首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This studyexamines the functional implications of postnatal changes in theexpression of the mitochondrial transporter protein, 2-oxoglutarate-malate carrier (OMC). Online 13C nuclearmagnetic resonance (13C NMR) measurements of isotopekinetics in hearts from neonate (3-4 days) and adult rabbitsprovided tricarboxylic acid cycle flux rates and flux rates throughOMC. Neonate and adult hearts oxidizing 2.5 mM[2,4-13C2]butyrate were subjected toeither normal or high cytosolic redox state (2.5 mM lactate) conditionsto evaluate the recruitment of malate-aspartate activity and theresulting OMC flux. During development from neonate (3-4 days) toadult, mitochondrial protein density in the heart increased from19 ± 3% to 31 ± 2%, whereas OMC expression decreased by65% per mitochondrial protein content (P < 0.05).Correspondingly, OMC flux was lower in adults hearts than in neonatesby 73% (neonate = 7.4 ± 0.4, adult = 2.0 ± 0.1 µmol/min per 100 mg mitochondrial protein; P < 0.05). Despite clear changes in OMC content and flux, theresponsiveness of the malate-aspartate shuttle to increased cytosolicNADH was similar in both adults and neonates with an approximatethreefold increase in OMC flux (in densitometric units/100 mgmitochondrial protein: neonate = 25.8 ± 2.5, adult = 6.0 ± 0.2; P < 0.05). The13C NMR data demonstrate that OMC activity is a principalcomponent of the rate of labeling of glutamate.

  相似文献   

2.
Polyspecific organic cation transporters (OCTs) have a large substrate binding pocket with different interaction domains. To determine whether OCT regulation is substrate specific, suitable fluorescent organic cations were selected by comparing their uptake in wild-type (WT) human embryonic kidney (HEK)-293 cells and in HEK-293 cells stably transfected with hOCT2. N-amidino-3,5-diamino-6-chloropyrazine-carboxamide (amiloride) and 4-[4-(dimethylamino)-styryl]-N-methylpyridinium (ASP) showed concentration-dependent uptake in hOCT2 at 37°C. After subtraction of unspecific uptake determined in WT at 37°C or in hOCT2 at 8°C saturable specific uptake of both substrates was measured. Km values of hOCT2-mediated uptake of 95 µM amiloride and 24 µM ASP were calculated. Inhibition of amiloride and ASP uptake by several organic cations was also measured [IC50 (in µM) for amiloride and ASP, respectively, tetraethylammonium (TEA) 98 and 30, cimetidine 14 and 26, and tetrapentylammonium (TPA) 7 and 2]. Amiloride and ASP uptake were significantly reduced by inhibition of Ca2+/CaM complex (–55 ± 5%, n = 10 and –63 ± 2%, n = 15, for amiloride and ASP, respectively) and stimulation of PKC (–54 ± 5%, n = 14, and –31 ± 6%, n = 26) and PKA (–16 ± 5%, n = 16, and –18 ± 4%, n = 40), and they were increased by inhibition of phosphatidylinositol 3-kinase (+28 ± 6%, n = 8, and +55 ± 17%, n = 16). Inhibition of Ca2+/CaM complex resulted in a significant decrease of Vmax (160–99 photons/s) that can be explained in part by a reduction of the membrane-associated hOCT2 (–22 ± 6%, n = 9) as determined using FACScan flow cytometry. The data indicate that saturable transport by hOCT2 can be measured by the fluorescent substrates amiloride and ASP and that transport activity for both substrates is regulated similarly. Inhibition of the Ca2+/CaM complex causes changes in transport capacity via hOCT2 trafficking. organic cation transport; fluorescence measurement; 4-[4-(dimethylamino)-styryl]-n-methylpyridinium; amiloride  相似文献   

