) which could derive from the fusion of formerly independent strands. In contrast, Pomaderreae, Gouanieae and Paliureae showed semi-solid styles, while in Colletieae, as previously reported, the style is hollow with two or three stylar canals. The style anatomy and the ultrastructure of the pollen tube pathway show that there is a tendency towards a solid style with a single strand of transmitting tissue within the family. The three-canalled hollow style could be the plesiomorphic state of the character “type of style” in the family, the semi-solid style the synapomorphic state and the solid style with three strands of transmitting tissue the apomorphic state, with the solid style with a single strand of transmitting tissue as the most derived state. Therefore, Colletieae would be the most basal tribe of the Ziziphoid clade.  相似文献   

2.
Leaf compressions, previously assigned to Rhamnus marginatus Lesquereux, were collected from the Middle Eocene Claiborne Formation of western Kentucky and Tennessee. The leaf architecture and cuticular features of over 40 compressions were carefully examined and compared to those of many extant species of Rhamnaceae and related families as well as fossil specimens previously assigned to this taxon. This leaf type appears to belong to the Rhamnaceae, however, it conforms more closely to species of several genera in the tribe Zizypheae than to those of Rhamnus or other genera in the tribe Rhamneae. Confident assignment to any specific genus within this complex of genera cannot be made on the basis of leaf characteristics alone and would require discovery and analysis of additional vegetative and reproductive organs. Because this fossil leaf form cannot be confidently assigned to any modern genus and earlier classifications appear to be improper, this leaf type has been reassigned to the taxon Berhamniphyllum claibornense gen. et sp. nov. The transfer of this leaf form at the tribe level reaffirms the need for close examination of taxonomic determinations made by early workers.  相似文献   

3.
Recently discovered fossil flowers from the Cretaceous Cerro del Pueblo and flowers and fruits from the Oligocene Coatzingo Formations are assigned to the Rhamnaceae. The Cretaceous flower, Coahuilanthus belindae Calvillo-Canadell and Cevallos-Ferriz, gen. et sp. nov., is actinomorphic with fused perianth parts forming a slightly campanulate to cupulate floral cup, with sepals slightly keeled and spatulate clawed petals. The Oligocene fossils include Nahinda axamilpensis Calvillo-Canadell and Cevallos-Ferriz, gen. et sp. nov. (characterized by its campanulate bisexual flower with stamens opposite, adnate to and enfolded by petals; and with the ovary ripening into a drupe), and a winged fruit assigned to Ventilago engoto Calvillo-Canadell and Cevallos-Ferriz, sp. nov. The flowers and drupe features indicate closer affinity to Zizipheae and/or Rhamneae, while the single samaroid fruit suggests the presence of Ventilagineae. However, the unique character combination in the fossil flowers precludes placing them in extant genera. Nevertheless, the history of the family is long and can be traced back to the Campanian. A detailed phylogenetic revision of the group that uses morphological characters from both extant and fossil plants is needed to better understand the significance of these records as well as other important fossils of the family.  相似文献   

4.
? Premise of the study: Fossil leaves of Menispermaceae were previously described from the Paleocene of Colombia. Because of strong homoplasy of leaf characters, the fossils could not be placed more specifically within recognized clades, and additional data were needed to specify intrafamilial and paleogeographic relationships during the Paleocene. ? Methods: Fossil endocarps of Menispermaceae were collected from the Cerrejón Formation, the recently discovered Bogotá flora, and Wyoming (~60 Ma). We surveyed the endocarp morphology of almost all extant genera, conducted character optimization, a molecular scaffold analysis, and critically reviewed the related fossil genera. ? Key results: Parallel syndromes of fruit characters have appeared in unrelated clades of the family according to current phylogenetic reconstructions. However, mapping selected endocarp characters across those clades that contain horseshoe-shaped endocarps facilitates identification and phylogenetic assessment of the fossils. Three fossil species are recognized. One of them belongs to the extant genus Stephania, which today grows only in Africa and Australasia. Palaeoluna gen. nov. is placed within the pantropical clade composed of extant Stephania, Cissampelos, and Cyclea; this morphogenus is also recognized from the Paleocene of Wyoming. Menispina gen. nov. shows similarity with several unrelated clades. ? Conclusions: The new fossils from Colombia reveal a complex paleobiogeographic history of the recognized clades within Menispermaceae, suggesting a more active exchange among neotropical, paleotropical, North American, and European paleoforests than previously recognized. In addition, the new fossils indicate that neotropical forests were an important biome for the radiation and dispersal of derived lineages in Menispermaceae after the Cretaceous-Paleogene boundary.  相似文献   

