首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A noncompetitive variant of immunochemical ribonuclease (RNase) determination has been developed, involving the use of Co(II) as a label. A variety of approaches to labeling the immunological reagent with the metal have been assessed. In the variant proposed, catalytic hydrogen release was used as a means of detecting the label, the amount of which was proportional to RNase concentration. Conditions making it possible to record catalytic hydrogen release fluxes were determined. In the presence of RNase, the electrocatalytic effect was maximum at a concentration of Co(II) in the ammoniac buffer, equal to 2 x 10(-4) M (pH 10.0). The dependence was linear in the range 4-2000 ng/ml RNase concentrations (threshold concentration, 2 ng/ml).  相似文献   

2.
A new variant of competitive heterogeneous immunoassay for certain proteinaceous antigens has been developed. The assay is based on the use of the target protein conjugated with Co(II) or Ni(II) ions and immobilized antibodies. The effect of catalytic hydrogen release allows quantitation of the metal ion labels by voltammetry at the final step of the assay. The conjugates have been characterized by spectrophotometry, voltammetry, atomic adsorption spectrometry, and nuclear magnetic relaxation. Based on the use of the conjugate RNase–diethylenetriaminepentaacetic acid–Co(II) (10 : 4 : 4), a competitive immunoassay for RNase has been developed, detecting the target protein in the range 2 × 10–2–2 × 10–4 mg/ml.  相似文献   

3.
CPT-11 {I; 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin} is a new anticancer agent currently under clinical development. A sensitive high-performance liquid chromatographic assay suitable for the simultaneous determination of I and its active metabolite SN-38 (II) in human plasma, and their preliminary clinical pharmacokinetics, are described. Plasma samples were processed using a solid-phase (C18) extraction step allowing mean recoveries of I, II and the internal standard camptothecin (III) of 84, 99 and 72%, respectively. The extracts were chromatographed on a C18 reversed-phase column with a mobile phase composed of acetonitrile, phosphate buffer and heptanesulphonic acid, with fluorescence detection. The calibration graphs were linear over a wide range of concentrations (1 ng/ml–10 μg/ml), and the lower limit of determination was 1 ng/ml for both I and II. The method showed good precision: the within-day relative standard deviation (R.S.D.) (5–1000 ng/ml) was 13.0% (range 4.9–19.4%) for I and 12.8% (6.7–19.1%) for II; the between-day R.S.D. (5–10 000 ng/ml was 7.9% (5.4–17.5%) for I and 9.7% (3.5–15.1%) for II. Using this assay, plasma pharmacokinetics of both I and II were simultaneously determined in three patients receiving 100 mg/m2 I as a 30-min intravenous infusion. The mean peak plasma concentration of I at the end of the intravenous infusion was 2400 ± 285 ng/ml (mean ± standard error of the mean). Plasma decay was triphasic with half-lives α, β and γ of 5.4 ± 1.8 min, 2.5 ± 0.5 h and 20.2 ± 4.6 h, respectively. The volume of distribution at steady state was 105 ± 15 l/m2, and the total body clearance was 12.5 ± 1.9 l/h · m2. The maximum concentrations of the active metabolite II reached 36 ± 11 ng/ml.  相似文献   

4.
Prostaglandins (PGs) have been implicated as possible mediators of the biological activity of thymic hormones. It has been shown that type E-PGs are able to mimic the action of several thymic hormones and that indomethacin prevents in vivo or in vitro the appearance of Thy-1+ antigen induced by some of these factors. We thus investigated a possible role for PGs in the mechanism of action of different thymic extracts and peptides. Attempts to modulate prostaglandin production showed that neither thymosin fraction 5 (0.01 – 100 μg/ml), nor thymosin α 1 (1–10 μg/ml), thymulin (0.001–100 ng/ml), thymopoietin II (10 – 1000 ng/ml) or TP5 (10 – 1000 ng/ml) affect PGE2, 6-keto-PGF1 α, PGF2 α and TXB2 production by spleen cells from control and thymectomized mice. These results do not support the hypothesis that prostaglandins could act as mediators of thymic hormones.  相似文献   