3.
McCall, G. E., W. C. Byrnes, A. Dickinson, P. M. Pattany,and S. J. Fleck. Muscle fiber hypertrophy, hyperplasia, and capillary density in college men after resistance training.J. Appl. Physiol. 81(5):2004-2012, 1996.Twelve male subjects with recreationalresistance training backgrounds completed 12 wk of intensifiedresistance training (3 sessions/wk; 8 exercises/session; 3 sets/exercise; 10 repetitions maximum/set). All major muscle groupswere trained, with four exercises emphasizing the forearm flexors.After training, strength (1-repetition maximum preacher curl) increasedby 25% (P < 0.05). Magneticresonance imaging scans revealed an increase in the biceps brachiimuscle cross-sectional area (CSA) (from 11.8 ± 2.7 to 13.3 ± 2.6 cm2;n = 8;P < 0.05). Muscle biopsies of thebiceps brachii revealed increases(P < 0.05) in fiber areas for type I(from 4,196 ± 859 to 4,617 ± 1,116 µm2;n = 11) and II fibers (from 6,378 ± 1,552 to 7,474 ± 2,017 µm2;n = 11). Fiber number estimated fromthe above measurements did not change after training (293.2 ± 61.5 × 103 pretraining; 297.5 ± 69.5 × 103 posttraining;n = 8). However, the magnitude ofmuscle fiber hypertrophy may influence this response because thosesubjects with less relative muscle fiber hypertrophy, but similarincreases in muscle CSA, showed evidence of an increase in fibernumber. Capillaries per fiber increased significantly(P < 0.05) for both type I(from 4.9 ± 0.6 to 5.5 ± 0.7;n = 10) and II fibers (from 5.1 ± 0.8 to 6.2 ± 0.7; n = 10). Nochanges occurred in capillaries per fiber area or muscle area. Inconclusion, resistance training resulted in hypertrophy of the totalmuscle CSA and fiber areas with no change in estimated fiber number,whereas capillary changes were proportional to muscle fiber growth.

  相似文献   

4.
In luteal cells, prostaglandin (PG)F2a mobilizes intracellular calcium concentration ([Ca]i), generates reactive oxygen species (ROS), depletes ascorbic acid (AA) levels, inhibits steroidogenesis, and ultimately induces cell death. We investigated the hypothesis that [Ca]i mobilization stimulates ROS, which results in depletion of cellular AA in rat luteal cells. We used a self-referencing AA-selective electrode that noninvasively measures AA flux at the extended boundary layer of single cells and fluorescence microscopy with fura 2 and dichlorofluorescein diacetate (DCF-DA) to measure [Ca]i and ROS, respectively. Menadione, a generator of intracellular superoxide radical (), PGF2a, and calcium ionophore were shown to increase [Ca]i and stimulate intracellular ROS. With calcium ionophore and PGF2a, but not menadione, the generation of ROS was dependent on extracellular calcium influx. In unstimulated cells there was a net efflux of AA of 121.5 ± 20.3 fmol · cm1 · s1 (mean ± SE, n = 8), but in the absence of extracellular calcium the efflux was significantly reduced (10.3 ± 4.9 fmol · cm1 · s1; n = 5, P < 0.05). PGF2a and menadione stimulated AA efflux, but calcium ionophore had no significant effect. These data suggest two AA regulatory mechanisms: Under basal conditions, AA efflux is calcium dependent and may represent recycling and maintenance of an antioxidant AA gradient at the plasma membrane. Under luteolytic hormone and/or oxidative stress, AA efflux is stimulated that is independent of extracellular calcium influx or generation of ROS. Although site-specific mobilization of calcium pools and ROS cannot be ruled out, the release of AA by PGF2a-stimulated luteal cells may occur through other signaling pathways. luteolysis; apoptosis; self-referencing microelectrode  相似文献   

5.
Sedimentation rates of faecal material, phytoplankton and microzooplanktonand production rates of faecal material from crustaceans andpelagic tunicates were estimated during the austral summer andwinter 1997, and summer 1998, in the northern Humboldt Current(23°S, off Antofagasta, Chile). Sampling periods coveredpre-El Niño (January 1997) and El Niño 1997–98(July 1997 and January 1998). Samples were collected using floatingsediment traps deployed at 65, 100, 200 and 300 m depth in oceanicand coastal areas. Sedimentation rates during January 1997 were,on average, 152 ± 23 and 85 ± 57 mg C m–2day–1 at 65 and 300 m depth, respectively. During July,these rates averaged 93 ± 56 mg C m–2 day–1at 65 m depth and 35 ± 12 mg C m–2 day–1at 300 m depth, while in January 1998 they were 98 and 109 ±37 mg C m–2 day–1 at 65 and 200 m depth, respectively.Recognizable faecal material made up the bulk of the sedimentingmatter, accounting for 8 ± 5% (n = 14), 31 ± 26%(n = 16) and 8 ± 5% (n = 5) of the average total organiccarbon recorded from all sediment trap samples collected duringJanuary and July 1997 and January 1998, respectively. However,at300 m depth, the contribution of recognizable faecal materialto total sedimented organic carbon increased to 43 ±33% (n = 4) during July 1997. The remaining sedimenting particlesconsisted mainly of tintinnids, crustacean exuviae, heterotrophicdinoflagellates (both thecated and athecated) and diatom cells.During this study, we estimated that only a minor fraction (average± SD = 5 ± 8%) of the copepod faecal materialproduced within the photic zone sedimented down to 300 m depth,suggesting an efficient recycling within the overlaying watercolumn. On the other hand, an important fraction (47 ±30%) of the euphausiid faecal strings was collected in the 300m depth trap, suggesting that this material would enhance thedownward flux of particulate organic matter (POC). POC fluxesto 65 and 300 m depth traps were in the range of 4–20%and 3–8% of the estimated primary production during thewhole study period. It is postulated that the overall verticalflux of particulates and, in particular, faecal pellets wasdetermined by a combination of three factors. The first wasthe composition of the zooplankton assemblages in the studyarea. When the dominant group was calanoid copepods, their faecesseemed to contribute poorly to the vertical flux of particulates.On the other hand, when the dominant group was euphausiids,a significant proportion of their faecal material was collectedin the sediment trap located at 300 m depth. The second wasthe relatively high abundance of cyclopoid copepods from thegenera Oncaea, Corycaeus and Oithona, which are reported tofeed on aggregates of phytodetritus and faecal pellets producedby calanoid copepods, suggesting that they may act as a naturalfilter to sedimenting particulates. The third was the compositionand size spectrum of the phyto- and microzooplankton assemblageswhich are potential food sources for the meso- and macrozooplankton.These factors were partially modulated by both the 1997–1998El Niño and seasonality.  相似文献   