5.
Cladistic parsimony analyses of rbcL nucleotide sequence data from 171 taxa representing nearly all tribes and subtribes of Orchidaceae are presented here. These analyses divide the family into five primary monophyletic clades: apostasioid, cypripedioid, vanilloid, orchidoid, and epidendroid orchids, arranged in that order. These clades, with the exception of the vanilloids, essentially correspond to currently recognized subfamilies. A distinct subfamily, based upon tribe Vanilleae, is supported for Vanilla and its allies. The general tree topology is, for the most part, congruent with previously published hypotheses of intrafamilial relationships; however, there is no evidence supporting the previously recognized subfamilies Spiranthoideae, Neottioideae, or Vandoideae. Subfamily Spiranthoideae is embedded within a single clade containing members of Orchidoideae and sister to tribe Diurideae. Genera representing tribe Tropideae are placed within the epidendroid clade. Most traditional subtribal units are supported within each clade, but few tribes, as currently circumscribed, are monophyletic. Although powerful in assessing monophyly of clades within the family, in this case rbcL fails to provide strong support for the interrelationships of the subfamilies (i.e., along the spine of the tree). The cladograms presented here should serve as a standard to which future morphological and molecular studies can be compared.  相似文献   

6.
The present paper deals with the following three aspects: 1. It attempts to discuss the problems on primitive forms of the family Araliaceae. The genus Tupidanthus Hook. f. & Thoms. was considered by H. Harms (1894) and H. L. Li (1942) as primitive, whilst another genus Plerandra A. Gray was regarded as primitive by R. H. Eyde & C. C. Tseng in 1971. Having made a detailed comparison of the taxonomical characters of these two genera, the present authors believe that both genera are not the most primitive in the Araliaceae. Their affinit yis not close enough and they possibly evolved in parallel lines from a common ancestor which is so far unknown yet. 2. By studying the systems of the past, the present authors believe that none of them is entirely satisfactory. Bentham (1867) recognized five ‘series’ (in fact, equivalent to ‘tribe’ with the ending-eae of names) based on the petaline arrangement in the bud, the numbers of stamen and the types of endospem. This is a plausible fundamental treatment for the Araliaceae, but choosing the endosperm as a criteria in dividing tribe is artifical. As we know today, both ruminate and uniform endosperm are usually presente in the same genus. Seemann’s system (1868) divided the Hederaceae (excl. Trib. Aralieae) into five tribes, in addition to the locules of ovary. The criteria are essentially the same as Bentham’s. The system of Hams (1894) divided the family into three tribes. Two tribes, Aralieae and Mackinlayeae, of Bentham are retained, but other groups were combined in the Trib. Schefflereae. However, Harms did not retain one of those three oldest legitimate names which had named by Bentham, that is contrary to the law of priority in the International Code of Botanical Nomenelature. Hutchinson (1967) adopted seven tribes for the family. The criteria essentially follow those of Bentham, but the inflorescence is overstressed. The inflorescence is an artifical taxonomical character in dividing tribes, because of some dioecious plants, such as Meryta sinclairii (Hook. f.) Seem., have two types of inflorescence in male and female plants. According to Hutchinson’s arrangement, the male and female plants would be put in separate tribes. 3. The present authors are of the opinion that in the study of a natural classification of plant groups emphasis should be laid not only on the characters of the reproductive organs, but on those of vegetative organs as well. The present revised system is based principally upon the characters of both flowers and leaves of the five tribes as follows: Trib. 1. Plerandreae Benth. emend. Hoo & Tseng Trib. 2. Tetraplasandreae Hoo & Tseng Trib. 3. Mackinlayeae Benth. Trib. 4. Aralieae Benth. Trib. 5. Panaceae Benth. emend. Hoo & Tseng  相似文献   

