首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some yeast strains possess a sequence-specific endonuclease, Endo.SceI, which is a heterodimeric enzyme localized in mitochondria. The larger subunit (75 kDa) of Endo.SceI, encoded by a nuclear gene (ENS1), is transported from the cytosol into the mitochondria. In this study, we determined the partial amino acid sequence of the smaller subunit (50 kDa) of Endo.SceI. The determined sequence matched well the partial sequence deduced from a mitochondrial open reading frame (RF3). The RF3 locus is known to exhibit polymorphism since this reading frame in some yeast strains is supposed to encode a maturase-like protein, whereas in other strains, the frame is interrupted by GC clusters, which thus break the frame. Southern blot analysis of various yeast strains showed that the continuity of RF3 is correlated with the presence of Endo.SceI activity. These data indicate that the continuous RF3 sequence is a functional gene (ENS2) coding for the smaller subunit of Endo.SceI. The results of cytoduction, by which the continuous RF3 sequence was transferred into a yeast strain lacking mitochondrial DNA, confirmed this conclusion. This study suggests the involvement of Endo.SceI in genetic recombination of mitochondrial DNA.  相似文献   

2.
Endo.SceI is a eukaryotic sequence-specific endonuclease of 120 kDa that causes sequence-specific double-stranded scission of DNA. Unlike results with restriction enzymes, we found a consensus sequence around the cleavage sites for Endo.SceI instead of a common sequence. We searched for conditions for studying the binding of Endo.SceI to DNA other than cutting. Under optimized conditions including gel mobility shift assay, Endo.SceI exhibited sequence-specific binding to a short double-stranded DNA (41 base pairs) containing a cleavage site and the DNA reisolated from the protein-DNA complex was not cleaved. The analysis of the complex of Endo.SceI and DNA isolated by the gel mobility shift experiments showed that the DNA-binding entity in the Endo.SceI preparation does have Endo.SceI activity and consists of an equal amount of 75-kDa and 50-kDa polypeptides. Based on this observation and those from previous studies, we conclude that Endo.SceI is a heterodimer of the 75-kDa and 50-kDa subunits. Under the present assay conditions, Endo.SceI did not show binding to single-stranded DNA having the same sequence of either plus or minus strand of the double-stranded DNA containing the cleavage site (the 41-bp DNA). Endo.SceI showed significantly higher affinity for the consensus sequence than the major cleavage site in pBR322 DNA. Unlike the cleavage of DNA by Endo.SceI which requires Mg2+, this sequence-specific binding is independent of but stimulated by Mg2+.  相似文献   

3.
Endo.SceI of Saccharomyces cerevisiae is a heterodimeric site-specific endonuclease, which is distinguishable from prokaryotic restriction endonucleases in the mode of recognition of its cleavage site. We have used monoclonal antibodies specific to the larger subunit (75 kDa) of Endo.SceI to isolate the gene for the subunit (ENS1) from S. cerevisiae. Unexpectedly, ENS1 was found to encode a 70-kDa heat shock protein-related polypeptide and to be identical to recently cloned SSC1. Subcellular fractionation experiments on yeast cells revealed that the primary target site of the larger subunit is mitochondria, where almost all the Endo.SceI activity is localized. Molecular genetic analysis of ENS1 demonstrated its indispensability for growth and the requirement of a high level of its expression at the sporulation and germination stages. The data suggest that ENS1 plays an important role, especially at these differentiation stages.  相似文献   

4.
The 70 kDa heat shock proteins (HSP70) are a family of molecular chaperones that bind transiently to unfolded proteins in an ATP/ADP dependent manner. Endo.SceI comprises a unique example for mitochondrial HSP70, which exists in a stable complex with a nucleolytic subunit as a multi-site specific DNase. The HSP70-subunit in Endo.SceI was autophosphorylated by ATP in vitro. The autophosphorylation was higher in the Endo.SceI complex form than in the free form. Although the autophosphorylation had no significant effect on the endonucleolytic activity of Endo.SceI, the factors favoring autophosphorylation protected the endonucleolytic activity of Endo.SceI against heat inactivation. ATP, adenosine 5'-O-(3-thiotriphosphate) (ATP-gamma-S), and ADP not only protected the endonucleolytic activity against heat inactivation in the presence of Ca(2+) ions, but also reduced the labeling of the HSP70-subunit by [gamma-(32)P]ATP in Endo.SceI. These findings suggest that the HSP70-subunit shields Endo.SceI from heat inactivation through ATP/ADP binding.  相似文献   