6.
Potassium transport has been studied in the marine euryhalinealga, Enteromorpha intestimlis cultured in seawater and in low-salinitymedium (Artificial Cape Banks Spring Water, ACBSW; 25·5mol m–3 Cl, 20·4 mol m–3 Na+, 0·5mol m–3 K+). K+ fluxes were measured using 42K+ and 86Rb+although 86Rb+ does not act as an efficient K+ analogue in thisplant. 42K+ experiments on seawater plants typically exhibiteda single protoplasmic exchange phase whereas 86Rb+ exhibitedtwo exchange phases. Compartmental analysis of 86Rb+ effluxexperiments on seawater-grown Enteromorpha plants were usedto deduce the intracellular partition of K+ between the cytoplasm(279±38 mMolal) and vacuole (405±68 mMolal). Theplasmalemma K+ flux in plants in seawater was greater in thelight than in the dark (563±108 nmol m–2 s–1versus 389±66·7 nmol m–2 s–1). Inlow-salinity plants, separate cytoplasmic and vacuolar exchangephases were apparent. Analysis of 42K+ efflux experiments onlow-salinity plants yielded a cytoplasmic K+ of 222±38mMolal and a vacuolar K+ of 82±11 mMolal. The plasmalemmaand tonoplast flux was 23±4·5 nmol m–2 s–1. The Nernst equation showed that, although K+ was close to electrochemicalequilibrium, active accumulation of K+ across the plasmalemmaoccurred in plants in seawater and ACBSW both in the light anddark. K+ was also actively transported inwards across the tonoplastin low-salinity plants. The electrochemical potential for K+across the plasmalemma ranged from 2·41±0·60kJ mol–1 in plants grown in seawater in the light to 5·79±0·87kJ mol–1 for plants in ACBSW in the light. Although K+is close to electrochemical equilibrium, the flux of K+ in plantsin both seawater and ACBSW media is high, hence the power consumptionof K+ transport is high. The permeability of K+ (PK+) was significantlyhigher in the light than in the dark in plants in seawater (about7·0 versus 2·5 nm s–1) but in plants inlow-salinity (ACBSW) medium the permeability was independentof light (about 12 nm s–1). The energy requirements ofactive K+ transport by ATP-dependent pumps is discussed. Key words: Enteromorpha, Potassium transport, Ionic relations, Saltwater, Low salinity, Thermodynamics  相似文献   

7.
To study the effect of chronically elevated CO2 on the excitability and function of neurons, we exposed mice to 7.5–8% CO2 for 2 wk (starting at 2 days of age) and examined the properties of freshly dissociated hippocampal neurons. Neurons from control mice (CON) and from mice exposed to chronically elevated CO2 had similar resting membrane potentials and input resistances. CO2-exposed neurons, however, had a lower rheobase and a higher Na+ current density (580 ± 73 pA/pF; n = 27 neurons studied) than did CON neurons (280 ± 51 pA/pF, n = 34; P < 0.01). In addition, the conductance-voltage curve was shifted in a more negative direction in CO2-exposed than in CON neurons (midpoint of the curve was –46 ± 3 mV for CO2 exposed and –34 ± 3 mV for CON, P < 0.01), while the steady-state inactivation curve was shifted in a more positive direction in CO2-exposed than in CON neurons (midpoint of the curve was –59 ± 2 mV for CO2 exposed and –68 ± 3 mV for CON, P < 0.01). The time constant for deactivation at –100 mV was much smaller in CO2-exposed than in CON neurons (0.8 ± 0.1 ms for CO2 exposed and 1.9 ± 0.3 ms for CON, P < 0.01). Immunoblotting for Na+ channel proteins (subtypes I, II, and III) was performed on the hippocampus. Our data indicate that Na+ channel subtype I, rather than subtype II or III, was significantly increased (43%, n = 4; P < 0.05) in the hippocampi of CO2-exposed mice. We conclude that in mice exposed to elevated CO2, 1) increased neuronal excitability is due to alterations in Na+ current and Na+ channel characteristics, and 2) the upregulation of Na+ channel subtype I contributes, at least in part, to the increase in Na+ current density. sodium ion channels; oxygen deprivation  相似文献   