7.
A critical comparison of many characters suggests that the Rubiaceae tribe Anthospermeae is closely allied to the tribe Paederieae. The delimitation of the tribe Anthospermeae from other tribes is redefined as to include only wind-pollinated genera, and characters of fruit structure, pollination biology and distribution patterns support the subdivision of the tribe into the three subtribes: Anthosperminae, Operculariinae and Coprosminae.
All insect-pollinated genera previously placed in the Anthospermeae are transferred to the Paederieae. It is shown that the genus Neogaillonia Linchevskii ( = Gaillonia A. Rich. ex. DC), previously included in the Spermacoceae, also belongs to this tribe; the genera Pterogaillonia Linchevskii, Pseudogaillonia Linchevskii, Jaubertia Guill. and Choulettia Pomel are considered synonyms of Neogaillonia.
The Anthospermeae are believed to be closely, and the Paederieae more remotely, allied to the tribe Theligoneae.  相似文献   

8.
9.
The Malpighiaceae are a family of ~1250 species of predominantly New World tropical flowering plants. Infrafamilial classification has long been based on fruit characters. Phylogenetic analyses of chloroplast DNA nucleotide sequences were analyzed to help resolve the phylogeny of Malpighiaceae. A total of 79 species, representing 58 of the 65 currently recognized genera, were studied. The 3' region of the gene ndhF was sequenced for 77 species and the noncoding intergenic spacer region trnL-F was sequenced for 65 species; both sequences were obtained for the outgroup, Humiria (Humiriaceae). Phylogenetic relationships inferred from these data sets are largely congruent with one another and with results from combined analyses. The family is divided into two major clades, recognized here as the subfamilies Byrsonimoideae (New World only) and Malpighioideae (New World and Old World). Niedenzu's tribes are all polyphyletic, suggesting extensive convergence on similar fruit types; only de Jussieu's tribe Gaudichaudieae and Anderson's tribes Acmanthereae and Galphimieae are monophyletic. Fleshy fruits evolved three times in the family and bristly fruits at least three times. Among the wing-fruited vines, which constitute more than half the diversity in the family, genera with dorsal-winged samaras are fairly well resolved, while the resolution of taxa with lateral-winged samaras is poor. The trees suggest a shift from radially symmetrical pollen arrangement to globally symmetrical pollen at the base of one of the clades within the Malpighioideae. The Old World taxa fall into at least six and as many as nine clades.  相似文献   

10.
We evaluated the higher level classification within the family Psocidae (Insecta: Psocodea: 'Psocoptera') based on combined analyses of nuclear 18S, Histone 3, wingless and mitochondrial 12S, 16S and COI gene sequences. Various analyses (inclusion/exclusion of incomplete taxa and/or rapidly evolving genes, data partitioning, and analytical method selection) all provided similar results, which were generally concordant with relationships inferred using morphological observations. Based on the phylogenetic trees estimated for Psocidae, we propose a revised higher level classification of this family, although uncertainty still exists regarding some aspects of this classification. This classification includes a basal division into two subfamilies, 'Amphigerontiinae' (possibly paraphyletic) and Psocinae. The Amphigerontiinae is divided into the tribes Kaindipsocini (new tribe), Blastini, Amphigerontini, and Stylatopsocini. Psocinae is divided into the tribes 'Ptyctini' (probably paraphyletic), Psocini, Atrichadenotecnini (new tribe), Sigmatoneurini, Metylophorini, and Thyrsophorini (the latter includes the taxon previously recognized as Cerastipsocini). We examined the evolution of symmetric/asymmetric male genitalia over this tree and found this character to be quite homoplasious.  相似文献   

11.
The Menispermaceae family (Ranunculales) includes more than 500 extant species. Climbers represent the majority of this family, and these plants are now distributed in all of the tropical and subtropical regions of Americas, Asia and Africa. Their endocarps show a characteristic shape that is easily identified in the fossil floras. Numerous fossil leaves are also mentioned in the literature, but the methods for identifying these fossils are often outdated and need revision. Four tribes of Menispermaceae are present in the fossil record, including Fibraureae, Menispermeae, Pachygoneae and Tinosporeae. Only the Anomospermeae are potentially lacking. The Menispermaceae appear in the Palaeocene, and are common in the Eocene, of Europe and in North America as represented by endocarps and locule-casts. The species of this age show morphological diversification, corresponding with the current familial diversity. A few specimens from the Cretaceous period could be part of this Angiosperm family. Fossils after the Eocene are scarcer, despite several relatively rich outcrops. The maximal expansion of the Menispermaceae during the Palaeocene/Eocene limit correlates with the thermal optimum of the early Tertiary and also parallels the maximal expansion of tropical and subtropical floras. The relative richness of the Eocene era in Menispermaceae could be a consequence of more intense sampling in some regions. The bias in tribe representation can be explained by evolution, ecology or taphonomic hypotheses.  相似文献   