5.
K Nakagawa  N Morishima    T Shibata 《The EMBO journal》1992,11(7):2707-2715
Endo.SceI is a mitochondrial sequence-specific endonuclease which has multiple cutting sites. In order to examine the possible role of Endo.SceI in homologous recombination, we analyzed the mode of recombination upon mating using antibiotic resistance markers on the mitochondrial genome. The segregation of a marker located very close to one of the Endo.SceI cutting sites showed a disparity (polarized segregation, i.e. gene conversion). This gene conversion depended on the presence of the functional Endo.SceI gene. In vivo cutting of mitochondrial DNA upon mating was detected at the cutting site in the antibiotic marker region, which also depended on the Endo.SceI activity. These results suggest that mitochondrial recombination is induced by cleavage of mitochondrial DNA by this sequence-specific endonuclease. This is the first demonstration that a sequence-specific endonuclease with multiple cutting sites induces genetic recombination.  相似文献   

6.
Endo SceI is a eucaryotic site-specific endoDNase of 120 kDa that causes double-stranded scission at well-defined sites, but is distinguishable from procaryotic restriction endonucleases by its mode of sequence recognition and lack of related specific DNA modification. In purified preparations of endoSceI, only two polypeptide species of 75 kDa (75-kDa peptide) and 50 kDa (50-kDa peptide) are detected in apparently equal amounts. We prepared mouse monoclonal IgGs that bound specifically to the 75-kDa peptide (but not the 50-kDa peptide) without inhibiting the endoSceI activity. Immunoprecipitation experiments with these IgGs revealed that the 75-kDa peptide and the 50-kDa peptide are physically associated with each other and with the endonucleolytic activity. Full endoSceI activity was recovered by mixing the purified 75-kDa peptide and the partially purified 50-kDa peptide, each of which exhibited little or no endonuclease activity alone. These observations indicate that endoSceI consists of two non-identical subunits of 75 kDa and 50 kDa, and that both subunits are required for full enzyme activity.  相似文献   

7.
A eukaryotic sequence-specific endonuclease, Endo.SceI, causes sequence-specific double-stranded scission of double-stranded DNA to produce cohesive ends with four bases protruding at the 3' termini. Unlike in the case of restriction enzymes, an asymmetric 26-base pair consensus sequence was found around the cleavage site for Endo.SceI instead of a common sequence. We analyzed the base pairs that interacted with Endo.SceI on the recognition of its cleavage sites. A region comprising -10 through +16 base pairs from the center of the cleavage site was shown to be essential and sufficient for the sequence-specific cutting with Endo.SceI by experiments involving synthesized DNAs. Methylation interference experiments indicate that bases in the region comprising the +7 through +14 base pairs is involved in close contact with Endo.SceI in its recognition of the cleavage site. This +7 through +14-base pair region overlaps the most stringently conserved sequence in the consensus sequence for the cleavage site, suggesting that this region constitutes the core for the recognition by Endo.SceI.  相似文献   

8.
To investigate whether protein import is defective in mitochondrial disease, we compared the rate of import and the expression of protein import machinery components in skin fibroblasts from control subjects and a patient with multiple mitochondrial disease (MMD). The patient exhibited a 35% decrease in cytochrome c oxidase activity and a 59% decrease in cellular oxygen consumption compared to control. Western blot analyses revealed that patient levels of MDH, mtHSP70, HSP60, and Tom20 protein were 57%, 20%, 75% and 100% of control cells, respectively. MDH and Tom20 mRNA levels were not different from control levels, whereas mtHSP70 mRNA were 50% greater than control. Radiolabeled MDH was imported into mitochondria with equal efficiency between patient (44% of total synthesized) and control (43%) cells, although the total MDH synthesized in patient cells was reduced by about 40%. The unaffected levels of mRNA and post-translational import into mitochondria, combined with reduced protein levels of MDH, mtHSP70, and HSP60 suggest a translational defect in this patient with MMD. This was verified by the 50% reduction in overall cellular protein synthesis in the patient compared to control. Further, the similar import rates between patient and control cells suggest an important role for Tom20, but a lesser role for mtHSP70 in regulating protein import into mitochondria.  相似文献   