8.
Potassium depletion (KD) is a very common clinical entity often associated with adverse cardiac effects. KD is generally considered to reduce muscular Na-K-ATPase density and secondarily reduce K uptake capacity. In KD rats we evaluated myocardial Na-K-ATPase density, ion content, and myocardial K reuptake. KD for 2 wk reduced plasma K to 1.8 ± 0.1 vs. 3.5 ± 0.2 mM in controls (P < 0.01, n = 7), myocardial K to 80 ± 1 vs. 86 ± 1 µmol/g wet wt (P < 0.05, n = 7), increased Mg, and induced a tendency to increased Na. Myocardial Na-K-ATPase 2-subunit abundance was reduced by 30%, whereas increases in 1- and K-dependent pNPPase activity of 24% (n = 6) and 13% (n = 6), respectively, were seen. This indicates an overall upregulation of the myocardial Na-K pump pool. KD rats tolerated a higher intravenous KCl dose. KCl infusion until animals died increased myocardial K by 34% in KD rats and 18% in controls (P < 0.05, n = 6 for both) but did not induce different net K uptake rates between groups. However, clamping plasma K at 5.5 mM by KCl infusion caused a higher net K uptake rate in KD rats (0.22 ± 0.04 vs. 0.10 ± 0.03 µmol·g wet wt–1·min–1; P < 0.05, n = 8). In conclusion, a minor KD-induced decrease in myocardial K increased Na-K pump density and in vivo increased K tolerance and net myocardial K uptake rate during K repletion. Thus the heart is protected from major K losses and accumulates considerable amounts of K during exposure to high plasma K. This is of clinical interest, because a therapeutically induced rise in myocardial K may affect contractility and impulse generation-propagation and may attenuate increased myocardial Na, the hallmark of heart failure. Na-K-ATPase; ion homeostasis; heart failure; iatrogenic potassium depletion  相似文献   

9.
We employed a glycogen-depleting session of exercise followed by a low-carbohydrate (CHO) diet to investigate modifications that occur in muscle sarcoplasmic reticulum (SR) Ca2+-cycling properties compared with low-CHO diet alone. SR properties were assessed in nine untrained males [peak aerobic power (O2 peak) = 43.6 ± 2.6 (SE) ml·kg–1·min–1] during prolonged cycle exercise to fatigue performed at 58% O2 peak after 4 days of low-CHO diet (Lo CHO) and after glycogen-depleting exercise plus 4 days of low-CHO (Ex+Lo CHO). Compared with Lo CHO, Ex+Lo CHO resulted in 12% lower (P < 0.05) resting maximal Ca2+-ATPase activity (Vmax = 174 ± 12 vs. 153 ± 10 µmol·g protein–1·min–1) and smaller reduction in Vmax induced during exercise. A similar effect was observed for Ca2+ uptake. The Hill coefficient, defined as slope of the relationship between cytosolic free Ca2+ concentration and Ca2+-ATPase activity, was higher (P < 0.05) at rest (2.07 ± 0.15 vs. 1.90 ± 0.10) with Ex+Lo CHO, an effect that persisted throughout the exercise. The coupling ratio, defined as the ratio of Ca2+ uptake to Vmax, was 23–30% elevated (P < 0.05) at rest and during the first 60 min of exercise with Ex+Lo CHO. The 27 and 34% reductions (P < 0.05) in phase 1 and phase 2 Ca2+ release, respectively, observed during exercise with Lo CHO were not altered by Ex+Lo CHO. These results indicate that when prolonged exercise precedes a short-term Lo CHO diet, Ca2+ sequestration properties and efficiency are improved compared with those during Lo CHO alone. calcium cycling; vastus lateralis; contractile activity; glycogen; phosphorylation potential  相似文献   