12.
The family Cervidae includes 40 species of deer distributed throughout the northern hemisphere, as well as in South America and Southeast Asia. Here, we examine the phylogeny of this family by analyzing two mitochondrial protein-coding genes and two nuclear introns for 25 species of deer representing most of the taxonomic diversity of the family. Our results provide strong support for intergeneric relationships. To reconcile taxonomy and phylogeny, we propose a new classification where the family Cervidae is divided in two subfamilies and five tribes. The subfamily Cervinae is composed of two tribes: the tribe Cervini groups the genera Cervus, Axis, Dama, and Rucervus, with the Père David's deer (Elaphurus davidianus) included in the genus Cervus, and the swamp deer (Cervus duvauceli) placed in the genus Rucervus; the tribe Muntiacini contains Muntiacus and Elaphodus. The subfamily Capreolinae consists of the tribes Capreolini (Capreolus and Hydropotes), Alceini (Alces), and Odocoileini (Rangifer + American genera). Deer endemic to the New World fall in two biogeographic lineages: the first one groups Odocoileus and Mazama americana and is distributed in North, Central, and South America, whereas the second one is composed of South American species only and includes Mazama gouazoubira. This implies that the genus Mazama is not a valid taxon. Molecular dating suggests that the family originated and radiated in central Asia during the Late Miocene, and that Odocoileini dispersed to North America during the Miocene/Pliocene boundary, and underwent an adaptive radiation in South America after their Pliocene dispersal across the Isthmus of Panama. Our phylogenetic inferences show that the evolution of secondary sexual characters (antlers, tusk-like upper canines, and body size) has been strongly influenced by changes in habitat and behaviour.  相似文献   

13.
The sedges (family Cyperaceae) are an economically and ecologically important monocot group dating back at least to the Paleocene. While modern genera are mostly unknown before the Oligocene, several extinct taxa are recognized as the earliest sedges. Their affinities have been unclear until now, because they are found as isolated, often abraded fruits or endocarps. Exceptionally preserved sedge fossils from the Middle Eocene of Messel, Germany yield more characters for identification. Fossil cyperacean infructescences with in situ pollen are recognized for the first time and show features of the early-divergent mapanioid sedges. Pollen resembles that of tribe Hypolytreae. Comparisons with extant taxa suggest the closest affinities with Hypolytrum and Mapania. However, the Messel fossils represent a distinct taxon, Volkeria messelensis gen. et sp. nov. Without the additional characters of infructescence and pollen, the Messel fruits would have been placed in the extinct genus Caricoidea, a typical Eocene sedge that was widespread across Eurasia. Similarities of fruit structure suggest that Caricoidea was also a mapanioid sedge. Mapanioid sedges are found today in tropical wet forests and swamps, a distribution suggesting that early sedges occupied a similar habitat, unlike many modern sedges, and were not precursors to open grassland vegetation.  相似文献   

14.

Premise of the Study

The fossil record is critical for testing biogeographic hypotheses. Menispermaceae (moonseeds) are a widespread family with a rich fossil record and alternative hypotheses related to their origin and diversification. The family is well‐represented in Cenozoic deposits of the northern hemisphere, but the record in the southern hemisphere is sparse. Filling in the southern record of moonseeds will improve our ability to evaluate alternative biogeographic hypotheses.

Methods

Fossils were collected from the Salamanca (early Paleocene, Danian) and the Huitrera (early Eocene, Ypresian) formations in Chubut Province, Argentina. We photographed them using light microscopy, epifluorescence, and scanning electron microscopy and compared the fossils with similar extant and fossil Menispermaceae using herbarium specimens and published literature.

Key Results

We describe fossil leaves and endocarps attributed to Menispermaceae from Argentinean Patagonia. The leaves are identified to the family, and the endocarps are further identified to the tribe Cissampelideae. The Salamancan endocarp is assigned to the extant genus Stephania. These fossils significantly expand the known range of Menispermaceae in South America, and they include the oldest (ca. 64 Ma) unequivocal evidence of the family worldwide.