9.
The majority of mitochondrial proteins are encoded by nuclear genes and synthesized in the cytosol as preproteins containing a mitochondria import sequence. Preproteins traverse the outer mitochondrial membrane in an unfolded state and then translocate through the inner membrane into the matrix via import machinery that includes mitochondrial heat shock protein 70 (mtHSP70). Neonatal rat cardiac myocytes (NCM) infected with an adenoviral vector expressing mtHSP70 or an empty control (Adv(-)) for 48 h were submitted to 8 h of simulated ischemia (hypoxia) followed by 16 h of reperfusion (reoxygenation). Infection with mtHSP70 virus yielded an increase in mtHSP70 protein in NCM mitochondria compared with Adv(-) (P < 0.05). Cell viability after simulated ischemia/reperfusion (I/R) was decreased in both Adv(-) and mtHSP70 groups, relative to control (P < 0.05), but mtHSP70-infected NCM had enhanced viability after I/R relative to Adv-infected NCM (P < 0.05). Simulated I/R caused an increase in reactive oxygen species generation and lipid peroxidation in Adv-infected NCM (P < 0.05, for both) that was not observed in mtHSP70-infected NCM. Mitochondrial complex III and IV activities were greater in mtHSP70-infected NCM after simulated I/R compared with Adv(-) (P < 0.05 for both). After simulated I/R, ATP content increased in mtHSP70-infected NCM, compared with Adv(-) (P < 0.05). Apoptotic markers were decreased in mtHSP70-infected NCM compared with Adv(-) after simulated I/R (P < 0.05). These results indicate that overexpression of mtHSP70 protects the mitochondria against damage from simulated I/R that may be due to a decrease in reactive oxygen species leading to preservation of mitochondrial complex function activities and ATP formation.  相似文献   

10.
We report the purification of endonuclease G (Ruiz-Carrillo, A., and Renaud, J. (1987) EMBO J. 6, 401-407) from calf thymus nuclei and whole tissue. The enzyme has been enriched 29,000-fold, and the activity was unambiguously identified with a 26-kDa protein after renaturation following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native nuclease behaves as a 50-kDa species by gel filtration, suggesting that it is composed of two subunits, presumably identical. In terms of absolute amounts, endonuclease G (endo G) is a nuclear enzyme although it was also detected in purified mitochondria. Endo G is highly specific for (dG)n.(dC)n tracts in DNA, nicking either strand of relaxed substrates with similar kinetics. The sensitivity of the homopolymer tracts is proportional to their length (from n = 8 to 29), insofar as the flanking sequences are constant. However, the overall rate of cleavage is influenced by the composition of the flanking DNA. Minor cleavage sites contain shorter (dG)n.(dC)n clusters (n = 3-7). Endo G efficiently cleaves (dC)n but not (dG)n runs in single-stranded DNA, suggesting that it may recognize an asymmetric strand conformation of the homopolymer tracts. Endo G does not recognize other homo(co)-polymer sequences or cruciform structures in DNA.  相似文献   

11.
Site-specific endonucleases have been found in various eukaryotic organelles such as mitochondria, chloroplasts and nuclei. These endonucleases initiate site-specific or homologous gene conversion in mitochondrial and nuclear DNA. Here, we report a new site-specific endonuclease activity, Endo.SK1, identified in mitochondria of strain SK1, a homothallic diploid strain ofSaccharomyces cerevisiae. Nucleotide sequences around the Endo.SK1-cleavage sites are different from those of known yeast site-specific endonucleases. The Endo.SK1 activity is, at least partly, specified by a gene in the SK1-derived mitochondria. A novel feature of the Endo.SK1 activity is its inducibility: the endonuclease activity was induced by ca. 40-fold by transfer of cells from a glucose medium into an acetate medium, and was then repressed. This transient induction was independent of the ploidy level of the cells, and coincided with induction of fumarase, a mitochondrial enzyme involved in the TCA cycle. Co-induction and co-repression of the mitochondrial site-specific endonuclease activity and a respiration-related enzyme indicate that the endonuclease activity is regulated in response to physiological conditions, and suggest a possible role for the endonuclease in mitochondrial DNA metabolism.  相似文献   