10.
Rabbit conjunctival epithelium exhibits UTP-dependentCl secretion into the tears. We investigated whetherfluid secretion also takes place. Short-circuit current(Isc) was 14.9 ± 1.4 µA/cm2(n = 16). Four P2Y2 purinergic receptoragonists [UTP and the novel compounds INS365, INS306, and INS440(Inspire Pharmaceuticals)] added apically (10 µM) resulted intemporary (~30 min) Isc increases (88%, 66%,57%, and 28%, respectively; n = 4 each). Importantly, the conjunctiva transported fluid from serosa to mucosa at a rate of6.5 ± 0.7 µl · h1 · cm2 (range2.1-15.3, n = 20). Fluid transport was stimulatedby mucosal additions of 10 µM: 1) UTP, from 7.4 ± 2.3 to 10.7 ± 3.3 µl · h1 · cm2,n = 5; and 2) INS365, from 6.3 ± 1.0 to 9.8 ± 2.5 µl · h1 · cm2,n = 5. Fluid transport was abolished by 1 mMouabain (n = 5) and was drastically inhibited by 300 µM quinidine (from 6.4 ± 1.2 to 3.6 ± 1.0 µl · h1 · cm2,n = 4). We conclude that this epithelium secretes fluidactively and that P2Y2 agonists stimulate bothCl and fluid secretions.

  相似文献   

11.
Net photosynthesis rate (Pn), stomatal conductance to CO2 andresidual conductance to CO2 were measured in the last six leaves(the sixth or flag leaf and the preceding five leaves) of Triticumaestivum L. cv. Kolibri plants grown in Mediterranean conditions.Recently fully expanded leaves of well-watered plants were alwaysused. Measurements were made at saturating photosynthetic photonflux density, and at ambient CO2 and O2 levels. The specificleaf area, total organic nitrogen content, some anatomical characteristics,and other parameters, were measured on the same leaves usedfor gas exchange experiments. A progressive xeromorphic adaptation in the leaf structure wasobserved with increasing leaf insertion levels. Furthermore,mesophyll cell volume per unit leaf area (Vmes/A) decreasedby 52·6% from the first leaf to the flag leaf. Mesophyllcell area per unit leaf area also decreased, but only by 24·5%.However, nitrogen content per unit mesophyll cell volume increasedby 50·6% from the first leaf to the flag leaf. This increasecould be associated to an observed higher number of chloroplastcross-sections per mm2 of mesophyll cell cross-sectional areain the flag leaf: values of 23000 in the first leaf and 48000in the flag leaf were obtained. Pn per unit leaf area remainedfairly constant at the different insertion levels: values of33·83±0·93 mg dm–2 h–1 and32·32±1·61 mg dm–2 h–1 wereobtained for the first leaf and the flag leaf, respectively.Residual conductance, however, decreased by 18·2% fromthe first leaf to the flag leaf. Stomatal conductance increasedby 41·7%. The steadiness in Pn per unit leaf area across the leaf insertionlevels could be mainly accounted for by an opposing effect betweena decrease in Vmes/A and a more closely packed arrangement ofphotosynthetic apparatus. Adaptative significance of structuralchanges with increasing leaf insertion levels and the steadinessin Pn per unit leaf area was studied. Key words: Photosynthesis, structure, wheat  相似文献   

12.
Several studies suggest the involvement of Na+ and HCO3 transport in the formation of cerebrospinal fluid. Two Na+-dependent HCO3 transporters were recently localized to the epithelial cells of the rat choroid plexus (NBCn1 and NCBE), and the mRNA for a third protein was also detected (NBCe2) (Praetorius J, Nejsum LN, and Nielsen S. Am J Physiol Cell Physiol 286: C601–C610, 2004). Our goal was to immunolocalize the NBCe2 to the choroid plexus by immunohistochemistry and immunogold electronmicroscopy and to functionally characterize the bicarbonate transport in the isolated rat choroid plexus by measurements of intracellular pH (pHi) using a dual-excitation wavelength pH-sensitive dye (BCECF). Both antisera derived from COOH-terminal and NH2-terminal NBCe2 peptides localized NBCe2 to the brush-border membrane domain of choroid plexus epithelial cells. Steady-state pHi in choroidal cells increased from 7.03 ± 0.02 to 7.38 ± 0.02 (n = 41) after addition of CO2/HCO3 into the bath solution. This increase was Na+ dependent and inhibited by the Cl and HCO3 transport inhibitor DIDS (200 µM). This suggests the presence of Na+-dependent, partially DIDS-sensitive HCO3 uptake. The pHi recovery after acid loading revealed an initial Na+ and HCO3-dependent net base flux of 0.828 ± 0.116 mM/s (n = 8). The initial flux in the presence of CO2/HCO3 was unaffected by DIDS. Our data support the existence of both DIDS-sensitive and -insensitive Na+- and HCO3-dependent base loader uptake into the rat choroid plexus epithelial cells. This is consistent with the localization of the three base transporters NBCn1, Na+-driven Cl bicarbonate exchanger, and NBCe2 in this tissue. bicarbonate metabolism; BCECF; cerebrospinal fluid; acid/base transport; ammonium prepulse  相似文献   