5.
N-(n-Propyl)-N-(4-pyridinyl)-1H-indol-1-amine hydrochloride (HP 749, I), a non-receptor-dependent cholinomimetic agent with noradrenergic activity, is a potential agent for the treatment of Alzheimer's disease. Pharmacokinetic studies in animals and humans showed that I was well absorbed and metabolized primarily to the N-despropyl metabolite (P7480, II) after oral administration. To facilitate the kinetic studies, a sensitive and selective high-performance chromatographic assay was developed. I and II are extracted from plasma by a mixture of cyclohexane—ethyl acetate and chromatographed on an isocratic reversed-phase high-performance liquid chromatographic system employing an analytical phenyl column with acetonitrile—ammonium formate as mobile phase. The concentrations of these two compounds, quantitated by internal standardization, are monitored by ultraviolet detection. The method is linear in the plasma assay over a concentration range of 0.5–500 ng/ml for both compounds with a quantitation limit of 0.5 ng/ml. The precision and accuracy of the calibration curves and/or method are less than 10%. The recovery of I and II from plasma is 63–74 and 63–68%, respectively, over a concentration range of 0.5–500 ng/ml.  相似文献   

6.
Infusion of norephinephrine (NE) (1 – 3 μg/ml/min) into the isolated mesenteric vascular preparation of rabbit resulted in a rise in perfusion pressure, which was associated with the release of a prostaglandin E-like substance (PGE) at a concentration of 2.81 ± 0.65 ng/ml in terms of PGE2. Indomethacin (3 μg/ml) abolished the NE-induced release of PGE. Arachidonic acid (0.2 μg/ml) in the presence of indomethacin did not restore the NE-induced release of PGE. Hydrocortisone (10 – 30 μg/ml) and dexamethasone (2 – 5 μg/ml) also inhibited the NE-induced release of PGE. The inhibitory action of both corticosteroids was abolished by arachidonic acid (0.2 μg/ml). Antigen-induced release of a prostaglandin-like substance(PGs) (43.1 ± 3.8 ng/ml in terms of PGE2 and a rabbit aorta contracting substance (RCS) from perfused lungs of sensitized guinea pigs was completely abolished by indomethacin (5 μg/ml) or by hydrocortisone (100 μg/ml). Indomethacin, however, increased histamine release up to 280% of the control level, which was 470 ± 54 ng/ml, while hydrocortisone diminished histamine release down to 30% of the control level. A superimposed infusion of arachidonic acid (1 μg/ml) into the pulmonary artery reversed the hydrocortisone-induced blockade of the release of RCS and PGs. It may be concluded that corticosteroids neither inhibit prostaglandin synthetase nor influence prostaglandin transport through the membranes but they do impair the availability of the substrate for the enzyme.  相似文献   

7.
Infusion of norephinephrine (NE) (1 – 3 μg/ml/min) into the isolated mesenteric vascular preparation of rabbit resulted in a rise in perfusion pressure, which was associated with the release of a prostaglandin E-like substance (PGE) at a concentration of 2.81 ± 0.65 ng/ml in terms of PGE2. Indomethacin (3 μg/ml) abolished the NE-induced release of PGE. Arachidonic acid (0.2 μg/ml) in the presence of indomethacin did not restore the NE-induced release of PGE. Hydrocortisone (10 – 30 μg/ml) and dexamethasone (2 – 5 μg/ml) also inhibited the NE-induced release of PGE. The inhibitory action of both corticosteroids was abolished by arachidonic acid (0.2 μg/ml). Antigen-induced release of a prostaglandin-like substance (PGs) (43.1 ± 3.8 ng/ml in terms of PGE2 and a rabbit aorta contracting substance (RCS) from perfused lungs of sensitized guinea pigs was completely abolished by indomethacin (5 μg/ml) or by hydrocortisone (100 μg/ml). Indomethacin, however, increased histamine release up to 280% of the control level, which was 470 ± 54 ng/ml, while hydrocortisone diminished histamine release down to 30% of the control level. A superimposed infusion of arachidonic acid (1 μg/ml) into the pulmonary artery reversed the hydrocortisone-induced blockade of the release of RCS and PGs. It may be concluded that corticosteroids neither inhibit prostaglandin synthetase nor influence prostaglandin transport through the membranes but they do impair the availability of the substrate for the enzyme.  相似文献   