12.
Spinach leaf mitochondrial F0F1 ATPase has been purified and is shown to consist of twelve polypeptides. Five of the polypeptides constitute the F1 part of the enzyme. The remaining polypeptides, with molecular masses of 28 kDa, 23 kDa, 18.5 kDa, 15 kDa, 10.5 kDa, 9.5 kDa and 8.5 kDa, belong to the F0 part of the enzyme. This is the first report concerning identification of the subunits of the plant mitochondrial F0. The identification of the components is achieved on the basis of the N-terminal amino acid sequence analysis and Western blot technique using monospecific antibodies against proteins characterized in other sources. The 28-kDa protein crossreacts with antibodies against the subunit of bovine heart ATPase with N-terminal Pro-Val-Pro- which corresponds to subunit F0b of Escherichia coli F0F1. Sequence analysis of the N-terminal 32 amino acids of the 23-kDa protein reveals that this protein is similar to mammalian oligomycin-sensitivity-conferring protein and corresponds to the F1 delta subunit of the chloroplast and E. coli ATPases. The 18.5-kDa protein crossreacts with antibodies against subunit 6 of the beef heart F0 and its N-terminal sequence of 14 amino acids shows a high degree of sequence similarity to the conserved regions at N-terminus of the ATPase subunits 6 from different sources. ATPase subunit 6 corresponds to subunit F0a of the E. coli enzyme. The 15-kDa protein and the 10.5-kDa protein crossreact with antibodies against F6 and the endogenous ATPase inhibitor protein of beef heart F0F1-ATPase, respectively. The 9.5-kDa protein is an N,N'-dicyclohexylcarbodiimide-binding protein corresponding to subunit F0c of the E. coli enzyme. The 8.5-kDa protein is of unknown identity. The isolated spinach mitochondrial F0F1 ATPase catalyzes oligomycin-sensitive ATPase activity of 3.5 mumol.mg-1.min-1. The enzyme catalyzes also hydrolysis of GTP (7.5 mumol.mg-1.min-1) and ITP (4.4 mumol.mg-1.min-1). Hydrolysis of ATP was stimulated fivefold in the presence of amphiphilic detergents, however the hydrolysis of other nucleotides could not be stimulated by these agents. These results show that the plant mitochondrial F0F1 ATPase complex differs in composition from the other mitochondrial, chloroplast and bacterial ATPases. The enzyme is, however, more closely related to the yeast mitochondrial ATPase and to the animal mitochondrial ATPase than to the chloroplast enzyme. The plant mitochondrial enzyme, however, exhibits catalytic properties which are characteristic for the chloroplast enzyme.  相似文献   

13.
Bovine mitochondrial NADH-ubiquinone reductase (complex I), the first enzyme in the electron-transport chain, is a membrane-bound assembly of more than 30 different proteins, and the flavoprotein (FP) fraction, a water-soluble assembly of the 51-, 24-, and 10-kDa subunits, retains some of the catalytic properties of the enzyme. The 51-kDa subunit binds the substrate NAD(H) and probably contains both the cofactor, FMN, and also a tetranuclear iron-sulfur center, while a binuclear iron-sulfur center is located in the 24- or 10-kDa proteins. The 75-kDa subunit is the largest of the six proteins in the iron-sulfur protein (IP) fraction, and its sequence indicates that it too contains iron-sulfur clusters. Partial protein sequences have been determined at the N-terminus and at internal sites in the 51-kDa subunit, and the corresponding cDNA encoding a precursor of the protein has been isolated by using a novel strategy based on the polymerase chain reaction. The mature protein is 444 amino acids long. Its sequence, and those of the 24- and 75-kDa subunits, shows that mitochondrial complex I is related to a soluble NAD-reducing hydrogenase from the facultative chemolithotroph Alcaligenes eutrophus H16. This enzyme has four subunits, alpha, beta, gamma, and delta, and the alpha gamma dimer is an NADH oxidoreductase that contains FMN. The gamma-subunit is related to residues 1-240 of the 75-kDa subunit of complex I, and the alpha-subunit sequence is a fusion of homologues of the 24- and 51-kDa subunits, in the order N- to C-terminal. The most highly conserved regions are in the 51-kDa subunit and probably form parts of nucleotide binding sites for NAD(H) and FMN. Another conserved region surrounds the sequence motif CysXXCysXXCys, which is likely to provide three of the four ligands of a 4Fe-4S center, possibly that known as N-3. Characteristic ligands for a second 4Fe-4S center are conserved in the 75-kDa and gamma-subunits. This relationship with the bacterial enzyme implies that the 24- and 51-kDa subunits, together with part of the 75-kDa subunit, constitute a structural unit in mitochondrial complex I that is concerned with the first steps of electron transport.  相似文献   