13.
Patients treated with glucocorticoids have elevated skeletal muscle ouabain binding sites. The major Na+-K+-ATPase (NKA) isoform proteins found in muscle, 2 and 1, are increased by 50% in rats treated for 14 days with the synthetic glucocorticoid dexamethasone (DEX). This study addressed whether the DEX-induced increase in the muscle NKA pool leads to increased insulin-stimulated cellular K+ uptake that could precipitate hypokalemia. Rats were treated with DEX or vehicle via osmotic minipumps at one of two doses: 0.02 mg·kg–1·day–1 for 14 days (low DEX; n = 5 pairs) or 0.1 mg·kg–1·day–1 for 7 days (high DEX; n = 6 pairs). Insulin was infused at a rate of 5 mU·kg–1·min–1 over 2.5 h in conscious rats. Insulin-stimulated cellular K+ and glucose uptake rates were assessed in vivo by measuring the exogenous K+ infusion () and glucose infusion (Ginf) rates needed to maintain constant plasma K+ and glucose concentrations during insulin infusion. DEX at both doses decreased insulin-stimulated glucose uptake as previously reported. Ginf (in mmol·kg–1·h–1) was 10.2 ± 0.6 in vehicle-treated rats, 5.8 ± 0.8 in low-DEX-treated rats, and 5.2 ± 0.6 in high-DEX-treated rats. High DEX treatment also reduced insulin-stimulated K+ uptake. (in mmol·kg–1·h–1) was 0.53 ± 0.08 in vehicle-treated rats, 0.49 ± 0.14 in low-DEX-treated rats, and 0.27 ± 0.08 in high-DEX-treated rats. DEX treatment did not alter urinary K+ excretion. NKA 2-isoform levels in the low-DEX-treated group, measured by immunoblotting, were unchanged, but they increased by 38 ± 15% (soleus) and by 67 ± 3% (gastrocnemius) in the high-DEX treatment group. The NKA 1-isoform level was unchanged. These results provide novel evidence for the insulin resistance of K+ clearance during chronic DEX treatment. Insulin-stimulated cellular K+ uptake was significantly depressed despite increased muscle sodium pump pool size. skeletal muscle; sodium pump; Na+-K+-ATPase  相似文献   

14.
Dietary polyunsaturated fatty acids (PUFAs) have been reported to exhibit antiarrhythmic properties, which have been attributed to their availability to modulate Na+, Ca2+, and several K+ channels. However, their effects on human ether-a-go-go-related gene (HERG) channels are unknown. In this study we have analyzed the effects of arachidonic acid (AA, -6) and docosahexaenoic acid (DHA, -3) on HERG channels stably expressed in Chinese hamster ovary cells by using the whole cell patch-clamp technique. At 10 µM, AA and DHA blocked HERG channels, at the end of 5-s pulses to –10 mV, to a similar extent (37.7 ± 2.4% vs. 50.2 ± 8.1%, n = 7–10, P > 0.05). 5,6,11,14-Eicosatetrayenoic acid, a nonmetabolizable AA analog, induced effects similar to those of AA on HERG current. Both PUFAs shifted the midpoint of activation curves of HERG channels by –5.1 ± 1.8 mV (n = 10, P < 0.05) and –11.2 ± 1.1 mV (n = 7, P < 0.01). Also, AA and DHA shifted the midpoint of inactivation curves by +12.0 ± 3.9 mV (n = 4; P < 0.05) and +15.8 ± 4.3 mV (n = 4; P < 0.05), respectively. DHA and AA accelerated the deactivation kinetics and slowed the inactivation kinetics at potentials positive to +40 mV. Block induced by DHA, but not that produced by AA, was higher when measured after applying a pulse to –120 mV (IO). Finally, both AA and DHA induced a use-dependent inhibition of HERG channels. In summary, block induced by AA and DHA was time, voltage, and use dependent. The results obtained suggest that both PUFAs bind preferentially to the open state of the channel, although an interaction with inactivated HERG channels cannot be ruled out for AA. K+ channel; membrane currents; ion channels; arrhythmia; antiarrhythmics  相似文献   