8.
In view of the advantages of the bulk production of clonal pancreaticbeta cells, an investigation was made of the growth and insulin secretoryfunctions of an electrofusion-derived cell line (BRIN-BD11) immobilizedon a solid microcarrier, cytodex-1 or a macroporous microcarrier,cultispher-G. For comparison, similar tests were performed usingBRIN-BD11 cells present in single cell suspensions or allowed toform pseudoislets. Similar growth profiles were recorded for eachmicrocarrier with densities of 4.4×105±0.3 cells/ml and4.2×105±0.2 cells/ml achieved using cytodex-1 andcultispher-G, respectively. Cell viability began to decline on day 5 ofculture. Insulin concentration in the culture medium reached a peak of26±2.0 ng/ml and 24±2.2 ng/ml for cells grown oncytodex-1 and cultispher-G, respectively. Cells grown on both types ofmicrocarrier showed a significant 1.5–1.8-fold acuteinsulin-secretory response to 16.7 mmol/l glucose. L-alanine (10 mmol/l) andL-arginine (10 mmol/l) also induced significant 3–4 fold increasesof insulin release. BRIN-BD11 cells immobilized on cytodex-1 or cultispher-Gout-performed single cell suspensions and pseudoislets in terms ofinsulin-secretory responses to glucose and amino acids. A 1.3-fold,2.2-fold and 1.7-fold stimulation of insulin secretion was observed forglucose, L-alanine and L-arginine respectively in single cellsuspensions. Corresponding increases for pseudoislets were1.6–1.8-fold for L-alanine and L-arginine, with no significantresponse to glucose alone. These data indicate the utility ofmicro-carriers for the production of functioning clonal beta cells.  相似文献   

9.
Sensitive high-performance liquid chromatographic assays have been developed for the quantification of stavudine (2′,3′-didehydro-3′-deoxythymidine, d4T) in human plasma and urine. The methods are linear over the concentration ranges 0.025–25 and 2–150 μg/ml in plasma and urine, respectively. An aliquot of 200 μl of plasma was extracted with solid-phase extraction using Oasis® cartridges, while urine samples were simply diluted 1/100 with HPLC water. The analytical column, mobile phase, instrumentation and chromatographic conditions are the same for both methods. The methods have been validated separately, and stability tests under various conditions have been performed. The detection limit is 12 ng/ml in plasma for a sample size of 200 μl. The bioanalytical assay has been used in a pharmacokinetic study of pregnant women and their newborns.  相似文献   

10.
Summary The osmoregulatory effects of intravenously (i.v.) administered angiotensin II (AII) at dose rates of 5, 15 and 45 ng · kg–1 · min–1 were examined in kelp gulls utilizing salt glands and/or kidneys as excretory organs.In birds given i.v. infusion of 1200 mOsmolal NaCl at 0.3 ml · min–1 and utilizing only the salt glands to excrete the load, infusion of AII for 30 min consistently inhibited salt gland function in a dose-dependent manner.In birds given i.v. infusion of 500 mOsmolal NaCl at 0.72 ml · min–1 and utilizing both salt glands and kidneys to excrete the load, each dose of AII given for 2 h inhibited salt gland function but stimulated the kidney, so that the overall outputs of salt and water were enhanced and showed significant (2P<0.01) positive correlations with plasma AII.In birds given i.v. infusion of 200 mOsmolal glucose at 0.5 ml · min–1 and utilizing only the kidneys to excrete the load, low doses of AII (5 and 15 ng · kg–1 · min–1) caused renal salt and water retention, whereas a high dose (45 ng · kg–1 · min–1) stimulated salt and water output.The actions of plasma AII in kelp gulls support the concept that this hormone plays a vital role in avian osmoregulation, having effects on both salt gland and kidney function. Elevation of plasma AII consistently inhibits actively secreting salt glands, but its effects upon renal excretion depend primarily on the osmotic status as well as on the plasma AII concentration. In conditions of salt and volume loading doses of AII stimulate sodium and water excretion. With salt and volume depletion, the action of AII is bi-phasic with low doses promoting renal sodium and water retention but high circulating levels causing natriuresis and diuresis.  相似文献   