14.
15.
Vacuolar ATPases constitute a novel class of N-ethylmaleimide- and nitrate-sensitive proton pumps associated with the endomembrane system of eukaryotic cells. They resemble F0F1-ATPases in that they are large multimeric proteins, 400-500 kDa, composed of three to nine different subunits. Previous studies have indicated that the active site is located on the approximately 70-kDa subunit. Using antibodies to the approximately 70-kDa subunit of corn to screen a carrot root lambda gt11 cDNA library, we have isolated cDNA clones of the carrot 69-kDa subunit. The complete primary structure of the 69-kDa subunit was then determined from the nucleotide sequence of its cDNA. The 69-kDa subunit consists of 623 amino acids (Mr 68,835), with no obvious membrane-spanning regions. The carrot cDNA sequence was over 70% homologous with exons of a Neurospora 69-kDa genomic clone. The protein sequence of the carrot 69-kDa subunit also exhibited 34.3% identity to four representative F0F1-ATPase beta-chains over a 275-amino-acid core stretch of similar sequence. Alignment studies revealed several regions which were highly homologous to beta-chains, including sequences previously implicated in catalytic function. This provides definitive evidence that the vacuolar ATPase is closely related to the F0F1-type ATPases. A major functional difference between the 69-kDa and beta-subunits is the location of 3 critical cysteine residues: two in the putative catalytic region (Cys-248 and Cys-256) and one in the proposed Mg2+-binding site (Cys-279). These cysteines (and two others) probably account for the sensitivity of the vacuolar H+-ATPase to the sulfhydryl reagent, N-ethylmaleimide. It is proposed that the two ATPases may have arisen from a common ancestor by the insertion or deletion of a large stretch of nonhomologous sequence near the amino-terminal end of the subunit.  相似文献   

16.
A pea cDNA clone,PHSP1, encoding a member of the HSP70 gene family has been isolated. DNA sequence analysis indicates that the protein encoded byPHSP1 is a homologue of the mitochondrial HSP70 proteins, SSP1 fromSchizosaccharomyces pombe and SSC1 fromS. cerevisiae. It contains an amino-terminal extension of 50 amino acids, rich in basic and hydroxyl amino acids, similar to other plant mitochondrial leader sequences. Western blot analysis indicates that the PHSP1 protein is associated only with mitochondria and not with any other sub-cellular organelle or cytoplasm. Further confirmation of its location within mitochondria was obtained fromin vitro protein translocation experiments into purifiedPisum sativum mitochondria. It was observed that the precursor protein was efficiently imported and that it is processed to produce a protein with anM r of the anticipated size of the mature protein. Results are discussed with respect to the structure and function of the mitochondrial HSP70 protein.Abbreviations mtHSP70 mitochondrial HSP70 - ER endoplasmic reticulum - nt nucleotide - IgG immunoglobulin G - BiP immunoglobulin-binding protein - hsc heat shock cognate  相似文献   