Conclusions

Our findings highlight the importance of West Gondwana in the evolution of Menispermaceae during the Paleogene. Currently, the fossil record does not discern between a Laurasian or Gondwanan origin; however, it does demonstrate that Menispermaceae grew well outside the tropics by the early Paleocene. The endocarps’ affinity with Cissampelideae suggests that diversification of the family was well underway by the earliest Paleocene.  相似文献   

15.
Providing accurate animals’ phylogenies rely on increasing knowledge of neglected phyla. Tardigrada diversity evaluated in broad phylogenies (among phyla) is biased towards eutardigrades. A comprehensive phylogeny is demanded to establish the representative diversity and propose a more natural classification of the phylum. So, we have performed multilocus (18S rRNA and 28S rRNA) phylogenies with Bayesian inference and maximum likelihood. We propose the creation of a new class within Tardigrada, erecting the order Apochela (Eutardigrada) as a new Tardigrada class, named Apotardigrada comb. n. Two groups of evidence support its creation: (a) morphological, presence of cephalic appendages, unique morphology for claws (separated branches) and wide‐elongated buccopharyngeal apparatus without placoids, and (b) phylogenetic support based on molecular data. Consequently, order Parachela is suppressed and its superfamilies erected as orders within Eutardigrada, maintaining their current names. We propose a new classification within the family Echiniscidae (Echiniscoidea, Heterotardigrada) with morphological and phylogenetic support: (a) subfamily Echiniscinae subfam. n., with two tribes Echiniscini tribe n. and Bryodelphaxini tribe n.; (b) subfamily Pseudechiniscinae subfam. n., with three tribes Cornechiniscini tribe n., Pseudechiniscini tribe n. and Anthechiniscini tribe n.; and (c) subfamily Parechiniscinae subfam. n., with two tribes Parechiniscini tribe n. and Novechiniscini tribe n. Reliable biodiversity selection for tardigrades in broad phylogenies is proposed due to biased analyses performed up to now. We use our comprehensive molecular phylogeny to evaluate the evolution of claws in the clawless genus Apodibius and claw reduction across the Tardigrada tree of life. Evolutionary consequences are discussed.  相似文献   

16.

Premise

The spurge family Euphorbiaceae is prominent in tropical rainforests worldwide, particularly in Asia. There is little consensus on the biogeographic origins of the family or its principal lineages. No confirmed spurge macrofossils have come from Gondwana.

Methods

We describe the first Gondwanan macrofossils of Euphorbiaceae, represented by two infructescences and associated peltate leaves from the early Eocene (52 Myr ago [Ma]) Laguna del Hunco site in Chubut, Argentina.

Results

The infructescences are panicles bearing tiny, pedicellate, spineless capsular fruits with two locules, two axile lenticular seeds, and two unbranched, plumose stigmas. The fossils' character combination only occurs today in some species of the Macaranga-Mallotus clade (MMC; Euphorbiaceae), a widespread Old-World understory group often thought to have tropical Asian origins. The associated leaves are consistent with extant Macaranga.

Conclusions

The new fossils are the oldest known for the MMC, demonstrating its Gondwanan history and marking its divergence by at least 52 Ma. This discovery makes an Asian origin of the MMC unlikely because immense oceanic distances separated Asia and South America 52 Ma. The only other MMC reproductive fossils so far known are also from the southern hemisphere (early Miocene, southern New Zealand), far from the Asian tropics. The MMC, along with many other Gondwanan survivors, most likely entered Asia during the Neogene Sahul-Sunda collision. Our discovery adds to a substantial series of well-dated, well-preserved fossils from one undersampled region, Patagonia, that have changed our understanding of plant biogeographic history.  相似文献   