11.
A sensitive and selective method for the quantification of mycophenolate mofetil and its active metabolite mycophenolic acid in different human skin layers after dermal administration is presented. The skin layers were separated after in vitro penetration experiments and a methanolic extraction was performed. Positive ion electrospray HPLC–MS in selected ion monitoring mode was used to quantify the substances after isocratic separation by a C18 analytical column. The minimum detectable concentrations were 850 pg/ml for MMF and 1 ng/ml for MPA. The peak areas depended linearly on the concentration of both drugs over the range of 25–1000 ng/ml (r2≥0.996) with accuracy ≤9.8% and precision ≤13.2%. Total imprecision at quantification limits was 15.2% at 10 ng/ml and 16.3% at 1500 ng/ml for MMF and 15.1% at 21.0 ng/ml and 17.5% at 1300 ng/ml for MPA. This HPLC–MS method will be applicable to the profiling of MMF amounts in skin and its conversion to MPA after application of different formulations.  相似文献   

12.
A GC–MS method, using deuterium-labelled 19-noretiocholanolone as internal standard and following an extensive LC purification prior to selected ion monitoring of the bis(trimethylsilyl) ethers at ion masses m/z 405, 419, 420 and 421, allowed the quantitation of subnanogram amounts of 19-norandrosterone present in 10-ml urine samples at m/z 405. Thirty healthy men, free of anabolic androgen supply, delivered 24-h urine collections in 4 timed fractions. Accuracy was proven by the equation, relating added (0.05–1 ng/ml) to measured analyte, which had a slope not significantly different from 1. Precision (RSD) was 4% at a concentration of 0.4 ng/ml, and 14% at 0.04 ng/ml. Analytical recovery was 82%. The limit of quantitation was 0.02 ng/ml. The excretion ranges were 0.03–0.25 μg/24 h or 0.01–0.32 ng/ml in nonfractionated 24-h urine.Taking into account inter-individual variability and log-normal distribution, a threshold of 19-norandrosterone endogenous concentration of 2 ng/ml, calculated as the geometric mean plus 4 SD, was established. This value corresponds to the decision limit advised by sport authorities for declaring positive (anabolic) doping with nandrolone.  相似文献   

13.
A gas chromatography–electron capture mass spectrometry assay has been developed for the histamine H3 receptor agonist, Nα-methylhistamine (Nα-MH). The assay is linear from 50 pg–10 ng, with a limit of detection of 50 pg/ml for gastric juice and plasma, and 50 pg/sample for bacteria (107–108 CFU) and gastric tissue (5–10 mg wet weight). The limits of quantification are 100 pg/ml for gastric juice (%RSD=1.4) and plasma (%RSD=9.4), and 100 pg/sample for bacteria (%RSD=3.9) and tissue (%RSD=5.8). Nα-MH was not present in human plasma, but low levels (1.4 ng/ml and 0.4 ng/ml) were detected in two samples of human gastric juice obtained from patients infected with Helicobacter pylori.  相似文献   

14.
Summary Taurine (Tau), a putative inhibitory amino acid neurotransmitter, has been shown to stimulate prolactin (PRL) release. Using ovariectomized, estrogen-replaced adult rats we investigated initially the effect of this amino acid, injected by different routes, on PRL secretion in vivo. Tau (100–500 mg/kg) had no effect on PRL release when given i.p.; 15 min after i.c.v. injection of Tau (3moles), a significant increase in serum PRL levels was observed (78 ± 9 ng/ml over basal levels, p < 0.01 vs. controls). In vitro (cultured anterior pituitary cells) PRL release was not affected by a 5 h incubation with Tau (10–3–10–8 M). Basal dopamine (DA) or gamma-aminobutyric acid (GABA) output from superfused mediobasal hypothalamic fragments (MBH) was not affected by Tau (10–3 M or 10–5 M). However, during stimulation with KCl (50mM), Tau (10–3 M) significantly lowered DA release, and increased GABA output. It is concluded that Tau acts at a central level to increase PRL secretion, most probably by modulating the hypothalamic release of neurotransmitters controlling lactotroph function.  相似文献   