15.
Published data on the biomass and specific respiration ratesof mesozooplankton in the oceans across all latitudes were combinedto assess their community respiration on a global basis. Mesozooplanktonbiomass was higher in boreal/anti-boreal and polar waters, intermediatein equatorial waters and lowest in the subtropical gyres. Specificrespiration rates were the highest in equatorial waters anddecreased rapidly poleward. Global community respiration ofmesozooplankton in the upper 200 m of the oceans integratedover all latitudes was 10.4 ± 3.7 (SE) Gt C year–1(n = 838). Below the epipelagic zone, mesozooplankton respirationliving in the mesopelagic (200–1000 m) and bathypelagic(below 1000 m) zones was estimated as 2.2 ± 0.4 (n =57) and 0.40 ± 0.2 (n = 12) Gt C year–1, respectively.Thus, global depth-integrated mesozooplankton respiration was13.0 ± 4.2 Gt C year–1 (17–32% of globalprimary production), which is 3–8-fold higher than thevalues assigned to mesozooplankton respiration in recent estimatesof total respiration in the ocean. Thus, it appears that mesozooplanktonrepresent a major, but neglected component of the carbon cyclein the ocean.  相似文献   

16.
Measuring the Canopy Net Photosynthesis of Glasshouse Crops   总被引:3,自引:0,他引:3  
A null balance method is described for measuring net photosynthesisof mature canopies of cucumber and other protected crops overperiods of 10 min in a single-span glasshouse (c. 9m x 18m inarea). Accuracy of control of the CO2 concentration in the greenhouseatmosphere is within ±10 vpm of the normal ambient level(c. 350 vpm). The amounts of CO2 used in canopy net photosynthesisare measured with linear mass flowmeters accurate to within±0.80g. The total errors incurred in measuring canopynet photosynthesis at an ambient CO2 level are estimated tobe of the order of ± 1·2% in bright light (350W m–2, PAR)and ±3·6% in dull light (100W m–2, PAR). Measurements of the rates of net photosynthesis of a maturecanopy of a cucumber crop were made at near-ambient CO2 concentrationsover a range (0–350 W m–2) of natural light fluxdensities. A model of light absorption and photosynthesis applicableto row crops was used to obtain a net photosynthesis versuslight response curve for the cucumber crop. At a light fluxdensity of 350 W m–2 the fitted value of canopy net photosynthesiswas 2.65 mg CO2 m–2s–1 (equivalent to over 95 kgCO2 ha–1h–1). The results are discussed in relationto the need for CO2 supplements to avoid depletion in both ventilatedand unventilated glasshouses during late spring and summer. Key words: Glasshouse crops, cucumber, measurement, canopy photosynthesis, light, CO2  相似文献   

17.
Rat extensor digitorum longus muscleswere overloaded by stretch after removal of the synergist tibialisanterior muscle to determine the relationship between capillary growth,muscle blood flow, and presence of growth factors. After 2 wk,sarcomere length increased from 2.4 to 2.9 µm. Capillary-to-fiberratio, estimated from alkaline phosphatase-stained frozen sections, wasincreased by 33% (P < 0.0001) and60% (P < 0.01), compared withcontrol muscles (1.44 ± 0.06) after 2 and 8 wk, respectively. At 2 wk, the increased capillary-to-fiber ratio was not associated with anychanges in mRNA for basic fibroblast growth factor (FGF-2) or itsprotein distribution. FGF-2 immunoreactivity was present in nerves andlarge blood vessels but was negative in capillaries, whereas theactivity of low-molecular endothelial-cell-stimulating angiogenicfactor (ESAF) was 50% higher in stretched muscles. Muscle blood flowsmeasured by radiolabeled microspheres during contractions were notsignificantly different after 2 or 8 wk (132 ± 37 and 177 ± 22 ml · min1 · 100 g1, respectively) fromweight-matched controls (156 ± 12 and 150 ± 10 ml · min1 · 100 g1, respectively).Resistance to fatigue during 5-min isometric contractions (final/peaktension × 100) was similar in 2-wk overloaded and contralateralmuscles (85 vs. 80%) and enhanced after 8 wk to 92%, compared with77% in contralateral muscles and 67% in controls. We conclude thatincreased blood flow cannot be responsible for initiating expansion ofthe capillary bed, nor does it explain the reduced fatigue withinoverloaded muscles. However, stretch can present a mechanical stimulusto capillary growth, acting either directly on the capillary abluminalsurface or by upregulating ESAF, but not FGF-2, in the extracellular matrix.