17.
The family Bovidae is characterized by an incomplete fossil record for the period during which most bovid subfamilies emerged. This, coupled to extensive morphological convergence among species, has given rise to inconsistencies in taxonomic treatments, especially at the tribal and subfamilial levels. In an attempt to clarify some of these issues we analyzed the complete mtDNA cytochrome b gene (1140 bp) from 38 species/subspecies representing at least nine tribes and six subfamilies. Specific emphasis was placed on the evolution of the Alcelaphini (hartebeest and wildebeest), the Tragelaphini (kudu, eland, and close allies), the Antilopini (gazelles), and the Neotragini (dwarf antelope). Saturation plots for the codon positions revealed differences between bovid tribes and this allowed for the exclusion of transitional substitutions that were characterized by multiple hits. There was no significant rate heterogeneity between taxa. By calibrating genetic distance against the fossil record, a transversion-based sequence divergence of 0.22% (+/-0.015%) per million years is proposed for cytochrome b clock calibrations in the Bovidae. All evidence suggests that the Alcelaphini form a monophyletic group; there was no support for the recognition of the Lichtenstein's hartebeest in a separate genus (Sigmoceros), and the acceptance of the previously suggested Alcelaphus is recommended for this species. High bootstrap support was found for a sister taxon relationship between Alcelaphus and Damaliscus, a finding which is in good agreement with allozyme and morphological studies. In the case of the Tragelaphini, the molecular data suggest the inclusion of Taurotragus in the genus Tragelaphus, and no genetic support was found for the generic status of Boocercus. Although associations within the Antilopinae (comprising the tribes Neotragini and Antilopini) could not be unequivocally resolved, there was nonetheless convincing evidence of non-monophyly for the tribe Neotragini, with the Suni antelope (Neotragus moschatus) grouping as a sister taxon to the Impala (Aepyceros melampus, tribe indeterminate, sensu Gentry, 1992) and the Klipspringer (Oreotragus oreotragus) falling within the duiker antelope tribe (Cephalophini).  相似文献   

18.
Mid-Mesozoic kalligrammatid lacewings (Neuroptera) entered the fossil record 165 million years ago (Ma) and disappeared 45 Ma later. Extant papilionoid butterflies (Lepidoptera) probably originated 80–70 Ma, long after kalligrammatids became extinct. Although poor preservation of kalligrammatid fossils previously prevented their detailed morphological and ecological characterization, we examine new, well-preserved, kalligrammatid fossils from Middle Jurassic and Early Cretaceous sites in northeastern China to unravel a surprising array of similar morphological and ecological features in these two, unrelated clades. We used polarized light and epifluorescence photography, SEM imaging, energy dispersive spectrometry and time-of-flight secondary ion mass spectrometry to examine kalligrammatid fossils and their environment. We mapped the evolution of specific traits onto a kalligrammatid phylogeny and discovered that these extinct lacewings convergently evolved wing eyespots that possibly contained melanin, and wing scales, elongate tubular proboscides, similar feeding styles, and seed–plant associations, similar to butterflies. Long-proboscid kalligrammatid lacewings lived in ecosystems with gymnosperm–insect relationships and likely accessed bennettitalean pollination drops and pollen. This system later was replaced by mid-Cretaceous angiosperms and their insect pollinators.  相似文献   

19.
The epidermal characters of mature leaves of 29 genera, 50 species and 3 varieties (totally 56 samples) representing all the 5 tribes in the family Menispermaceae were examined under the light microscope. The main conclusions are as follows: (1) The shape of the epidermal cells is polygonal or irregular, and the anticlinal walls are straight or waved in the family. In some genera a special arrangement of epidermal cells is named as “rosette-cell arrangement" for the first time. The lower epidermal cells were found to have a papilla in Stephania, Diploclisia and Legnephora . (2) In some genera, the anticlinal walls are oblique, rather than perpendicular, to the surface. (3) The stomatal apparatuses, generally restricted to the lower surface of the leaves, were assigned to anomocytic, staurocytic, cyclocytic, anisocytic and actinocytic types, and their distribution on the epidermis may be of diffuse pattern or island congregating pattern. (4) The cells of both upper and lower epidermis in the tribe Pachygoneae and Fibraureae are generally polygonal with straight or arched anticlinal walls, and the stomatal apparatuses are usually staurocytic and actinocytic. The cyclocytic stomatal apparatus was found only in two genera of the tribe Pachygoneae. By contrast, the epidermal cells of the tribes Anomospermeae, Tinosporeae and Menispermeae are generally irregular with waved anticlinal walls, and the stomatal apparatuses are predominantly anomocytic. These correlated characters are of much significance in delimiting tribes within the Menispermaceae, and also provide evidence for studies on systematic relationships of several genera.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号