15.
Bolesatine, a glycoprotein fromBoletus satanas Lenz, has previously been shown to be mitogenic in rat and human lymphocytes at very low concentrations, whereas higher concentrations inhibited protein synthesisin vitro and in severalin vivo systems. The low concentrations (1–10 ng/ml) of bolesatine were shown to activate protein kinase C (PKC)in vitro (cell-free system) and in Vero cells. In the same time, Vero cells significantly proliferated when incubated with bolesatine concentrations ranging from 1 to 10 ng/ml; the DNA synthesis increased by 27–59% as referred to the control, and InsP3 release increased in a concentration-dependent manner, up to 142%. At higher concentrations, 1–10 g in cell-free systems, bolesatine inhibits protein synthesis by hydrolyzing the nucleoside triphosphates GTP and ATP.In the present work, the implication of other toxic mechanisms, such as lipid peroxidation and active radical production, was investigated in relation to inhibition of cell growth, whereas possible modifications of the ratio m5dC/dC+m5dC were determined in order to correlate with the biphasic action of bolesatine in Vero cells.Low concentrations of bolesatine up to 10 ng/ml do not increase malonaldehyde (MDA) production, while they induce hypomethylation (5.2% as compared to 7.1%). Higher concentrations (above 20 ng/ml) increase MDA production, from 58 ng/mg of cellular proteins to 113 ng/mg at a concentration of 50 ng/ml, for example, and induce hypermethylation in Vero cell DNA. It is concluded that low concentrations of bolesatine that are proliferative induce hypomethylation, which could be one of the pathways whereby bolesatine induces cell proliferation. Higher concentrations which enhance lipid peroxidation also induce hypermethylation. These mechanisms could be at least partly implicated in the pathway whereby bolesatine induces cell death.Abbreviations MDA malonaldehyde - TBA thiobarbituric acid  相似文献   

16.
The first method using high-performance liquid chromatography (HPLC) has been developed for the determination of trans-resveratrol in human plasma. The method involves a liquid–liquid extraction followed by reversed-phase HPLC with UV detection. The detection limit of trans-resveratrol in human plasma was 5.0 ng/ml. Standard curves are linear over the concentration range of 5.0–5000.0 ng/ml. Intra-assay variability ranged from 1.9 to 3.7% and inter-assay variability ranged from 2.5 to 4.0% at the concentration range of 15.0–4000.0 ng/ml.  相似文献   

17.
The objective of this study was to obtain information on the transfer of radiocobalt in freshwater environments that can be used to predict its environmental distribution. The sediment-water behaviour of 60Co in freshwater systems was studied through adsorption and desorption experiments undertaken using sediments and water from Fratel Reservoir in the Tejo River. The suspended sediment concentrations (Cs: 500–2000 mg 1–1) and Co distribution coefficient (Kd) were inversely related: Kd = 2211–2001 ln [Cs]; Kd ranged from 4000 to 8000 ml g–1. With a suspended sediment concentration of 1000 mg 1–1, the 60Co concentration remaining in solution (Ct) was given by: Ct = 49.4 e–0.584t + 46.3 e–0.014t; where t is the time in days and the half-life periods are 1.2 and 50 days. In a closed system, desorption of 60Co could be described by a one-component relation with a half-life of 104 days, and a two component relation (half-life 5 hours and 45 days) in an open system. In river water the 60Co was found to be almost 100% in cationic forms, however, in the presence of sediment there was a decrease in the proportion of cationic forms (to 50%), with some anionic forms appearing.  相似文献   