  相似文献   

18.
It has been suggested that the sodium/calcium exchanger NCX1 may have a more important physiological role in embryonic and neonatal hearts than in adult hearts. However, in chick heart sarcolemmal vesicles, sodium-dependent calcium transport is reported to be small and, moreover, to be 3–12 times smaller in hearts at embryonic day (ED) 4–5 than at ED18, the opposite of what would be expected of a transporter that is more important in early development. To better assess the role of NCX1 in calcium regulation in the chick embryonic heart, we measured the activity of NCX1 in chick embryonic hearts as extracellular calcium-activated exchanger current (INCX) under controlled ionic conditions. With intracellular calcium concentration ([Ca2+]i) = 47 nM, INCX density increased from 1.34 ± 0.28 pA/pF at ED2 to 3.22 ± 0.55 pA/pF at ED11 (P = 0.006); however, with [Ca2+]i = 481 nM, the increase was small and statistically insignificant, from 4.54 ± 0.77 to 5.88 ± 0.73 pA/pF (P = 0.20, membrane potential = 0 mV, extracellular calcium concentration = 2 mM). Plots of INCX density against [Ca2+]i were well fitted by the Michaelis-Menton equation and extrapolated to identical maximal currents for ED2 and ED11 cells (extracellular calcium concentration = 1, 2, or 4 mM). Thus the increase in INCX at low [Ca2+]i appeared to reflect a developmental change in allosteric regulation of the exchanger by intracellular calcium rather than an increase in the membrane density of NCX1. Supporting this conclusion, RT-PCR demonstrated little change in the amount of mRNA encoding NCX1 expression from ED2 through ED18. NCX1; chick embryo; allosteric regulation; sodium/calcium exchange current  相似文献   

19.
Two approaches to quantifying relationships between nutrientsupply and plant growth were compared with respect to growth,partitioning, uptake and assimilation of NO3 by non-nodulatedpea (Pisum sativum L. cv. Marma). Plants grown in flowing solutionculture were supplied with NO3 at relative addition rates(RAR) of 0·03, 0·06, 0·12, and 0·18d–1, or constant external concentrations ([NO3)of 3, 10, 20, and 100 mmol m–3 over 19 d. Following acclimation,relative growth rates (RGR)approached the corresponding RARbetween 0·03–0.12 d-1, although growth was notlimited by N supply at RAR =0.18 d-1. Growth rates showed littlechange with [NO3–] between 10–100 mmol m–3(RGR=0·15 –0·16 d-1). The absence of growthlimitation over this range was suggested by high unit absorptionrates of NO3, accumulation of NO3 in tissues andprogressive increases in shoot: root ratio. Rates of net uptakeof NO3 from 1 mol m–3 solutions were assessed relativeto the growth-related requirement for NO3, showing thatthe relative uptake capacity increased with RGR between 0·03–0·06d–1 , but decreased thereafter to a theoretical minimumvalue at RGR  相似文献   

20.
Yield stress threshold (Y) and volumetric extensibility () arethe rheological properties that appear to control root growth.In this study they were measured in wheat roots by means ofparallel measurement of the growth rate (r) of intact wheatroots and of the turgor pressures (P) of individual cells withinthe expansion zone. Growth and turgor pressure were manipulatedby immersion in graded osmoticum (mannitol) solutions. Turgorwas measured with a pressure probe and growth rate by visualobservation. The influence of various growth conditions on Yand was investigated; (a) At 27 °C.In 0.5 mol m–3 CaCl2 r, P, Y and were20.7±4.6 µm min–1, 0.77±0.05 MPa,0.07±0.03 MPa and 26±1.9 µm min–1MPa–1 (expressed as increase in length), respectively.Following 24 h growth in 10 mol m–3 KC1 these parametersbecame 12.3±3.5 µm min–1, 0.72±0.04MPa, 0.13±0.01 MPa and 21±0.7 µm min–1MPa–1. After 24 h osmotic adjustment in 150 mol m–3mannitol/0.5 mol m–3 CaCl2 r= 19.6±4.2 µmmin–1, P = 0.68±0.05 MPa and Y and were 0.07±0.04MPa and 30±0.2 µm min–1 MPa–01, respectively.After 24 h growth in 350 mol m–3 mannitol/0.5 mol m–3CaCl2 r= 13.3±4.1 µm min–1, P= 0.58±0.07MPa, Y=0.12±0.01 MPa and ø 32±0.2 tim min–1MPa–1. During osmotic adjustment in 200 mol m–3mannitol/0.5 mol m–3 CaCl2, with or without KCl, the recoveryof growth rate corresponded to turgor pressure recovery (t1/2approximately 3 h). (b) At 15 °C. Lowered temperature dramatically influencedthe growth parameters which became r= 8.3±2.8 um min–1,P=0.78 MPa, r=<0.2 MPa and =15±0.1 µm min–1MPa–1. Therefore, Y and are influenced by 10 mol m–3 K+ ionsand low temperature. In each case the effective pressure forgrowth (P-Y) was large indicating that small fluctuations ofsoil water potential will not stop root elongation. Key words: Yield threshold, cell wall extensibility, wheat root growth, temperature, turgor pressur  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号