17.
This study determined the role of body temperature during exercise on cytochrome-c oxidase (CytOx) activity, a marker of mitochondrial content, and mitochondrial heat shock protein 70 (mtHSP70), which is required for import of nuclear-coded preproteins. Male, 10-wk-old, Sprague-Dawley rats exercised identically for 9 wk in ambient temperatures of 23 degrees C (n = 10), 8 degrees C with wetted fur (n = 8), and 4 degrees C with wetted fur and fan (n = 7). These conditions maintained exercising core temperature (T(c)) at 40.4, 39.2, or 38.0 degrees C (resting temperature), respectively. During weeks 3-9, exercisers ran 5 days/wk up a 6% grade at 20 m/min for 60 min. Animals were housed at 23 degrees C. Gastrocnemius CytOx activity in T(c)=38.0 degrees C (83.5 +/- 5.5 microatoms O x min(-1) x g wet wt(-1)) was greater than all other groups (P < 0.05), exceeding sedentary (n = 7) by 73.2%. T(c) of 40.4 and 39.2 degrees C also were higher than sedentary by 22.4 and 37.4%, respectively (P < 0.05). Quantification of CytOx content verified that the increased activity was due to an increase in protein content. In extensor digitorum longus, a nonactive muscle, CytOx was not elevated in T(c) = 38.0 degrees C. mtHSP70 was significantly elevated in gastrocnemius of T(c) = 38.0 degrees C compared with sedentary (P < 0.05) but was not elevated in extensor digitorum longus (P > 0.05). The data indicate that decreasing exercise T(c) may enhance mitochondrial biogenesis and that mtHSP70 expression is not dependent on temperature.  相似文献   

18.
Recently we isolated a new protein growth factor of 34 kDa from synctial membranes of human placenta. In its polypeptide molecular mass, antigenic structure, receptor binding specificity and partial amino acid sequence, it is unlike several known growth factors, hormones and other proteins. Here we report studies on its biosynthesis and turnover in cultured cytotrophoblasts from term human placenta. Expression of the 34-kDa protein in these cells was studied by immunoprecipitation and Western blot analyses using a highly specific antibody. The experiments have produced the following results. a) Immunostaining and Western blot analyses have demonstrated the presence of immunoreactive 34-kDa protein in isolated cytotrophoblasts. The protein is present in both freshly isolated cells and in cells that have fused in culture to form multinuclear syncytiotrophoblasts. b) Trophoblastic biosynthesis of the protein has been demonstrated by in vitro translation of cellular mRNA and by metabolic labelling experiments with intact cells. c) Pulse-chase experiments show that biosynthesis of the protein does not involve any detectable precursors of higher or lower molecular mass. d) Studies on turnover indicate that the synthesized protein is unusually stable with a half-life of 50-70 h.  相似文献   

19.
The 24-kDa subunit of mitochondrial NADH-ubiquinone reductase (complex I) is an iron-sulfur protein that is present in the flavoprotein or NADH dehydrogenase II subcomplex. It is a nuclear gene product and is imported into the organelle. A group of human patients with mitochondrial myopathy have been shown to have reduced levels of subunits of complex I in skeletal muscle mitochondria, and in one patient the 24-kDa subunit appears to be absent (Schapira et al., 1988). To investigate the genetic basis of this type of myopathy, cDNA clones have been isolated from a bovine library derived from heart and liver mRNA by hybridization with two mixtures of 48 synthetic oligonucleotides 17 bases in length that were designed on the basis of known protein sequences. The recombinant DNA sequence has been determined, and it encodes a precursor of the mature 24-kDa protein. The N terminus of the mature protein is preceded by a presequence of 32 amino acids that has properties that are characteristic of mitochondrial import sequences. The sequence of the mature protein deduced from the cDNA contains a segment of nine amino acids that was not determined in an earlier partial protein sequence analysis. The bovine clone has been employed as a hybridization probe to identify cDNA clones of the human homologue of the 24-kDa protein. Its DNA sequence has also been determined, and it codes for a protein that is closely related to the bovine protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We determined the primary structure of a 9.6-kDa subunit of the respiratory chain NADH:ubiquinone reductase (complex I) from Neurospora crassa mitochondria and found a close relationship between this subunit and the bacterial or chloroplast acyl-carrier protein. The degree of sequence identity amounts to 80% in a region of 19 residues around the serine to which the phosphopantetheine is bound. The N-terminal presequence of the subunit has the characteristic features of a mitochondrial import sequence. We cultivated the auxotroph pan-2 mutant of N. crassa in the presence of [14C]pantothenate and recovered all radioactivity incorporated into mitochondrial protein in the 9.6-kDa subunit of complex I. We cultivated N. crassa in the presence of chloramphenicol to accumulate the nuclear-encoded peripheral arm of complex I. This pre-assembled arm also contains the 9.6-kDa subunit. These results demonstrate that an acyl-carrier protein with pantothenate as prosthetic group is a constituent part of complex I in N. crassa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号