18.
The ribonucleoprotein (RNP) form of archaeal RNase P comprises one catalytic RNA and five protein cofactors. To catalyze Mg2+-dependent cleavage of the 5′ leader from pre-tRNAs, the catalytic (C) and specificity (S) domains of the RNase P RNA (RPR) cooperate to recognize different parts of the pre-tRNA. While ∼250–500 mM Mg2+ renders the archaeal RPR active without RNase P proteins (RPPs), addition of all RPPs lowers the Mg2+ requirement to ∼10–20 mM and improves the rate and fidelity of cleavage. To understand the Mg2+- and RPP-dependent structural changes that increase activity, we used pre-tRNA cleavage and ensemble FRET assays to characterize inter-domain interactions in Pyrococcus furiosus (Pfu) RPR, either alone or with RPPs ± pre-tRNA. Following splint ligation to doubly label the RPR (Cy3-RPRC domain and Cy5-RPRS domain), we used native mass spectrometry to verify the final product. We found that FRET correlates closely with activity, the Pfu RPR and RNase P holoenzyme (RPR + 5 RPPs) traverse different Mg2+-dependent paths to converge on similar functional states, and binding of the pre-tRNA by the holoenzyme influences Mg2+ cooperativity. Our findings highlight how Mg2+ and proteins in multi-subunit RNPs together favor RNA conformations in a dynamic ensemble for functional gains.  相似文献   

19.
A HPLC method has been developed for the analogue of Ecstasy MDE and its major metabolites N-ethyl-4-hydroxy-3-methoxyamphetamine (HME) and 3,4-methylenedioxyamphetamine (MDA) in human plasma. In the course of our investigations we found that the methylenedioxyamphetamines and HME exhibit fluorescence at 322 nm. Therefore the detection could be carried out with a fluorescence (FL) detector. Solid-phase extraction was used for sample preparation and yielded high recovery rates greater than 95%. The limit of quantitation for MDE and its metabolites in the extracts was between 1.5 and 8.9 ng/ml and the method standard deviations were less than 5%. This sensitive, rapid and reliable analytical method has been used successfully in the quantitation of the substances in plasma samples obtained from 14 volunteers in two clinical studies after p.o. administration of 100 to 140 mg MDE*HCl. The maximum plasma concentrations were 235–465 ng/ml (MDE), 67–673 ng/ml (HME) and 7–33 ng/ml (MDA), respectively. Pharmacokinetic parameters have been investigated using the plasma concentration curves.  相似文献   

20.
Tamoxifen (TAM) is a triphenylethylene anti-oestrogen, commonly used in the treatment of breast cancer. Patients receiving tamoxifen therapy may experience both de novo and acquired resistance. As one of the mechanisms for this may be extensive peripheral bio-transformation of tamoxifen, there has been considerable interest in the pharmacokinetics and metabolism of tamoxifen. A reversed-phase high-performance liquid chromatography separation has been developed to determine the levels of tamoxifen and its major metabolites in human plasma. The method is highly sensitive (2 ng/ml) and selective for tamoxifen, cis-tamoxifen (CIS), 4-hydroxytamoxifen (4-OH) and desmethyltamoxifen (DMT). A μBondapak C18 10 μm column (30 cm × 3.9 mm I.D.) was used, with a mobile phase of methanol-1% triethylamine at pH 8 (89:11, v/v). Sample preparation was carried out using a C2 (500 mg sorbent, 3 ml reservoirs) solid phase extraction method, and extraction efficiencies were approximately 60% for TAM and its metabolites. Accuracy and precision, as determined by spiking plasma samples with a mixture of tamoxifen and its metabolites, ranged from 85–110% (± 5–10%) at 1 μg/ml, 101–118% (± 8–20%) at 0.1 μg/ml and 111–168% (± 43–63%) at 0.01 μg/ml. Results from 59 patients show mean values of 54 ng/ml for 4-OH; 190 ng/ml for DMT; 93 ng/ml for TAM and 30 ng/ml for CIS (detected in three patients only). This methodology can be applied routinely to the determination of TAM and its metabolites in plasma from patients undergoing therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号